
Student Workbook
Red Hat Enterprise Linux 8 RH066
Fundamentals of Red Hat Enterprise Linux
Edition 1

RH066-RHEL8-en-1-cef4e50 Copyright ©2020 Red Hat, Inc.





Fundamentals of
Red Hat Enterprise
Linux

RH066-RHEL8-en-1-cef4e50 Copyright ©2020 Red Hat, Inc.



Red Hat Enterprise Linux 8 RH066
Fundamentals of Red Hat Enterprise Linux
Edition 1 cef4e50
Publication date 20200801

Authors: Susan Lauber, Philip Sweany, Rudolf Kastl, George Hacker
Editor: Steven Bonneville

Copyright © 2020 Red Hat, Inc.

The contents of this course and all its modules and related materials, including handouts to audience members, are
Copyright © 2020 Red Hat, Inc.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in any way, including, but
not limited to, photocopy, photograph, magnetic, electronic or other record, without the prior written permission of
Red Hat, Inc.

This instructional program, including all material provided herein, is supplied without any guarantees from Red Hat,
Inc. Red Hat, Inc. assumes no liability for damages or legal action arising from the use or misuse of contents or details
contained herein.

If you believe Red Hat training materials are being used, copied, or otherwise improperly distributed, please send
email to training@redhat.com or phone toll-free (USA) +1 (866) 626-2994 or +1 (919) 754-3700.

Red Hat, Red Hat Enterprise Linux, the Red Hat logo, JBoss, Hibernate, Fedora, the Infinity logo, and RHCE are
trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a registered trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or
other countries.

The OpenStack® word mark and the Square O Design, together or apart, are trademarks or registered trademarks
of OpenStack Foundation in the United States and other countries, and are used with the OpenStack Foundation's
permission. Red Hat, Inc. is not affiliated with, endorsed by, or sponsored by the OpenStack Foundation or the
OpenStack community.

All other trademarks are the property of their respective owners.

Contributors: Rob Locke, Bowe Strickland, Scott McBrien, Wander Boessenkool, Forrest Taylor



Document Conventions                                                                                                                                                                                                  vii

1. Getting Started with Red Hat Enterprise Linux                                                                                                                           1
What is Linux? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
Quiz: Getting Started with Red Hat Enterprise Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

2. Accessing the Command Line                                                                                                                                                                            11
Accessing the Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12
Quiz: Local Console Access Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Executing Commands Using the Bash Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
Quiz: Bash Commands and Keyboard Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
Guided Exercise: Accessing the Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

3. Managing Files From the Command Line                                                                                                                                       35
The Linux File System Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36
Quiz: File System Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
Locating Files by Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43
Quiz: Locating Files and Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
Managing Files Using Command-line Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52
Guided Exercise: Command Line File Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58
Matching File Names Using Path Name Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62
Quiz: Path Name Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67
Lab: Managing Files with Shell Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71

4. Creating, Viewing, and Editing Text Files                                                                                                                                      79
Editing Text Files from the Shell Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80
Guided Exercise: Editing Files with Vim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

5. Managing Local Linux Users and Groups                                                                                                                                        87
Users and Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88
Quiz: User and Group Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91
Gaining Superuser Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
Guided Exercise: Running Commands as root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100
Managing Local User Accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104
Guided Exercise: Creating Users Using Command-line Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107
Managing Local Group Accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110
Guided Exercise: Managing Groups Using Command-line Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113
Lab: Managing Local Linux Users and Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115

6. Controlling Access to Files with Linux File System Permissions                                                                    119
Linux File System Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120
Quiz: Interpreting File and Directory Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124
Managing File System Permissions from the Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128
Guided Exercise: Managing File Security from the Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132
Managing Default Permissions and File Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135
Guided Exercise: Controlling New File Permissions and Ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139
Lab: Controlling Access to Files with Linux File System Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142

7. Monitoring and Managing Linux Processes                                                                                                                              145
Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  146
Quiz: Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151
Controlling Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153
Guided Exercise: Background and Foreground Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  156
Killing Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  160
Guided Exercise: Killing Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  166
Monitoring Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169
Guided Exercise: Monitoring Process Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173

8. Installing and Updating Software Packages                                                                                                                            177

RH066-RHEL8-en-1-cef4e50 v



RPM Software Packages and Yum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178
Quiz: RPM Software Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  180
Managing Software Updates with Yum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  182
Guided Exercise: Installing and Updating Software with Yum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189

vi RH066-RHEL8-en-1-cef4e50



Document Conventions

References
"References" describe where to find external documentation relevant to a subject.

Note
"Notes" are tips, shortcuts or alternative approaches to the task at hand. Ignoring a
note should have no negative consequences, but you might miss out on a trick that
makes your life easier.

Important
"Important" boxes detail things that are easily missed: configuration changes that
only apply to the current session, or services that need restarting before an update
will apply. Ignoring a box labeled "Important" will not cause data loss, but may cause
irritation and frustration.

Warning
"Warnings" should not be ignored. Ignoring warnings will most likely cause data loss.

RH066-RHEL8-en-1-cef4e50 vii



viii RH066-RHEL8-en-1-cef4e50



Chapter 1

Getting Started with Red Hat
Enterprise Linux

Goal Describe and define open source, Linux, Linux
distributions, and Red Hat Enterprise Linux.

Objectives Define and explain the purpose of Linux, open
source, Linux distributions, and Red Hat Enterprise
Linux.

Sections What is Linux?

Lab Quiz: Getting Started with Red Hat Enterprise
Linux

RH066-RHEL8-en-1-cef4e50 1



Chapter 1 | Getting Started with Red Hat Enterprise Linux

What is Linux?

Objectives
After completing this section, students should be able to define and explain the purpose of Linux,
open source, Linux distributions, and Red Hat Enterprise Linux.

Why Should You Learn about Linux?
The most important technology for IT professionals to understand may be Linux.

Linux is used everywhere. If you use the internet at all, you are already using Linux in your daily life.
Perhaps the most obvious way in which you interact with Linux systems would be through browsing
the worldwide web and using e-commerce sites to buy and sell products.

But Linux is used for much more than that. It manages point-of-sale systems and the world's stock
markets. It is used to power smart TVs and in-flight entertainment systems. It powers most of the
top 500 supercomputers in the world. Linux provides the foundational technologies powering the
cloud revolution and the tools used to build the next generation of container-based microservices
applications. Emerging software-based storage technologies and big-data solutions are being
built on Linux.

In the modern datacenter, Linux and Microsoft Windows are the major players, and Linux is a
growing segment in that space. Some of the many reasons to learn Linux:

• If you are a Windows person, you'll need to interoperate with Linux.

• If you are doing application development, it's likely your application or its runtime will be hosted
on Linux.

• If you are working in the cloud, your cloud instances may be based on Linux, and your private or
public cloud environment will probably be based on Linux.

• If you are working with mobile applications or the Internet of Things (IoT), the chances are great
that the operating system of your device will be based on Linux.

• If you are looking for new opportunities in IT, Linux skills are in high demand.

What Makes Linux Great?
There are many different answers to the question "What makes Linux great?", but three of them
are:

• Linux is open source software.

Being open source does not just mean that you can see how the system works. You can also
experiment with changes and share them freely for others to use. This means improvements are
easier to make, enabling faster innovation.

• Easy access to a powerful and scriptable command-line interface (CLI).

From the beginning, Linux has been built around the basic design philosophy that allows all
administration to be done from the CLI. This enables easier automation, deployment, and
provisioning, and simplifies both local and remote system administration. Unlike other operating

2 RH066-RHEL8-en-1-cef4e50



Chapter 1 | Getting Started with Red Hat Enterprise Linux

systems, these capabilities haven't had to be developed after the fact, and the assumptions of
the system have always been to enable these important capabilities.

• Linux is modular and operating system components can easily be replaced or removed.

Components of the system can be upgraded and updated as needed. A Linux system can be a
general-purpose development workstation, or an extremely stripped-down software appliance.

What is Open Source Software?
Open source software is software with source code that anyone can use, study, modify, and share.

Source code is the set of human-readable instructions that are used to make a program. This may
be interpreted as a script, or compiled into a binary executable which the computer runs directly.
All source code is copyrighted from the moment it is created. Whether it can be distributed as
source or binary executables is under the control of the copyright holder. Therefore, software is
provided to users under a software license.

Some software has source code that only the person, team, or organization that created it can
see, or change, or distribute. This is sometimes called "proprietary" or "closed source" software.
Typically the license only allows the end user to run the program, and provides no access, or tightly
limited access, to the source.

Open source software is different. When the copyright holder provides software under an open
source license, they grant the user the right to run the program and also to view, modify, compile,
and redistribute the source royalty-free to others.

Open source promotes collaboration, sharing, transparency and rapid innovation because it
encourages people beyond the original developers to make modifications and improvements to
the software and to share it with others.

Just because software is open source does not mean it is somehow not able to be used or
provided commercially. Open source is a critical part of many organizations' commercial
operations. Some open source licenses allow code to be reused in closed source products. Open
source code can be sold, but the terms of true open source licenses generally allow the customer
to re-distribute the source code. Most commonly, vendors like Red Hat can provide commercial
help with deploying, supporting, and extending solutions based on open source products.

Open source has many benefits for the user:

• Control: See what the code does and change it to make it better.

• Training: Learn from real-world code and develop more effective applications.

• Security: Inspect sensitive code, fix with or without the original developers' help.

• Stability: Code can survive the loss of the original developer or distributor.

The bottom line is that we believe open source creates better software with a higher return on
investment, and that we do things better when we do them together.

Types of Open Source Licenses
There is more than one way to be open source. The terms of the software license control how
the source can be combined with other code or reused, and hundreds of different open source
licenses exist. But in order to be open source, licenses must allow users to freely use, view, change,
compile, and distribute the code.

There are two broad classes of open source license that are particularly important:

RH066-RHEL8-en-1-cef4e50 3



Chapter 1 | Getting Started with Red Hat Enterprise Linux

• Copyleft licenses that are designed to encourage keeping code open source.

• Permissive licenses that are designed to maximize code reusability.

Copyleft, or "share-alike" licenses, require that anyone who distributes the source code, with or
without changes, must also pass along the freedom for others to also copy, change and distribute
the code. The basic advantage of these licenses is that they help to keep existing code, and
improvements to that code, open and add to the amount of open source code available. Common
copyleft licenses include the GNU General Public License (GPL) and the Lesser GNU Public
License (LGPL).

Permissive licenses are intended to maximize the reusability of source code. Users can use the
source for any purpose as long as the copyright and license statements are preserved, including
reusing that code under more restrictive or even proprietary licenses. This makes it very easy for
this code to be reused, but at the risk of encouraging proprietary-only enhancements. Several
commonly used permissive open source licenses include the MIT/X11 license, the Simplified BSD
license, and the Apache Software License 2.0.

Who Develops Open Source Software?
It is a misconception to think that open source is developed solely by an "army of volunteers"
or even an army of individuals plus Red Hat. In fact, open source development today is
overwhelmingly professional. Many developers are paid by their organizations to work with open
source projects to construct and contribute the enhancements they and their customers need.

Volunteers and the academic community do play a very important role and can make vital
contributions, especially in new technology areas. The combination of formal and informal
development provides a highly dynamic and productive environment.

Who is Red Hat?
Red Hat is the world’s leading provider of open source software solutions, using a community-
powered approach to reliable and high-performing cloud, Linux, middleware, storage, and
virtualization technologies. Red Hat's mission is to be the catalyst in communities of customers,
contributors, and partners creating better technology the open source way.

Red Hat's role is to help customers connect with the open source community and our partners in
order to effectively use open source software solutions. We actively participate in and support the

4 RH066-RHEL8-en-1-cef4e50



Chapter 1 | Getting Started with Red Hat Enterprise Linux

open source community, and many years of experience have convinced us of the importance of
open source to the future of the IT industry.

Red Hat is most well-known for our participation in the Linux community and the Red Hat
Enterprise Linux distribution. However, Red Hat is also very active in other open source
communities including middleware projects centered on the JBoss developer community,
virtualization solutions, cloud technologies such as OpenStack and OpenShift, and the Ceph and
Gluster software-based storage projects, among others.

What is a Linux Distribution?
A Linux distribution is an installable operating system constructed from a Linux kernel and
supporting user programs and libraries. A complete Linux operating system is not developed by
a single organization, but by a collection of independent open source development communities
working with individual software components. A distribution provides an easy way for users to
install and manage a working Linux system.

In 1991, a young computer science student named Linus Torvalds developed a Unix-like kernel he
named Linux, licensed as open source software under the GPL. The kernel is the core component
of the operating system, which manages hardware, memory, and scheduling of running programs.
This Linux kernel could then be supplemented with other open source software, such as the
utilities and programs from the GNU Project, the graphical interface from MIT's X Window System,
and many other open source components such as the Sendmail mail server or the Apache HTTPD
web server, in order to build a complete open source Unix-like operating system.

However, one of the challenges for Linux users was to assemble all these pieces from many
different sources. Very early in its history, Linux developers began working to provide a distribution
of prebuilt and tested tools that users could download and use to quickly set up their Linux
systems.

Many different Linux distributions exist, with differing goals and criteria for selecting and
supporting the software provided by their distribution. But distributions generally have a number
of common characteristics:

• A distribution consists of a Linux kernel and supporting user space programs.

• A distribution may be small and single-purpose or include thousands of open source programs.

• Some means of installing and updating the distribution and its components should be provided.

• The vendor should support that software, and ideally be participating directly in the community
developing that software.

Red Hat Enterprise Linux is Red Hat's commercially-supported Linux distribution.

Red Hat Enterprise Linux
Development of Red Hat Enterprise Linux
Red Hat develops and integrates open source software into Red Hat Enterprise Linux through a
multistage process.

• We participate in supporting individual open source projects. We contribute code, developer
time, resources, and other support, often collaborating with developers from other Linux
distributions. This helps to improve the general quality of software for all of us.

• We sponsor and integrate open source projects into a community-driven Linux distribution,
Fedora. Fedora provides a free working environment that can serve as a development lab

RH066-RHEL8-en-1-cef4e50 5



Chapter 1 | Getting Started with Red Hat Enterprise Linux

and proving ground for features that may be incorporated into our commercially-supported
products.

• We stabilize the software to ensure that it's ready for long term support and standardization, and
integrate it into our enterprise-ready distribution, Red Hat Enterprise Linux.

Fedora
Fedora is a community project that produces and release a complete, free Linux-based operating
system. Red Hat sponsors the community and works with community representatives to integrate
the latest upstream software into a fast-moving and secure distribution. The Fedora project
contributes everything back to the free and open source world, and anyone can participate.

However, Fedora is focused on innovation and excellence, not long-term stability. New major
updates happen every six months, and they can bring significant changes. Fedora only supports
releases for about a year (two major updates). This can make Fedora less suitable for enterprise
use.

Red Hat Enterprise Linux
Red Hat Enterprise Linux is Red Hat's enterprise-ready, commercially supported Linux distribution.
The leading platform for open source computing, it's not just a collection of mature open source
projects. Red Hat Enterprise Linux is extensively tested, with a large supporting ecosystem of
partners, hardware and software certifications, consulting services, training, and multi-year
support and maintenance guarantees.

Red Hat bases its major releases of Red Hat Enterprise Linux on Fedora. But after that, Red Hat
can pick and choose which packages to include, make further enhancements (contributed back
to the upstream projects and Fedora), and make configuration decisions that serve the needs of
customers. Red Hat helps vendors and customers engage with the open source community, to
work with upstream development to develop solutions and fix issues.

Red Hat Enterprise Linux is provided through a subscription-based model. Since this is
open source software, this is not a license fee. Instead, it pays for support, maintenance,
updates, security patches, access to the Knowledgebase at Red Hat Customer Portal (http://

6 RH066-RHEL8-en-1-cef4e50

http://access.redhat.com/


Chapter 1 | Getting Started with Red Hat Enterprise Linux

access.redhat.com/), certifications, and so on. The customer is paying for long-term support and
expertise, commitment, and assistance when they need it.

When major updates become available, customers can move to them at their convenience without
paying more. This can simplify management of both the economic and practical aspects of system
updates.

Trying out Red Hat Enterprise Linux
There are a number of different ways to try Red Hat Enterprise Linux. One is to download an
evaluation copy from our website at https://access.redhat.com/products/red-hat-enterprise-
linux/evaluation. A number of links to supplementary information are available from that page.

Red Hat also makes available free subscriptions of a number of our products for development
purposes through the Red Hat Developer Program at https://developer.redhat.com. These
subscriptions allow developers to easily develop, prototype, test, and demonstrate their software
on the same enterprise products that it will eventually be deployed with.

Another approach is to deploy an instance of Red Hat Enterprise Linux made available through a
cloud provider. For example, in this course the hands-on labs are designed to use an official Red
Hat Enterprise Linux image provided through a major cloud provider's image catalog.

For more information, please visit the Red Hat Enterprise Linux "Get Started" page, referenced at
the end of this section.

References
Red Hat Enterprise Linux: Get Started
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux/get-
started

The Open Source Way
https://opensource.com/open-source-way

RH066-RHEL8-en-1-cef4e50 7

http://access.redhat.com/
https://access.redhat.com/products/red-hat-enterprise-linux/evaluation
https://access.redhat.com/products/red-hat-enterprise-linux/evaluation
https://developer.redhat.com
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux/get-started
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux/get-started
https://opensource.com/open-source-way


Chapter 1 | Getting Started with Red Hat Enterprise Linux

Quiz

Getting Started with Red Hat Enterprise
Linux

Choose the correct answer to the following questions:

 1. Which of the following are benefits of open source software for the user? (Choose
two.)
a. The code can survive the loss of the original developer or distributor.
b. The sensitive portions of the code are protected and only available to the original

developer.
c. You can learn from real-world code and develop more effective applications.
d. The code remains open as long as it is in a public repository but the license may change

when included with closed source software.

 2. How does Red Hat develop their products for the future and interact with the
community? (Choose two.)
a. Sponsor and integrate open source projects into the community driven Fedora project.
b. Develop specific integration tools only available in Red Hat distributions.
c. Participate in upstream projects.
d. Repackage and re-license community products.

 3. Which statements describe benefits of Linux? (Choose two.)
a. Linux is developed entirely by volunteers making is a low cost operating system.
b. Linux is modular and can be configured as a full graphical desktop or a small appliance.
c. Linux is locked in a known state for a minimum of one year for each release making it

easier to develop custom software.
d. Linux includes a powerful and scriptable command line interface enabling easier

automation and provisioning.

8 RH066-RHEL8-en-1-cef4e50



Chapter 1 | Getting Started with Red Hat Enterprise Linux

Solution

Getting Started with Red Hat Enterprise
Linux

Choose the correct answer to the following questions:

 1. Which of the following are benefits of open source software for the user? (Choose
two.)
a. The code can survive the loss of the original developer or distributor.
b. The sensitive portions of the code are protected and only available to the original

developer.
c. You can learn from real-world code and develop more effective applications.
d. The code remains open as long as it is in a public repository but the license may change

when included with closed source software.

 2. How does Red Hat develop their products for the future and interact with the
community? (Choose two.)
a. Sponsor and integrate open source projects into the community driven Fedora project.
b. Develop specific integration tools only available in Red Hat distributions.
c. Participate in upstream projects.
d. Repackage and re-license community products.

 3. Which statements describe benefits of Linux? (Choose two.)
a. Linux is developed entirely by volunteers making is a low cost operating system.
b. Linux is modular and can be configured as a full graphical desktop or a small appliance.
c. Linux is locked in a known state for a minimum of one year for each release making it

easier to develop custom software.
d. Linux includes a powerful and scriptable command line interface enabling easier

automation and provisioning.

RH066-RHEL8-en-1-cef4e50 9



10 RH066-RHEL8-en-1-cef4e50



Chapter 2

Accessing the Command Line
Goal To log into a Linux system and run simple

commands using the shell.

Objectives • Use Bash shell syntax to enter commands at a
Linux console.

• Use Bash features to run commands from a
shell prompt using fewer keystrokes.

Sections • Accessing the Command Line (and Quiz)
• Executing Commands Using the Bash Shell

(and Quiz)

Lab Accessing the Command Line

RH066-RHEL8-en-1-cef4e50 11



Chapter 2 | Accessing the Command Line

Accessing the Command Line

Objectives
After completing this section, you should be able to log in to a Linux system and run simple
commands using the shell.

Introduction to the Bash Shell
A command line is a text-based interface which can be used to input instructions to a computer
system. The Linux command line is provided by a program called the shell. Various options for the
shell program have been developed over the years, and different users can be configured to use
different shells. Most users, however, stick with the current default.

The default shell for users in Red Hat Enterprise Linux is the GNU Bourne-Again Shell (bash).
Bash is an improved version of one of the most successful shells used on UNIX-like systems, the
Bourne Shell (sh).

When a shell is used interactively, it displays a string when it is waiting for a command from the
user. This is called the shell prompt. When a regular user starts a shell, the default prompt ends
with a $ character, as shown below.

[user@host ~]$ 

The $ character is replaced by a # character if the shell is running as the superuser, root. This
makes it more obvious that it is a superuser shell, which helps to avoid accidents and mistakes
which can affect the whole system. The superuser shell prompt is shown below.

[root@host ~]# 

Using bash to execute commands can be powerful. The bash shell provides a scripting language
that can support automation of tasks. The shell has additional capabilities that can simplify or
make possible operations that are hard to accomplish efficiently with graphical tools.

Note
The bash shell is similar in concept to the command-line interpreter found in recent
versions of Microsoft Windows, cmd.exe, although bash has a more sophisticated
scripting language. It is also similar to Windows PowerShell in Windows 7 and
Windows Server 2008 R2 and later. Administrators using the Apple Mac who use the
Terminal utility may be pleased to note that bash is the default shell in macOS.

Shell Basics
Commands entered at the shell prompt have three basic parts:

• Command to run

• Options to adjust the behavior of the command

12 RH066-RHEL8-en-1-cef4e50



Chapter 2 | Accessing the Command Line

• Arguments, which are typically targets of the command

The command is the name of the program to run. It may be followed by one or more options, which
adjust the behavior of the command or what it will do. Options normally start with one or two
dashes (-a or --all, for example) to distinguish them from arguments. Commands may also
be followed by one or more arguments, which often indicate a target that the command should
operate upon.

For example, the command usermod -L user01 has a command (usermod), an option (-L),
and an argument (user01). The effect of this command is to lock the password of the user01
user account.

Many commands have a --help option that displays a usage message and the list of available
options.

Logging in to a Local Computer
To run the shell, you need to log in to the computer on a terminal. A terminal is a text-based
interface used to enter commands into and print output from a computer system. There are
several ways to do this.

The computer might have a hardware keyboard and display for input and output directly
connected to it. This is the Linux machine's physical console. The physical console supports
multiple virtual consoles, which can run separate terminals. Each virtual console supports an
independent login session. You can switch between them by pressing Ctrl+Alt and a function
key (F1 through F6) at the same time. Most of these virtual consoles run a terminal providing a
text login prompt, and if you enter your username and password correctly, you will log in and get a
shell prompt.

The computer might provide a graphical login prompt on one of the virtual consoles. You can use
this to log in to a graphical environment. The graphical environment also runs on a virtual console.
To get a shell prompt you must start a terminal program in the graphical environment. The shell
prompt is provided in an application window of your graphical terminal program.

Note
Many system administrators choose not to run a graphical environment on their
servers. This allows resources which would be used by the graphical environment to
be used by the server's services instead.

In Red Hat Enterprise Linux 8, if the graphical environment is available, the login screen will run
on the first virtual console, called tty1. Five additional text login prompts are available on virtual
consoles two through six.

If you log in using the graphical login screen, your graphical environment will start on the first
virtual console that is not currently being used by a login session. Normally, your graphical session
will replace the login prompt on the second virtual console (tty2). However, if that console is in
use by an active text login session (not just a login prompt), the next free virtual console is used
instead.

The graphical login screen continues to run on the first virtual console (tty1). If you are already
logged in to a graphical session, and log in as another user on the graphical login screen or use the
Switch User menu item to switch users in the graphical environment without logging out, another
graphical environment will be started for that user on the next free virtual console.

RH066-RHEL8-en-1-cef4e50 13



Chapter 2 | Accessing the Command Line

When you log out of a graphical environment, it will exit and the physical console will automatically
switch back to the graphical login screen on the first virtual console.

Note
In Red Hat Enterprise Linux 6 and 7, the graphical login screen runs on the first
virtual console, but when you log in your initial graphical environment replaces the
login screen on the first virtual console instead of starting on a new virtual console.

In Red Hat Enterprise Linux 5 and earlier, the first six virtual consoles always
provided text login prompts. If the graphical environment is running, it is on virtual
console seven (accessed through Ctrl+Alt+F7).

A headless server does not have a keyboard and display permanently connected to it. A data
center may be filled with many racks of headless servers, and not providing each with a keyboard
and display saves space and expense. To allow administrators to log in, a headless server might
have a login prompt provided by its serial console, running on a serial port which is connected to a
networked console server for remote access to the serial console.

The serial console would normally be used to fix the server if its own network card became
misconfigured and logging in over its own network connection became impossible. Most of the
time, however, headless servers are accessed by other means over the network.

Logging in over the Network
Linux users and administrators often need to get shell access to a remote system by connecting
to it over the network. In a modern computing environment, many headless servers are actually
virtual machines or are running as public or private cloud instances. These systems are not physical
and do not have real hardware consoles. They might not even provide access to their (simulated)
physical console or serial console.

In Linux, the most common way to get a shell prompt on a remote system is to use Secure
Shell (SSH). Most Linux systems (including Red Hat Enterprise Linux) and macOS provide the
OpenSSH command-line program ssh for this purpose.

In this example, a user with a shell prompt on the machine host uses ssh to log in to the remote
Linux system remotehost as the user remoteuser:

[user@host ~]$ ssh remoteuser@remotehost
remoteuser@remotehost's password: password
[remoteuser@remotehost ~]$

The ssh command encrypts the connection to secure the communication against eavesdropping
or hijacking of the passwords and content.

Some systems (such as new cloud instances) do not allow users to use a password to log in with
ssh for tighter security. An alternative way to authenticate to a remote machine without entering a
password is through public key authentication.

With this authentication method, users have a special identity file containing a private key, which
is equivalent to a password, and which they keep secret. Their account on the server is configured
with a matching public key, which does not have to be secret. When logging in, users can configure
ssh to provide the private key and if their matching public key is installed in that account on that
remote server, it will log them in without asking for a password.

14 RH066-RHEL8-en-1-cef4e50



Chapter 2 | Accessing the Command Line

In the next example, a user with a shell prompt on the machine host logs in to remotehost
as remoteuser using ssh, using public key authentication. The -i option is used to specify
the user's private key file, which is mylab.pem. The matching public key is already set up as an
authorized key in the remoteuser account.

[user@host ~]$ ssh -i mylab.pem remoteuser@remotehost
[remoteuser@remotehost ~]$

For this to work, the private key file must be readable only by the user that owns the file. In the
preceding example, where the private key is in the mylab.pem file, the command chmod 600
mylab.pem could be used to ensure this. How to set file permissions is discussed in more detail in
a later chapter.

Users might also have private keys configured that are tried automatically, but that discussion is
beyond the scope of this section. The References at the end of this section contain links to more
information on this topic.

Note
The first time you log in to a new machine, you will be prompted with a warning from
ssh that it cannot establish the authenticity of the host:

[user@host ~]$ ssh -i mylab.pem remoteuser@remotehost
The authenticity of host 'remotehost (192.0.2.42)' can't be established.
ECDSA key fingerprint is 47:bf:82:cd:fa:68:06:ee:d8:83:03:1a:bb:29:14:a3.
Are you sure you want to continue connecting (yes/no)? yes
[remoteuser@remotehost ~]$

Each time you connect to a remote host with ssh, the remote host sends ssh
its host key to authenticate itself and to help set up encrypted communication.
The ssh command compares that against a list of saved host keys to make sure it
has not changed. If the host key has changed, this might indicate that someone is
trying to pretend to be that host to hijack the connection which is also known as
man-in-the-middle attack. In SSH, host keys protect against man-in-the-middle
attacks, these host keys are unique for each server, and they need to be changed
periodically and whenever a compromise is suspected.

You will get this warning if your local machine does not have a host key saved for
the remote host. If you enter yes, the host key that the remote host sent will be
accepted and saved for future reference. Login will continue, and you should not see
this message again when connecting to this host. If you enter no, the host key will
be rejected and the connection closed.

If the local machine does have a host key saved and it does not match the one
actually sent by the remote host, the connection will automatically be closed with a
warning.

Logging Out
When you are finished using the shell and want to quit, you can choose one of several ways to end
the session. You can enter the exit command to terminate the current shell session. Alternatively,
finish a session by pressing Ctrl+D.

The following is an example of a user logging out of an SSH session:

RH066-RHEL8-en-1-cef4e50 15



Chapter 2 | Accessing the Command Line

[remoteuser@remotehost ~]$ exit
logout
Connection to remotehost closed.
[user@host ~]$

References
intro(1), bash(1), console(4), pts(4), ssh(1), and ssh-keygen(1) man pages

Note: Some details of the console(4) man page, involving init(8) and
inittab(5), are outdated.

For more information on OpenSSH and public key authentication, refer to the Using
secure communications between two systems with OpenSSH chapter in the Red Hat
Enterprise Linux 8 Securing networks guide at
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-
single/securing_networks/index#using-secure-communications-between-two-
systems-with-openssh_securing-networks

Note
Instructions on how to read man pages and other online help documentation is
included at the end of the next section.

16 RH066-RHEL8-en-1-cef4e50

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/securing_networks/index#using-secure-communications-between-two-systems-with-openssh_securing-networks
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/securing_networks/index#using-secure-communications-between-two-systems-with-openssh_securing-networks
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/securing_networks/index#using-secure-communications-between-two-systems-with-openssh_securing-networks


Chapter 2 | Accessing the Command Line

Quiz

Local Console Access Terms

Choose the correct answer to the following questions:

 1. Which term describes the interpreter that executes commands typed as strings?
a. Command
b. Console
c. Shell
d. Terminal

 2. Which term describes the visual cue that indicates an interactive shell is waiting for the
user to type a command?
a. Argument
b. Command
c. Option
d. Prompt

 3. Which term describes the name of a program to run?
a. Argument
b. Command
c. Option
d. Prompt

 4. Which term describes the part of the command line that adjusts the behavior of a
command?
a. Argument
b. Command
c. Option
d. Prompt

 5. Which term describes the part of the command line that specifies the target that the
command should operate on?
a. Argument
b. Command
c. Option
d. Prompt

RH066-RHEL8-en-1-cef4e50 17



Chapter 2 | Accessing the Command Line

 6. Which term describes the hardware display and keyboard used to interact with a
system?
a. Physical Console
b. Virtual Console
c. Shell
d. Terminal

 7. Which term describes one of multiple logical consoles that can each support an
independent login session?
a. Physical Console
b. Virtual Console
c. Shell
d. Terminal

 8. Which term describes an interface that provides a display for output and a keyboard
for input to a shell session?
a. Console
b. Virtual Console
c. Shell
d. Terminal

18 RH066-RHEL8-en-1-cef4e50



Chapter 2 | Accessing the Command Line

Solution

Local Console Access Terms

Choose the correct answer to the following questions:

 1. Which term describes the interpreter that executes commands typed as strings?
a. Command
b. Console
c. Shell
d. Terminal

 2. Which term describes the visual cue that indicates an interactive shell is waiting for the
user to type a command?
a. Argument
b. Command
c. Option
d. Prompt

 3. Which term describes the name of a program to run?
a. Argument
b. Command
c. Option
d. Prompt

 4. Which term describes the part of the command line that adjusts the behavior of a
command?
a. Argument
b. Command
c. Option
d. Prompt

 5. Which term describes the part of the command line that specifies the target that the
command should operate on?
a. Argument
b. Command
c. Option
d. Prompt

RH066-RHEL8-en-1-cef4e50 19



Chapter 2 | Accessing the Command Line

 6. Which term describes the hardware display and keyboard used to interact with a
system?
a. Physical Console
b. Virtual Console
c. Shell
d. Terminal

 7. Which term describes one of multiple logical consoles that can each support an
independent login session?
a. Physical Console
b. Virtual Console
c. Shell
d. Terminal

 8. Which term describes an interface that provides a display for output and a keyboard
for input to a shell session?
a. Console
b. Virtual Console
c. Shell
d. Terminal

20 RH066-RHEL8-en-1-cef4e50



Chapter 2 | Accessing the Command Line

Executing Commands Using the Bash
Shell

Objectives
After completing this section, you should be able to save time running commands from a shell
prompt using Bash shortcuts.

Basic Command Syntax
The GNU Bourne-Again Shell (bash) is a program that interprets commands typed in by the
user. Each string typed into the shell can have up to three parts: the command, options (which
usually begin with a - or --), and arguments. Each word typed into the shell is separated from each
other with spaces. Commands are the names of programs that are installed on the system. Each
command has its own options and arguments.

When you are ready to execute a command, press the Enter key. Type each command on a
separate line. The command output is displayed before the next shell prompt appears.

[user@host]$ whoami
user
[user@host]$ 

If you want to type more than one command on a single line, use the semicolon (;) as a command
separator. A semicolon is a member of a class of characters called metacharacters that have
special meanings for bash. In this case the output of both commands will be displayed before the
next shell prompt appears.

The following example shows how to combine two commands (command1 and command2) on the
command line.

[user@host]$ command1;command2

Examples of Simple Commands
The date command displays the current date and time. It can also be used by the superuser to
set the system clock. An argument that begins with a plus sign (+) specifies a format string for the
date command.

[user@host ~]$ date
Sat Jan  26 08:13:50 IST 2019
[user@host ~]$ date +%R
08:13
[user@host ~]$ date +%x
01/26/2019

The passwd command changes a user's own password. The original password for the account
must be specified before a change is allowed. By default, passwd is configured to require a strong
password, consisting of lowercase letters, uppercase letters, numbers, and symbols, and is not

RH066-RHEL8-en-1-cef4e50 21



Chapter 2 | Accessing the Command Line

based on a dictionary word. The superuser can use the passwd command to change other users'
passwords.

[user@host ~]$ passwd
Changing password for user user.
Current password: old_password
New password: new_password
Retype new password: new_password
passwd: all authentication tokens updated successfully.

Linux does not require file name extensions to classify files by type. The file command scans the
beginning of a file's contents and displays what type it is. The files to be classified are passed as
arguments to the command.

[user@host ~]$ file /etc/passwd
/etc/passwd: ASCII text
[user@host ~]$ file /bin/passwd
/bin/passwd: setuid ELF 64-bit LSB shared object, x86-64, version 1
(SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2,
for GNU/Linux 3.2.0, BuildID[sha1]=a3637110e27e9a48dced9f38b4ae43388d32d0e4,
 stripped
[user@host ~]$ file /home
/home: directory

Viewing the Contents of Files
One of the most simple and frequently used commands in Linux is cat. The cat command allows
you to create single or multiple files, view the contents of files, concatenate the contents from
multiple files, and redirect contents of the file to a terminal or files.

The example shows how to view the contents of the /etc/passwd file.

[user@host ~]$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
...output omitted...

Use the following command to display the contents of multiple files.

[user@host ~]$ cat file1 file2
Hello World!!
Introduction to Linux commands.

Some files are very long and can take up more room to display than that provided by the terminal.
The cat command does not display the contents of a file as pages. The less command displays
one page of a file at a time and lets you scroll at your leisure.

The less command allows you to page forward and backward through files that are longer than
can fit on one terminal window. Use the UpArrow key and the DownArrow key to scroll up and
down. Press q to exit the command.

22 RH066-RHEL8-en-1-cef4e50



Chapter 2 | Accessing the Command Line

The head and tail commands display the beginning and end of a file, respectively. By default
these commands display 10 lines of the file, but they both have a -n option that allows a different
number of lines to be specified. The file to display is passed as an argument to these commands.

[user@host ~]$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
[user@host ~]$ tail -n 3 /etc/passwd
gdm:x:42:42::/var/lib/gdm:/sbin/nologin
gnome-initial-setup:x:977:977::/run/gnome-initial-setup/:/sbin/nologin
avahi:x:70:70:Avahi mDNS/DNS-SD Stack:/var/run/avahi-daemon:/sbin/nologin

The wc command counts lines, words, and characters in a file. It takes a -l, -w, or -c option to
display only the number of lines, words, or characters, respectively.

[user@host ~]$ wc /etc/passwd
  45  102 2480 /etc/passwd
[user@host ~]$ wc -l /etc/passwd ; wc -l /etc/group
45 /etc/passwd
70 /etc/group
[user@host ~]$ wc -c /etc/group /etc/hosts
 966 /etc/group
 516 /etc/hosts
1482 total

Tab Completion
Tab completion allows a user to quickly complete commands or file names after they have typed
enough at the prompt to make it unique. If the characters typed are not unique, pressing the Tab
key twice displays all commands that begin with the characters already typed.

[user@host ~]$ pas Tab+Tab
passwd       paste        pasuspender
[user@host ~]$ pass Tab
[user@host ~]$ passwd 
Changing password for user user.
Current password: 

Press Tab twice.
Press Tab once.

Tab completion can be used to complete file names when typing them as arguments to
commands. When Tab is pressed, it completes as much of the file name as possible. Pressing Tab
a second time causes the shell to list all of the files that are matched by the current pattern. Type
additional characters until the name is unique, then use tab completion to complete the command.

RH066-RHEL8-en-1-cef4e50 23



Chapter 2 | Accessing the Command Line

[user@host ~]$ ls /etc/pas Tab
[user@host ~]$ ls /etc/passwd Tab
passwd   passwd-

Press Tab once.

Arguments and options can be matched with tab completion for many commands. The useradd
command is used by the superuser, root, to create additional users on the system. It has many
options that can be used to control how that command behaves. Tab completion following a partial
option can be used to complete the option without a lot of typing.

[root@host ~]# useradd -- Tab+Tab
--base-dir        --groups          --no-log-init     --shell
--comment         --help            --non-unique      --skel
--create-home     --home-dir        --no-user-group   --system
--defaults        --inactive        --password        --uid
--expiredate      --key             --root            --user-group
--gid             --no-create-home  --selinux-user
[root@host ~]# useradd --

Press Tab twice.

Continuing a Long Command on Another Line
Commands with many options and arguments can quickly become long and are automatically
wrapped by the command window when the the cursor reaches the right margin. Instead, to make
command readability easier, you can type a long command using more than one line.

To do this, you will use a backslash character (\), referred to as the escape character, to ignore the
meaning of the character immediately following the backslash. You have learned that entering a
newline character, by pressing the Enter key, tells the shell that command entry is complete and
to execute the command. By escaping the newline character, the shell is told to move to a new
command line without performing command execution. The shell acknowledges the request by
displaying a continuation prompt, referred to as the secondary prompt, using the greater-than
character (>) by default, on an empty new line. Commands may be continued over many lines.

[user@host]$ head -n 3 \
> /usr/share/dict/words \
> /usr/share/dict/linux.words
==> /usr/share/dict/words <==
1080
10-point
10th

==> /usr/share/dict/linux.words <==
1080
10-point
10th
[user@host ~]$ 

24 RH066-RHEL8-en-1-cef4e50



Chapter 2 | Accessing the Command Line

Important
The previous screen example displays how a continued command appears to a
typical user. However, protraying this realism in learning materials, such as this
coursebook, commonly causes confusion. New learners might mistakenly insert the
extra greater-than character as part of the typed command. The shell interprets a
typed greater-than character as process redirection, which the user did not intend.
Process redirection is discussed in an upcoming chapter.

To avoid this confusion, this coursebook will not show secondary prompts in screen
outputs. A user still sees the secondary prompt in their shell window, but the course
material intentionally displays only characters to be typed, as demonstrated in the
example below. Compare with the previous screen example.

[user@host]$ head -n 3 \
/usr/share/dict/words \
/usr/share/dict/linux.words
==> /usr/share/dict/words <==
1080
10-point
10th

==> /usr/share/dict/linux.words <==
1080
10-point
10th
[user@host ~]$ 

Command History
The history command displays a list of previously executed commands prefixed with a command
number.

The exclamation point character (!) is a metacharacter that is used to expand previous commands
without having to retype them. The !number command expands to the command matching the
number specified. The !string command expands to the most recent command that begins with
the string specified.

[user@host ~]$ history
   ...output omitted...
   23  clear
   24  who
   25  pwd
   26  ls /etc
   27  uptime
   28  ls -l
   29  date
   30  history
[user@host ~]$ !ls
ls -l
total 0
drwxr-xr-x. 2 user user 6 Mar 29 21:16 Desktop
...output omitted...

RH066-RHEL8-en-1-cef4e50 25



Chapter 2 | Accessing the Command Line

[user@host ~]$ !26
ls /etc
abrt                     hosts                     pulse
adjtime                  hosts.allow               purple
aliases                  hosts.deny                qemu-ga
...output omitted...

The arrow keys can be used to navigate through previous commands in the shell's history.
UpArrow edits the previous command in the history list. DownArrow edits the next command
in the history list. LeftArrow and RightArrow move the cursor left and right in the current
command from the history list, so that you can edit it before running it.

You can use either the Esc+. or Alt+. key combination to insert the last word of the previous
command at the cursor's current location. Repeated use of the key combination will replace
that text with the last word of even earlier commands in the history. The Alt+. key combination
is particularly convenient because you can hold down Alt and press . repeatedly to easily go
through earlier and earlier commands.

Editing the Command Line
When used interactively, bash has a command-line editing feature. This allows the user to use text
editor commands to move around within and modify the current command being typed. Using the
arrow keys to move within the current command and to step through the command history was
introduced earlier in this session. More powerful editing commands are introduced in the following
table.

Useful Command-line Editing Shortcuts

Shortcut Description

Ctrl+A Jump to the beginning of the command line.

Ctrl+E Jump to the end of the command line.

Ctrl+U Clear from the cursor to the beginning of the command line.

Ctrl+K Clear from the cursor to the end of the command line.

Ctrl+LeftArrow Jump to the beginning of the previous word on the command line.

Ctrl+RightArrow Jump to the end of the next word on the command line.

Ctrl+R Search the history list of commands for a pattern.

There are several other command-line editing commands available, but these are the most useful
commands for new users. The other commands can be found in the bash(1) man page.

References
bash(1), date(1), file(1), cat(1), more(1), less(1), head(1), passwd(1), tail(1),
and wc(1) man pages

26 RH066-RHEL8-en-1-cef4e50



Chapter 2 | Accessing the Command Line

Quiz

Bash Commands and Keyboard Shortcuts

Choose the correct answers to the following questions:

 1. Which Bash shortcut or command jumps to the beginning of the previous word on the
command line?
a. Pressing Ctrl+LeftArrow
b. Pressing Ctrl+K
c. Pressing Ctrl+A
d. !string
e. !number

 2. Which Bash shortcut or command separates commands on the same line?
a. Pressing Tab
b. history
c. ;
d. !string
e. Pressing Esc+.

 3. Which Bash shortcut or command is used to clear characters from the cursor to the end
of the command line?
a. Pressing Ctrl+LeftArrow
b. Pressing Ctrl+K
c. Pressing Ctrl+A
d. ;
e. Pressing Esc+.

 4. Which Bash shortcut or command is used to re-execute a recent command by matching
the command name?
a. Pressing Tab
b. !number
c. !string
d. history
e. Pressing Esc+.

RH066-RHEL8-en-1-cef4e50 27



Chapter 2 | Accessing the Command Line

 5. Which Bash shortcut or command is used to complete commands, file names, and
options?
a. ;
b. !number
c. history
d. Pressing Tab
e. Pressing Esc+.

 6. Which Bash shortcut or command re-executes a specific command in the history list?
a. Pressing Tab
b. !number
c. !string
d. history
e. Pressing Esc+.

 7. Which Bash shortcut or command jumps to the beginning of the command line?
a. !number
b. !string
c. Pressing Ctrl+LeftArrow
d. Pressing Ctrl+K
e. Pressing Ctrl+A

 8. Which Bash shortcut or command displays the list of previous commands?
a. Pressing Tab
b. !string
c. !number
d. history
e. Pressing Esc+.

 9. Which Bash shortcut or command copies the last argument of previous commands?
a. Pressing Ctrl+K
b. Pressing Ctrl+A
c. !number
d. Pressing Esc+.

28 RH066-RHEL8-en-1-cef4e50



Chapter 2 | Accessing the Command Line

Solution

Bash Commands and Keyboard Shortcuts

Choose the correct answers to the following questions:

 1. Which Bash shortcut or command jumps to the beginning of the previous word on the
command line?
a. Pressing Ctrl+LeftArrow
b. Pressing Ctrl+K
c. Pressing Ctrl+A
d. !string
e. !number

 2. Which Bash shortcut or command separates commands on the same line?
a. Pressing Tab
b. history
c. ;
d. !string
e. Pressing Esc+.

 3. Which Bash shortcut or command is used to clear characters from the cursor to the end
of the command line?
a. Pressing Ctrl+LeftArrow
b. Pressing Ctrl+K
c. Pressing Ctrl+A
d. ;
e. Pressing Esc+.

 4. Which Bash shortcut or command is used to re-execute a recent command by matching
the command name?
a. Pressing Tab
b. !number
c. !string
d. history
e. Pressing Esc+.

RH066-RHEL8-en-1-cef4e50 29



Chapter 2 | Accessing the Command Line

 5. Which Bash shortcut or command is used to complete commands, file names, and
options?
a. ;
b. !number
c. history
d. Pressing Tab
e. Pressing Esc+.

 6. Which Bash shortcut or command re-executes a specific command in the history list?
a. Pressing Tab
b. !number
c. !string
d. history
e. Pressing Esc+.

 7. Which Bash shortcut or command jumps to the beginning of the command line?
a. !number
b. !string
c. Pressing Ctrl+LeftArrow
d. Pressing Ctrl+K
e. Pressing Ctrl+A

 8. Which Bash shortcut or command displays the list of previous commands?
a. Pressing Tab
b. !string
c. !number
d. history
e. Pressing Esc+.

 9. Which Bash shortcut or command copies the last argument of previous commands?
a. Pressing Ctrl+K
b. Pressing Ctrl+A
c. !number
d. Pressing Esc+.

30 RH066-RHEL8-en-1-cef4e50



Chapter 2 | Accessing the Command Line

Guided Exercise

Accessing the Command Line

In this exercise, you will use the Bash shell to execute commands.

Outcomes
• Successfully run simple programs using the Bash shell command line.

• Practice using some Bash command history "shortcuts" to more efficiently repeat
commands or parts of commands.

Before You Begin
This exercise was prepared assuming that you have an Amazon EC2 account, have used
it to launch an Amazon EC2 cloud instance based on a free-tier eligible version of Red
Hat Enterprise Linux 8, and that you can connect to that instance using ssh key-based
authentication as the regular user ec2-user.

See the setup document provided with the materials for this course for additional
information on how to do this.

Steps
 1. Use ssh to log into your Amazon EC2 system as ec2-user.

 2. Use the date command to display the current time and date.

[ec2-user@ip-192-0-2-1 ~]$ date
Fri Jul 24 10:13:04 PDT 2020

In this example, [ec2-user@ip-192-0-2-1 ~]$ is the shell's command prompt, how
the shell prompts you to enter a command. It indicates the current user (ec2-user), the
short hostname of the machine (ip-192-0-2-1 in this example, although yours will be
different), and information about the current directory (which will be discussed later). date
is the command you typed. After you press Enter, the output of date is printed by the
computer below your prompt (Fri Jul 24 10:13:04 PDT 2020 in the example). You
should get a new prompt after the command completes.

 3. Use the +%r argument with the date command to display the current time in 12-hour clock
time (for example, 11:42:11 AM).

[ec2-user@ip-192-0-2-1 ~]$ date +%r
10:14:07 AM

 4. What kind of file is /usr/bin/zcat? Is it readable by humans? Use the file command to
determine its file type.

RH066-RHEL8-en-1-cef4e50 31



Chapter 2 | Accessing the Command Line

[ec2-user@ip-192-0-2-1 ~]$ file /usr/bin/zcat
/usr/bin/zcat: POSIX shell script, ASCII text executable

 5. The wc command can be used to display the number of lines, words, and bytes in the script
/usr/bin/zcat. Instead of retyping the file name, use the Bash history shortcut Esc+.
(the keys Esc and . pressed at the same time) to reuse the argument from the previous
command.

[ec2-user@ip-192-0-2-1 ~]$ wc <Esc>.
[ec2-user@ip-192-0-2-1 ~]$ wc /usr/bin/zcat
  51  299 1983 /usr/bin/zcat

 6. Use the head command to display the first 10 lines of /usr/bin/zcat. Try using the
Esc+. shortcut again.

The head command displays the beginning of the file. Did you use the bash shortcut
again?

[ec2-user@ip-192-0-2-1 ~]$ head <Esc>.
[ec2-user@ip-192-0-2-1 ~]$ head /usr/bin/zcat
#!/bin/sh
# Uncompress files to standard output.

# Copyright (C) 2007, 2010-2018 Free Software Foundation, Inc.

# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.

 7. Display the last 10 lines at the bottom of the /usr/bin/zcat file. Use the tail command.

[ec2-user@ip-192-0-2-1 ~]$ tail <Esc>.
[ec2-user@ip-192-0-2-1 ~]$ tail /usr/bin/zcat
With no FILE, or when FILE is -, read standard input.

Report bugs to <bug-gzip@gnu.org>."

case $1 in
--help)    printf '%s\n' "$usage"   || exit 1; exit;;
--version) printf '%s\n' "$version" || exit 1; exit;;
esac

exec gzip -cd "$@"

32 RH066-RHEL8-en-1-cef4e50



Chapter 2 | Accessing the Command Line

 8. Repeat the previous command exactly. Either press the UpArrow key once to scroll
back through the command history one command and press Enter, or run the shortcut
command !! to run the most recent command in the command history. (Try both!)

[ec2-user@ip-192-0-2-1 ~]$ !!
tail /usr/bin/zcat
With no FILE, or when FILE is -, read standard input.

Report bugs to <bug-gzip@gnu.org>."

case $1 in
--help)    printf '%s\n' "$usage"   || exit 1; exit;;
--version) printf '%s\n' "$version" || exit 1; exit;;
esac

exec gzip -cd "$@"

 9. Repeat the previous command again, but this time add the -n 20 option to display the last
20 lines in the file. Use command line editing to accomplish this with a minimal amount of
keystrokes.

UpArrow displays the previous command. Ctrl+a makes the cursor jump to the beginning
of the line. Ctrl+Right Arrow jumps to the next word, then add the -n 20 option and
press Enter to run the command.

[ec2-user@ip-192-0-2-1 ~]$ tail -n 20 /usr/bin/zcat
  -l, --list        list compressed file contents
  -q, --quiet       suppress all warnings
  -r, --recursive   operate recursively on directories
  -S, --suffix=SUF  use suffix SUF on compressed files
      --synchronous synchronous output (safer if system crashes, but slower)
  -t, --test        test compressed file integrity
  -v, --verbose     verbose mode
      --help        display this help and exit
      --version     display version information and exit

With no FILE, or when FILE is -, read standard input.

Report bugs to <bug-gzip@gnu.org>."

case $1 in
--help)    printf '%s\n' "$usage"   || exit 1; exit;;
--version) printf '%s\n' "$version" || exit 1; exit;;
esac

exec gzip -cd "$@"

RH066-RHEL8-en-1-cef4e50 33



Chapter 2 | Accessing the Command Line

 10. Use the shell history to run the date +%r command again.

Display the list of previous commands with the history command to identify the specific
date command to be executed. Run the command with the !number history command.

Note that your shell history may be different than the following example. Figure out the
command number to use based on the output of your own history command.

[ec2-user@ip-192-0-2-1 ~]$ history
    1  date
    2  date +%r
    3  file /usr/bin/zcat
    4  wc /usr/bin/zcat
    5  head /usr/bin/zcat
    6  tail /usr/bin/zcat
    7  tail -n 20 /usr/bin/zcat
    8  history
[ec2-user@ip-192-0-2-1 ~]$ !2
date +%r
10:21:56 AM

 11. Finish your session with the bash shell.

Use either exit or the Ctrl+d key combination to close the shell and log out.

[ec2-user@ip-192-0-2-1 ~]$ exit

 12. This concludes this exercise. Stop your Amazon EC2 instance.

34 RH066-RHEL8-en-1-cef4e50



Chapter 3

Managing Files From the
Command Line

Goal To copy, move, create, delete, and organize files
while working from the Bash shell prompt.

Objectives • Identify the purpose for important directories
on a Linux system.

• Specify files using absolute and relative path
names.

• Create, copy, move, and remove files and
directories using command-line utilities.

• Match one or more file names using shell
expansion as arguments to shell commands.

Sections • The Linux File System Hierarchy (and Quiz)
• Locating Files by Name (and Quiz)
• Managing Files Using Command-Line Tools

(and Guided Exercise)
• Matching File Names Using Path Name

Expansion (and Quiz)

Lab Managing Files with Shell Expansion

RH066-RHEL8-en-1-cef4e50 35



Chapter 3 | Managing Files From the Command Line

The Linux File System Hierarchy

Objectives
After completing this section, you should be able to describe how Linux organizes files, and the
purposes of various directories in the file-system hierarchy.

The File-system Hierarchy
All files on a Linux system are stored on file systems, which are organized into a single inverted tree
of directories, known as a file-system hierarchy. This tree is inverted because the root of the tree
is said to be at the top of the hierarchy, and the branches of directories and subdirectories stretch
below the root.

Figure 3.1: Significant file-system directories in Red Hat Enterprise Linux 8

The / directory is the root directory at the top of the file-system hierarchy. The / character is also
used as a directory separator in file names. For example, if etc is a subdirectory of the / directory,
you could refer to that directory as /etc. Likewise, if the /etc directory contained a file named
issue, you could refer to that file as /etc/issue.

Subdirectories of / are used for standardized purposes to organize files by type and purpose. This
makes it easier to find files. For example, in the root directory, the subdirectory /boot is used for
storing files needed to boot the system.

Note
The following terms help to describe file-system directory contents:

• static content remains unchanged until explicitly edited or reconfigured.

• dynamic or variable content may be modified or appended by active processes.

• persistent content remains after a reboot, like configuration settings.

• runtime content is process- or system-specific content that is deleted by a
reboot.

36 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

The following table lists some of the most important directories on the system by name and
purpose.

Important Red Hat Enterprise Linux Directories

Location Purpose

/usr Installed software, shared libraries, include files, and read-only program data.
Important subdirectories include:

• /usr/bin: User commands.

• /usr/sbin: System administration commands.

• /usr/local: Locally customized software.

/etc Configuration files specific to this system.

/var Variable data specific to this system that should persist between boots. Files
that dynamically change, such as databases, cache directories, log files,
printer-spooled documents, and website content may be found under /var.

/run Runtime data for processes started since the last boot. This includes process
ID files and lock files, among other things. The contents of this directory are
recreated on reboot. This directory consolidates /var/run and /var/lock
from earlier versions of Red Hat Enterprise Linux.

/home Home directories are where regular users store their personal data and
configuration files.

/root Home directory for the administrative superuser, root.

/tmp A world-writable space for temporary files. Files which have not been
accessed, changed, or modified for 10 days are deleted from this directory
automatically. Another temporary directory exists, /var/tmp, in which files
that have not been accessed, changed, or modified in more than 30 days are
deleted automatically.

/boot Files needed in order to start the boot process.

/dev Contains special device files that are used by the system to access hardware.

RH066-RHEL8-en-1-cef4e50 37



Chapter 3 | Managing Files From the Command Line

Important
In Red Hat Enterprise Linux 7 and later, four older directories in / have identical
contents to their counterparts located in /usr:

• /bin and /usr/bin

• /sbin and /usr/sbin

• /lib and /usr/lib

• /lib64 and /usr/lib64

In earlier versions of Red Hat Enterprise Linux, these were distinct directories
containing different sets of files.

In Red Hat Enterprise Linux 7 and later, the directories in / are symbolic links to the
matching directories in /usr.

References
hier(7) man page

The UsrMove feature page from Fedora 17
https://fedoraproject.org/wiki/Features/UsrMove

38 RH066-RHEL8-en-1-cef4e50

https://fedoraproject.org/wiki/Features/UsrMove


Chapter 3 | Managing Files From the Command Line

Quiz

File System Hierarchy

Choose the correct answers to the following questions:

 1. Which directory contains persistent, system-specific configuration data?
a. /etc
b. /root
c. /run
d. /usr

 2. Which directory is the top of the system's file system hierarchy?
a. /etc
b. /
c. /home/root
d. /root

 3. Which directory contains user home directories?
a. /
b. /home
c. /root
d. /user

 4. Which directory contains temporary files?
a. /tmp
b. /trash
c. /run
d. /var

 5. Which directory contains dynamic data, such as for databases and websites?
a. /etc
b. /run
c. /usr
d. /var

 6. Which directory is the administrative superuser's home directory?
a. /etc
b. /
c. /home/root
d. /root

RH066-RHEL8-en-1-cef4e50 39



Chapter 3 | Managing Files From the Command Line

 7. Which directory contains regular commands and utilities?
a. /commands
b. /run
c. /usr/bin
d. /usr/sbin

 8. Which directory contains non-persistent process runtime data?
a. /tmp
b. /etc
c. /run
d. /var

 9. Which directory contains installed software programs and libraries?
a. /etc
b. /lib
c. /usr
d. /var

40 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

Solution

File System Hierarchy

Choose the correct answers to the following questions:

 1. Which directory contains persistent, system-specific configuration data?
a. /etc
b. /root
c. /run
d. /usr

 2. Which directory is the top of the system's file system hierarchy?
a. /etc
b. /
c. /home/root
d. /root

 3. Which directory contains user home directories?
a. /
b. /home
c. /root
d. /user

 4. Which directory contains temporary files?
a. /tmp
b. /trash
c. /run
d. /var

 5. Which directory contains dynamic data, such as for databases and websites?
a. /etc
b. /run
c. /usr
d. /var

 6. Which directory is the administrative superuser's home directory?
a. /etc
b. /
c. /home/root
d. /root

RH066-RHEL8-en-1-cef4e50 41



Chapter 3 | Managing Files From the Command Line

 7. Which directory contains regular commands and utilities?
a. /commands
b. /run
c. /usr/bin
d. /usr/sbin

 8. Which directory contains non-persistent process runtime data?
a. /tmp
b. /etc
c. /run
d. /var

 9. Which directory contains installed software programs and libraries?
a. /etc
b. /lib
c. /usr
d. /var

42 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

Locating Files by Name

Objectives
After completing this section, you should be able to specify the location of files relative to the
current working directory and by absolute location, determine and change the working directory,
and list the contents of directories.

Absolute Paths and Relative Paths

Figure 3.2: The common file browser view (left) is equivalent to the top-down view (right).

The path of a file or directory specifies its unique file system location. Following a file path
traverses one or more named subdirectories, delimited by a forward slash (/), until the destination
is reached. Directories, also called folders, contain other files and other subdirectories. They can be
referenced in the same manner as files.

Important
A space character is acceptable as part of a Linux file name. However, spaces are
also used by the shell to separate options and arguments on the command line. If
you enter a command that includes a file that has a space in its name, the shell can
misinterpret the command and assume that you want to start a new file name or
other argument at the space.

It is possible to avoid this by putting file names in quotes. However, if you do not
need to use spaces in file names, it can be simpler to simply avoid using them.

Absolute Paths
An absolute path is a fully qualified name, specifying the files exact location in the file system
hierarchy. It begins at the root (/) directory and specifies each subdirectory that must be
traversed to reach the specific file. Every file in a file system has a unique absolute path name,
recognized with a simple rule: A path name with a forward slash (/) as the first character is an
absolute path name. For example, the absolute path name for the system message log file is /

RH066-RHEL8-en-1-cef4e50 43



Chapter 3 | Managing Files From the Command Line

var/log/messages. Absolute path names can be long to type, so files may also be located
relative to the current working directory for your shell prompt.

The Current Working Directory and Relative Paths
When a user logs in and opens a command window, the initial location is normally the user's home
directory. System processes also have an initial directory. Users and processes navigate to other
directories as needed; the terms working directory or current working directory refer to their
current location.

Like an absolute path, a relative path identifies a unique file, specifying only the path necessary to
reach the file from the working directory. Recognizing relative path names follows a simple rule: A
path name with anything other than a forward slash as the first character is a relative path name. A
user in the /var directory could refer to the message log file relatively as log/messages.

Linux file systems, including, but not limited to, ext4, XFS, GFS2, and GlusterFS, are case-
sensitive. Creating FileCase.txt and filecase.txt in the same directory results in two
unique files.

Non-Linux file systems might work differently. For example, VFAT, Microsoft's NTFS, and Apple's
HFS+ have case preserving behavior. Although these file systems are not case-sensitive, they do
display file names with the original capitalization used when the file was created. Therefore, if
you tried to make the files in the preceding example on a VFAT file system, both names would be
treated as pointing to the same file instead of two different files.

Navigating Paths
The pwd command displays the full path name of the current working directory for that shell. This
can help you determine the syntax to reach files using relative path names. The ls command lists
directory contents for the specified directory or, if no directory is given, for the current working
directory.

[user@host ~]$ pwd
/home/user
[user@host ~]$ ls
Desktop  Documents  Downloads  Music  Pictures  Public  Templates  Videos
[user@host ~]$

Use the cd command to change your shell's current working directory. If you do not specify any
arguments to the command, it will change to your home directory.

In the following example, a mixture of absolute and relative paths are used with the cd command
to change the current working directory for the shell.

[user@host ~]$ pwd
/home/user
[user@host ~]$ cd Videos
[user@host Videos]$ pwd
/home/user/Videos
[user@host Videos]$ cd /home/user/Documents
[user@host Documents]$ pwd
/home/user/Documents
[user@host Documents]$ cd

44 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

[user@host ~]$ pwd
/home/user
[user@host ~]$

As you can see in the preceding example, the default shell prompt also displays the last
component of the absolute path to the current working directory. For example, for /home/user/
Videos, only Videos displays. The prompt displays the tilde character (~) when your current
working directory is your home directory.

The touch command normally updates a file's timestamp to the current date and time
without otherwise modifying it. This is useful for creating empty files, which can be used for
practice, because "touching" a file name that does not exist causes the file to be created. In the
following example, the touch command creates practice files in the Documents and Videos
subdirectories.

[user@host ~]$ touch Videos/blockbuster1.ogg
[user@host ~]$ touch Videos/blockbuster2.ogg
[user@host ~]$ touch Documents/thesis_chapter1.odf
[user@host ~]$ touch Documents/thesis_chapter2.odf
[user@host ~]$

The ls command has multiple options for displaying attributes on files. The most common and
useful are -l (long listing format), -a (all files, including hidden files), and -R (recursive, to include
the contents of all subdirectories).

[user@host ~]$ ls -l
total 15
drwxr-xr-x.  2 user user 4096 Feb  7 14:02 Desktop
drwxr-xr-x.  2 user user 4096 Jan  9 15:00 Documents
drwxr-xr-x.  3 user user 4096 Jan  9 15:00 Downloads
drwxr-xr-x.  2 user user 4096 Jan  9 15:00 Music
drwxr-xr-x.  2 user user 4096 Jan  9 15:00 Pictures
drwxr-xr-x.  2 user user 4096 Jan  9 15:00 Public
drwxr-xr-x.  2 user user 4096 Jan  9 15:00 Templates
drwxr-xr-x.  2 user user 4096 Jan  9 15:00 Videos
[user@host ~]$ ls -la
total 15
drwx------. 16 user user   4096 Feb  8 16:15 .
drwxr-xr-x.  6 root root   4096 Feb  8 16:13 ..
-rw-------.  1 user user  22664 Feb  8 00:37 .bash_history
-rw-r--r--.  1 user user     18 Jul  9  2013 .bash_logout
-rw-r--r--.  1 user user    176 Jul  9  2013 .bash_profile
-rw-r--r--.  1 user user    124 Jul  9  2013 .bashrc
drwxr-xr-x.  4 user user   4096 Jan 20 14:02 .cache
drwxr-xr-x.  8 user user   4096 Feb  5 11:45 .config
drwxr-xr-x.  2 user user   4096 Feb  7 14:02 Desktop
drwxr-xr-x.  2 user user   4096 Jan  9 15:00 Documents
drwxr-xr-x.  3 user user   4096 Jan 25 20:48 Downloads
drwxr-xr-x. 11 user user   4096 Feb  6 13:07 .gnome2
drwx------.  2 user user   4096 Jan 20 14:02 .gnome2_private
-rw-------.  1 user user  15190 Feb  8 09:49 .ICEauthority
drwxr-xr-x.  3 user user   4096 Jan  9 15:00 .local
drwxr-xr-x.  2 user user   4096 Jan  9 15:00 Music
drwxr-xr-x.  2 user user   4096 Jan  9 15:00 Pictures

RH066-RHEL8-en-1-cef4e50 45



Chapter 3 | Managing Files From the Command Line

drwxr-xr-x.  2 user user   4096 Jan  9 15:00 Public
drwxr-xr-x.  2 user user   4096 Jan  9 15:00 Templates
drwxr-xr-x.  2 user user   4096 Jan  9 15:00 Videos
[user@host ~]$

The two special directories at the top of the listing refer to the current directory (.) and the parent
directory (..). These special directories exist in every directory on the system. You will discover
their usefulness when you start using file management commands.

Important
File names beginning with a dot (.) indicate hidden files; you cannot see them in the
normal view using ls and other commands. This is not a security feature. Hidden
files keep necessary user configuration files from cluttering home directories. Many
commands process hidden files only with specific command-line options, preventing
one user's configuration from being accidentally copied to other directories or users.

To protect file contents from improper viewing requires the use of file permissions.

[user@host ~]$ ls -R
.:
Desktop  Documents  Downloads  Music  Pictures  Public  Templates  Videos

./Desktop:

./Documents:
thesis_chapter1.odf  thesis_chapter2.odf

./Downloads:

./Music:

./Pictures:

./Public:

./Templates:

./Videos:
blockbuster1.ogg  blockbuster2.ogg
[user@host ~]$

The cd command has many options. A few are so useful as to be worth practicing early and using
often. The command cd - changes to the previous directory; where the user was previously to
the current directory. The following example illustrates this behavior, alternating between two
directories, which is useful when processing a series of similar tasks.

[user@host ~]$ cd Videos
[user@host Videos]$ pwd
/home/user/Videos
[user@host Videos]$ cd /home/user/Documents
[user@host Documents]$ pwd
/home/user/Documents

46 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

[user@host Documents]$ cd -
[user@host Videos]$ pwd
/home/user/Videos
[user@host Videos]$ cd -
[user@host Documents]$ pwd
/home/user/Documents
[user@host Documents]$ cd -
[user@host Videos]$ pwd
/home/user/Videos
[user@host Videos]$ cd
[user@host ~]$

The cd .. command uses the .. hidden directory to move up one level to the parent directory,
without needing to know the exact parent name. The other hidden directory (.) specifies the
current directory on commands in which the current location is either the source or destination
argument, avoiding the need to type out the directory's absolute path name.

[user@host Videos]$ pwd
/home/user/Videos
[user@host Videos]$ cd .
[user@host Videos]$ pwd
/home/user/Videos
[user@host Videos]$ cd ..
[user@host ~]$ pwd
/home/user
[user@host ~]$ cd ..
[user@host home]$ pwd
/home
[user@host home]$ cd ..
[user@host /]$ pwd
/
[user@host /]$ cd
[user@host ~]$ pwd
/home/user
[user@host ~]$

References
info libc 'file name resolution' (GNU C Library Reference Manual)

• Section 11.2.2 File name resolution

bash(1), cd(1), ls(1), pwd(1), unicode(7), and utf-8(7) man pages

UTF-8 and Unicode
http://www.utf-8.com/

RH066-RHEL8-en-1-cef4e50 47

http://www.utf-8.com/


Chapter 3 | Managing Files From the Command Line

Quiz

Locating Files and Directories

Choose the correct answers to the following questions:

 1. Which command is used to return to the current user's home directory, assuming the
current working directory is /tmp and their home directory is /home/user?
a. cd
b. cd ..
c. cd .
d. cd *
e. cd /home

 2. Which command displays the absolute path name of the current location?
a. cd
b. pwd
c. ls ~
d. ls -d

 3. Which command will always return you to the working directory used prior to the
current working directory?
a. cd -
b. cd -p
c. cd ~
d. cd ..

 4. Which command will always change the working directory up two levels from the
current location?
a. cd ~
b. cd ../
c. cd ../..
d. cd -u2

 5. Which command lists files in the current location, using a long format, and including
hidden files?
a. llong ~
b. ls -a
c. ls -l
d. ls -al

48 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

 6. Which command will always change the working directory to /bin?
a. cd bin
b. cd /bin
c. cd ~bin
d. cd -bin

 7. Which command will always change the working directory to the parent of the current
location?
a. cd ~
b. cd ..
c. cd ../..
d. cd -u1

 8. Which command will change the working directory to /tmp if the current working
directory is /home/student?
a. cd tmp
b. cd ..
c. cd ../../tmp
d. cd ~tmp

RH066-RHEL8-en-1-cef4e50 49



Chapter 3 | Managing Files From the Command Line

Solution

Locating Files and Directories

Choose the correct answers to the following questions:

 1. Which command is used to return to the current user's home directory, assuming the
current working directory is /tmp and their home directory is /home/user?
a. cd
b. cd ..
c. cd .
d. cd *
e. cd /home

 2. Which command displays the absolute path name of the current location?
a. cd
b. pwd
c. ls ~
d. ls -d

 3. Which command will always return you to the working directory used prior to the
current working directory?
a. cd -
b. cd -p
c. cd ~
d. cd ..

 4. Which command will always change the working directory up two levels from the
current location?
a. cd ~
b. cd ../
c. cd ../..
d. cd -u2

 5. Which command lists files in the current location, using a long format, and including
hidden files?
a. llong ~
b. ls -a
c. ls -l
d. ls -al

50 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

 6. Which command will always change the working directory to /bin?
a. cd bin
b. cd /bin
c. cd ~bin
d. cd -bin

 7. Which command will always change the working directory to the parent of the current
location?
a. cd ~
b. cd ..
c. cd ../..
d. cd -u1

 8. Which command will change the working directory to /tmp if the current working
directory is /home/student?
a. cd tmp
b. cd ..
c. cd ../../tmp
d. cd ~tmp

RH066-RHEL8-en-1-cef4e50 51



Chapter 3 | Managing Files From the Command Line

Managing Files Using Command-line
Tools

Objectives
After completing this section, you should be able to create, copy, move, and remove files and
directories.

Command-line File Management
To manage files, you need to be able to create, remove, copy, and move them. You also need to
organize them logically into directories, which you also need to be able to create, remove, copy,
and move.

The following table summarizes some of the most common file management commands. The
remainder of this section will discuss ways to use these commands in more detail.

Common file management commands

Activity Command Syntax

Create a directory mkdir directory

Copy a file cp file new-file

Copy a directory and its contents cp -r directory new-directory

Move or rename a file or directory mv file new-file

Remove a file rm file

Remove a directory containing files rm -r directory

Remove an empty directory rmdir directory

Creating Directories
The mkdir command creates one or more directories or subdirectories. It takes as arguments a
list of paths to the directories you want to create.

The mkdir command will fail with an error if the directory already exists, or if you are trying to
create a subdirectory in a directory that does not exist. The -p (parent) option creates missing
parent directories for the requested destination. Use the mkdir -p command with caution,
because spelling mistakes can create unintended directories without generating error messages.

In the following example, pretend that you are trying to create a directory in the Videos directory
named Watched, but you accidentally left off the letter "s" in Videos in your mkdir command.

[user@host ~]$ mkdir Video/Watched
mkdir: cannot create directory `Video/Watched': No such file or directory

52 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

The mkdir command failed because Videos was misspelled and the directory Video does not
exist. If you had used the mkdir command with the -p option, the directory Video would be
created, which was not what you had intended, and the subdirectory Watched would be created in
that incorrect directory.

After correctly spelling the Videos parent directory, creating the Watched subdirectory will
succeed.

[user@host ~]$ mkdir Videos/Watched
[user@host ~]$ ls -R Videos
Videos/:
blockbuster1.ogg  blockbuster2.ogg  Watched

Videos/Watched:

In the following example, files and directories are organized beneath the /home/user/
Documents directory. Use the mkdir command and a space-delimited list of the directory names
to create multiple directories.

[user@host ~]$ cd Documents
[user@host Documents]$ mkdir ProjectX ProjectY
[user@host Documents]$ ls
ProjectX  ProjectY

Use the mkdir -p command and space-delimited relative paths for each of the subdirectory
names to create multiple parent directories with subdirectories.

[user@host Documents]$ mkdir -p Thesis/Chapter1 Thesis/Chapter2 Thesis/Chapter3
[user@host Documents]$ cd
[user@host ~]$ ls -R Videos Documents
Documents:
ProjectX  ProjectY  Thesis

Documents/ProjectX:

Documents/ProjectY:

Documents/Thesis:
Chapter1  Chapter2  Chapter3

Documents/Thesis/Chapter1:

Documents/Thesis/Chapter2:

Documents/Thesis/Chapter3:

Videos:
blockbuster1.ogg  blockbuster2.ogg  Watched

Videos/Watched:

The last mkdir command created three ChapterN subdirectories with one command. The -p
option created the missing parent directory Thesis.

RH066-RHEL8-en-1-cef4e50 53



Chapter 3 | Managing Files From the Command Line

Copying Files
The cp command copies a file, creating a new file either in the current directory or in a specified
directory. It can also copy multiple files to a directory.

Warning
If the destination file already exists, the cp command overwrites the file.

[user@host ~]$ cd Videos
[user@host Videos]$ cp blockbuster1.ogg blockbuster3.ogg
[user@host Videos]$ ls -l
total 0
-rw-rw-r--. 1 user user    0 Feb  8 16:23 blockbuster1.ogg
-rw-rw-r--. 1 user user    0 Feb  8 16:24 blockbuster2.ogg
-rw-rw-r--. 1 user user    0 Feb  8 16:34 blockbuster3.ogg
drwxrwxr-x. 2 user user 4096 Feb  8 16:05 Watched
[user@host Videos]$

When copying multiple files with one command, the last argument must be a directory. Copied
files retain their original names in the new directory. If a file with the same name exists in the target
directory, the existing file is overwritten. By default, the cp does not copy directories; it ignores
them.

In the following example, two directories are listed, Thesis and ProjectX. Only the last
argument, ProjectX is valid as a destination. The Thesis directory is ignored.

[user@host Videos]$ cd ../Documents
[user@host Documents]$ cp thesis_chapter1.odf thesis_chapter2.odf Thesis ProjectX
cp: omitting directory `Thesis'
[user@host Documents]$ ls Thesis ProjectX
ProjectX:
thesis_chapter1.odf  thesis_chapter2.odf

Thesis:
Chapter1  Chapter2  Chapter3

In the first cp command, the Thesis directory failed to copy, but the thesis_chapter1.odf
and thesis_chapter2.odf files succeeded.

If you want to copy a file to the current working directory, you can use the special . directory:

[user@host ~]$ cp /etc/hostname .
[user@host ~]$ cat hostname
host.example.com
[user@host ~]$ 

Use the copy command with the -r (recursive) option, to copy the Thesis directory and its
contents to the ProjectX directory.

54 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

[user@host Documents]$ cp -r Thesis ProjectX
[user@host Documents]$ ls -R ProjectX
ProjectX:
Thesis  thesis_chapter1.odf  thesis_chapter2.odf

ProjectX/Thesis:
Chapter1  Chapter2  Chapter3

ProjectX/Thesis/Chapter1:

ProjectX/Thesis/Chapter2:
thesis_chapter2.odf

ProjectX/Thesis/Chapter3:

Moving Files
The mv command moves files from one location to another. If you think of the absolute path to a
file as its full name, moving a file is effectively the same as renaming a file. File contents remain
unchanged.

Use the mv command to rename a file.

[user@host Videos]$ cd ../Documents
[user@host Documents]$ ls -l thesis*
-rw-rw-r--. 1 user user 0 Feb  6 21:16 thesis_chapter1.odf
-rw-rw-r--. 1 user user 0 Feb  6 21:16 thesis_chapter2.odf
[user@host Documents]$ mv thesis_chapter2.odf thesis_chapter2_reviewed.odf
[user@host Documents]$ ls -l thesis*
-rw-rw-r--. 1 user user 0 Feb  6 21:16 thesis_chapter1.odf
-rw-rw-r--. 1 user user 0 Feb  6 21:16 thesis_chapter2_reviewed.odf

Use the mv command to move a file to a different directory.

[user@host Documents]$ ls Thesis/Chapter1
[user@host Documents]$
[user@host Documents]$ mv thesis_chapter1.odf Thesis/Chapter1
[user@host Documents]$ ls Thesis/Chapter1
thesis_chapter1.odf
[user@host Documents]$ ls -l thesis*
-rw-rw-r--. 1 user user 0 Feb  6 21:16 thesis_chapter2_reviewed.odf

Removing Files and Directories
The rm command removes files. By default, rm will not remove directories that contain files, unless
you add the -r or --recursive option.

Important
There is no command-line undelete feature, nor a "trash bin" from which you can
restore files staged for deletion.

RH066-RHEL8-en-1-cef4e50 55



Chapter 3 | Managing Files From the Command Line

It is a good idea to verify your current working directory before removing a file or directory.

[user@host Documents]$ pwd
/home/student/Documents

Use the rm command to remove a single file from your working directory.

[user@host Documents]$ ls -l thesis*
-rw-rw-r--. 1 user user 0 Feb  6 21:16 thesis_chapter2_reviewed.odf
[user@host Documents]$ rm thesis_chapter2_reviewed.odf
[user@host Documents]$ ls -l thesis*
ls: cannot access 'thesis*': No such file or directory

If you attempt to use the rm command to remove a directory without using the -r option, the
command will fail.

[user@host Documents]$ rm Thesis/Chapter1
rm: cannot remove `Thesis/Chapter1': Is a directory

Use the rm -r command to remove a subdirectory and its contents.

[user@host Documents]$ ls -R Thesis
Thesis/:
Chapter1  Chapter2  Chapter3

Thesis/Chapter1:
thesis_chapter1.odf

Thesis/Chapter2:
thesis_chapter2.odf

Thesis/Chapter3:
[user@host Documents]$ rm -r Thesis/Chapter1
[user@host Documents]$ ls -l Thesis
total 8
drwxrwxr-x. 2 user user 4096 Feb 11 12:47 Chapter2
drwxrwxr-x. 2 user user 4096 Feb 11 12:48 Chapter3

The rm -r command traverses each subdirectory first, individually removing their files before
removing each directory. You can use the rm -ri command to interactively prompt for
confirmation before deleting. This is essentially the opposite of using the -f option, which forces
the removal without prompting the user for confirmation.

[user@host Documents]$ rm -ri Thesis
rm: descend into directory `Thesis'? y
rm: descend into directory `Thesis/Chapter2'? y
rm: remove regular empty file `Thesis/Chapter2/thesis_chapter2.odf'? y
rm: remove directory `Thesis/Chapter2'? y
rm: remove directory `Thesis/Chapter3'? y
rm: remove directory `Thesis'? y
[user@host Documents]$

56 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

Warning
If you specify both the -i and -f options, the -f option takes priority and you will
not be prompted for confirmation before rm deletes files.

In the following example, the rmdir command only removes the directory that is empty. Just
like the earlier example, you must use the rm -r command to remove a directory that contains
content.

[user@host Documents]$ pwd
/home/student/Documents
[user@host Documents]$ rmdir ProjectY
[user@host Documents]$ rmdir ProjectX
rmdir: failed to remove `ProjectX': Directory not empty
[user@host Documents]$ rm -r ProjectX
[user@host Documents]$ ls -lR
.:
total 0
[user@host Documents]$

Note
The rm command with no options cannot remove an empty directory. You must use
the rmdir command, rm -d (which is equivalent to rmdir), or rm -r.

References
cp(1), mkdir(1), mv(1), rm(1), and rmdir(1) man pages

RH066-RHEL8-en-1-cef4e50 57



Chapter 3 | Managing Files From the Command Line

Guided Exercise

Command Line File Management

In this exercise, you will practice efficient techniques for creating and organizing files using
directories, file copies, and links.

Outcomes:
• Successfully create, move, copy, and delete files using the command line.

Before You Begin
Start your Amazon EC2 instance and use ssh to log in as the user ec2-user.

Steps
 1. Make sure you're in the home directory for your current user by entering the cd command.

The pwd command should report /home/ec2-user, and your shell prompt should show ~
as the current directory.

[ec2-user@ip-192-0-2-1 ~]$ cd
[ec2-user@ip-192-0-2-1 ~]$ pwd
/home/ec2-user

 2. In the home directory for ec2-user, create sets of empty practice files to use for the
remainder of this lab. In each set, replace X with the numbers 1 through 6.

Create six "song" files with names of the form songX.mp3.

Create six "snapshot" files with names of the form snapX.jpg.

Create six "movie" files with names of the form filmX.avi.

[ec2-user@ip-192-0-2-1 ~]$ touch song1.mp3 song2.mp3 song3.mp3 song4.mp3 song5.mp3
 song6.mp3
[ec2-user@ip-192-0-2-1 ~]$ touch snap1.jpg snap2.jpg snap3.jpg snap4.jpg snap5.jpg
 snap6.jpg
[ec2-user@ip-192-0-2-1 ~]$ touch film1.avi film2.avi film3.avi film4.avi film5.avi
 film6.avi
[ec2-user@ip-192-0-2-1 ~]$ ls -l
...output omitted...

 3. In the ec2-user home directory, create three subdirectories, Music, Pictures, and
Videos.

[ec2-user@ip-192-0-2-1 ~]$ mkdir Music
[ec2-user@ip-192-0-2-1 ~]$ mkdir Pictures
[ec2-user@ip-192-0-2-1 ~]$ mkdir Videos

58 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

 4. From the ec2-user home directory, move the song files into the Music subdirectory,
the snapshot files into the Pictures subdirectory, and the movie files into the Videos
subdirectory.

Once you are finished, use the ls -l command to list the contents of each of the
subdirectories in order to check your work.

[ec2-user@ip-192-0-2-1 ~]$ mv song1.mp3 song2.mp3 song3.mp3 song4.mp3 song5.mp3
 song6.mp3 Music
[ec2-user@ip-192-0-2-1 ~]$ mv snap1.jpg snap2.jpg snap3.jpg snap4.jpg snap5.jpg
 snap6.jpg Pictures
[ec2-user@ip-192-0-2-1 ~]$ mv film1.avi film2.avi film3.avi film4.avi film5.avi
 film6.avi Videos
[ec2-user@ip-192-0-2-1 ~]$ ls -l Music Pictures Videos
...output omitted...

 5. In the ec2-user home directory, create three additional subdirectories to organize the
files into projects. Call these directories friends, family, and work. Create all three with
one command.

Check your work with the ls -l command.

[ec2-user@ip-192-0-2-1 ~]$ mkdir friends family work
[ec2-user@ip-192-0-2-1 ~]$ ls -l
drwxrwxr-x. 2 ec2-user ec2-user 6 Apr 17 17:51 family
drwxrwxr-x. 2 ec2-user ec2-user 6 Apr 17 17:51 friends
drwxrwxr-x. 2 ec2-user ec2-user 6 Apr 17 17:47 Music
drwxrwxr-x. 2 ec2-user ec2-user 6 Apr 17 17:47 Pictures
drwxrwxr-x. 2 ec2-user ec2-user 6 Apr 17 17:47 Videos
drwxrwxr-x. 2 ec2-user ec2-user 6 Apr 17 17:51 work

 6. Next, copy some files from the Music, Pictures, and Videos subdirectories to the
friends and family subdirectories.

Copy files in the Music, Pictures, and Videos subdirectories containing numbers 1 and
2 to the friends folder.

Copy files in the Music, Pictures, and Videos subdirectories containing numbers 3 and
4 to the family folder.

Before each copy, the example also changes directory to the destination directory that files
are to be copied to. Note that the example uses the special relative directory name . to
refer to the shell prompt's current directory for the copy commands. You may find it quicker

RH066-RHEL8-en-1-cef4e50 59



Chapter 3 | Managing Files From the Command Line

to enter commands if you remember that you can use Tab to complete file names quickly.
This is not the only possible solution to this step.

Use ls to check your work.

[ec2-user@ip-192-0-2-1 ~]$ cd friends
[ec2-user@ip-192-0-2-1 friends]$ cp ~/Music/song1.mp3 ~/Music/song2.mp3 ~/
Pictures/snap1.jpg ~/Pictures/snap2.jpg ~/Videos/film1.avi ~/Videos/film2.avi .
[ec2-user@ip-192-0-2-1 friends]$ ls
film1.mp3  film2.mp3  snap1.mp3  snap2.mp3  song1.mp3  song2.mp3
[ec2-user@ip-192-0-2-1 friends]$ cd ../family
[ec2-user@ip-192-0-2-1 family]$ cp ~/Music/song3.mp3 ~/Music/song4.mp3 ~/Pictures/
snap3.jpg ~/Pictures/snap4.jpg ~/Videos/film3.avi ~/Videos/film4.avi .
[ec2-user@ip-192-0-2-1 family]$ ls
film3.mp3  film4.mp3  snap3.mp3  snap4.mp3  song3.mp3  song4.mp3

 7. Now copy files in the Music, Pictures, and Videos subdirectories containing numbers 5
and 6 to the work subdirectory.

[ec2-user@ip-192-0-2-1 family]$ cd ../work
[ec2-user@ip-192-0-2-1 work]$ cp ~/Music/song5.mp3 ~/Music/song6.mp3 ~/Pictures/
snap5.jpg ~/Pictures/snap6.jpg ~/Videos/film5.avi ~/Videos/film6.avi .
[ec2-user@ip-192-0-2-1 work]$ ls
film5.mp3  film6.mp3  snap5.mp3  snap6.mp3  song5.mp3  song6.mp3

 8. Finally, it's time to delete the friends, family, and work directories.

Change to the ec2-user home directory. Attempt to delete both the family and
friends directories with a single rmdir command.

[ec2-user@ip-192-0-2-1 work]$ cd
[ec2-user@ip-192-0-2-1 ~]$ rmdir family friends
rmdir: failed to remove `family': Directory not empty
rmdir: failed to remove `friends': Directory not empty

Using the rmdir command should fail since both directories have files in them.

 9. Use the rm command with the -r (recursive) option to delete the family and friends
folders and their copies of the files.

[ec2-user@ip-192-0-2-1 ~]$ rm -r family friends
[ec2-user@ip-192-0-2-1 ~]$ ls
Music  Pictures  Videos  work

 10. Delete all the files in the work subdirectory, but do not delete the work directory itself.

[ec2-user@ip-192-0-2-1 ~]$ cd work
[ec2-user@ip-192-0-2-1 work]$ rm song5.mp3 song6.mp3 snap5.jpg snap6.jpg film5.avi
 film6.avi
[ec2-user@ip-192-0-2-1 work]$ ls -l
total 0
[ec2-user@ip-192-0-2-1 work]$ 

60 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

 11. Finally, from the home directory, use the rmdir command to delete the work directory.
The command should succeed now that work is empty.

[ec2-user@ip-192-0-2-1 work]$ cd
[ec2-user@ip-192-0-2-1 ~]$ rmdir work
[ec2-user@ip-192-0-2-1 ~]$ ls
Music  Pictures  Videos

 12. This concludes this exercise. Log out and stop your Amazon EC2 instance.

RH066-RHEL8-en-1-cef4e50 61



Chapter 3 | Managing Files From the Command Line

Matching File Names Using Path Name
Expansion

Objectives
After completing this section, you should be able to efficiently run commands affecting many files
by using pattern matching features of the Bash shell.

Command-line Expansions
The Bash shell has multiple ways of expanding a command line including pattern matching, home
directory expansion, string expansion, and variable substitution. Perhaps the most powerful
of these is the path name-matching capability, historically called globbing. The Bash globbing
feature, sometimes called “wildcards”, makes managing large numbers of files easier. Using
metacharacters that “expand” to match file and path names being sought, commands perform on a
focused set of files at once.

Pattern Matching
Globbing is a shell command-parsing operation that expands a wildcard pattern into a list of
matching path names. Command-line metacharacters are replaced by the match list prior to
command execution. Patterns that do not return matches display the original pattern request as
literal text. The following are common metacharacters and pattern classes.

Table of Metacharacters and Matches

Pattern Matches

* Any string of zero or more characters.

? Any single character.

[abc...] Any one character in the enclosed class (between the square brackets).

[!abc...] Any one character not in the enclosed class.

[^abc...] Any one character not in the enclosed class.

[[:alpha:]] Any alphabetic character.

[[:lower:]] Any lowercase character.

[[:upper:]] Any uppercase character.

[[:alnum:]] Any alphabetic character or digit.

[[:punct:]] Any printable character not a space or alphanumeric.

[[:digit:]] Any single digit from 0 to 9.

[[:space:]] Any single white space character. This may include tabs, newlines,
carriage returns, form feeds, or spaces.

62 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

For the next few examples, pretend that you have run the following commands to create some
sample files.

[user@host ~]$ mkdir glob; cd glob
[user@host glob]$ touch alfa bravo charlie delta echo able baker cast dog easy
[user@host glob]$ ls
able  alfa  baker  bravo  cast  charlie  delta  dog  easy  echo
[user@host glob]$ 

The first example will use simple pattern matches with the asterisk (*) and question mark (?)
characters, and a class of characters, to match some of those file names.

[user@host glob]$ ls a*
able  alfa
[user@host glob]$ ls *a*
able  alfa  baker  bravo  cast  charlie  delta  easy
[user@host glob]$ ls [ac]*
able  alfa  cast  charlie
[user@host glob]$ ls ????
able  alfa  cast  easy  echo
[user@host glob]$ ls ?????
baker  bravo  delta
[user@host glob]$ 

Tilde Expansion
The tilde character (~), matches the current user's home directory. If it starts a string of characters
other than a slash (/), the shell will interpret the string up to that slash as a user name, if one
matches, and replace the string with the absolute path to that user's home directory. If no user
name matches, then an actual tilde followed by the string of characters will be used instead.

In the following example the echo command is used to display the value of the tilde character. The
echo command can also be used to display the values of brace and variable expansion characters,
and others.

[user@host glob]$ echo ~root
/root
[user@host glob]$ echo ~user
/home/user
[user@host glob]$ echo ~/glob
/home/user/glob
[user@host glob]$ 

Brace Expansion
Brace expansion is used to generate discretionary strings of characters. Braces contain a comma-
separated list of strings, or a sequence expression. The result includes the text preceding or
following the brace definition. Brace expansions may be nested, one inside another. Also double-
dot syntax (..) expands to a sequence such that {m..p} will expand to m n o p.

[user@host glob]$ echo {Sunday,Monday,Tuesday,Wednesday}.log
Sunday.log Monday.log Tuesday.log Wednesday.log
[user@host glob]$ echo file{1..3}.txt

RH066-RHEL8-en-1-cef4e50 63



Chapter 3 | Managing Files From the Command Line

file1.txt file2.txt file3.txt
[user@host glob]$ echo file{a..c}.txt
filea.txt fileb.txt filec.txt
[user@host glob]$ echo file{a,b}{1,2}.txt
filea1.txt filea2.txt fileb1.txt fileb2.txt
[user@host glob]$ echo file{a{1,2},b,c}.txt
filea1.txt filea2.txt fileb.txt filec.txt
[user@host glob]$ 

A practical use of brace expansion is to quickly create a number of files or directories.

[user@host glob]$ mkdir ../RHEL{6,7,8}
[user@host glob]$ ls ../RHEL*
RHEL6 RHEL7 RHEL8
[user@host glob]$ 

Variable Expansion
A variable acts like a named container that can store a value in memory. Variables make it easy to
access and modify the stored data either from the command line or within a shell script.

You can assign data as a value to a variable using the following syntax:

[user@host ~]$ VARIABLENAME=value

You can use variable expansion to convert the variable name to its value on the command line. If
a string starts with a dollar sign ($), then the shell will try to use the rest of that string as a variable
name and replace it with whatever value the variable has.

[user@host ~]$ USERNAME=operator
[user@host ~]$ echo $USERNAME
operator

To help avoid mistakes due to other shell expansions, you can put the name of the variable in curly
braces, for example ${VARIABLENAME}.

[user@host ~]$ USERNAME=operator
[user@host ~]$ echo ${USERNAME}
operator

Shell variables and ways to use them will be covered in more depth later in this course.

Command Substitution
Command substitution allows the output of a command to replace the command itself on the
command line. Command substitution occurs when a command is enclosed in parentheses, and
preceded by a dollar sign ($). The $(command) form can nest multiple command expansions
inside each other.

64 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

[user@host glob]$ echo Today is $(date +%A).
Today is Wednesday.
[user@host glob]$ echo The time is $(date +%M) minutes past $(date +%l%p).
The time is 26 minutes past 11AM.
[user@host glob]$ 

Note
An older form of command substitution uses backticks: `command`. Disadvantages
to the backticks form include: 1) it can be easy to visually confuse backticks with
single quote marks, and 2) backticks cannot be nested.

Protecting Arguments from Expansion
Many characters have special meaning in the Bash shell. To keep the shell from performing shell
expansions on parts of your command line, you can quote and escape characters and strings.

The backslash (\) is an escape character in the Bash shell. It will protect the character immediately
following it from expansion.

[user@host glob]$ echo The value of $HOME is your home directory.
The value of /home/user is your home directory.
[user@host glob]$ echo The value of \$HOME is your home directory.
The value of $HOME is your home directory.
[user@host glob]$ 

In the preceding example, protecting the dollar sign from expansion caused Bash to treat it as a
regular character and it did not perform variable expansion on $HOME.

To protect longer character strings, single quotes (') or double quotes (") are used to enclose
strings. They have slightly different effects. Single quotes stop all shell expansion. Double quotes
stop most shell expansion.

Use double quotation marks to suppress globbing and shell expansion, but still allow command and
variable substitution.

[user@host glob]$ myhost=$(hostname -s); echo $myhost
host
[user@host glob]$ echo "***** hostname is ${myhost} *****"
***** hostname is host *****
[user@host glob]$ 

Use single quotation marks to interpret all text literally.

[user@host glob]$ echo "Will variable $myhost evaluate to $(hostname -s)?"
Will variable myhost evaluate to host?
[user@host glob]$ echo 'Will variable $myhost evaluate to $(hostname -s)?'
Will variable $myhost evaluate to $(hostname -s)?
[user@host glob]$ 

RH066-RHEL8-en-1-cef4e50 65



Chapter 3 | Managing Files From the Command Line

Important
The single quote (') and the command substitution backtick (`) can be easy to
confuse, both on the screen and on the keyboard. Using one when you mean to use
the other will lead to unexpected shell behavior.

References
bash(1), cd(1), glob(7), isalpha(3), ls(1), path_resolution(7), and pwd(1)
man pages

66 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

Quiz

Path Name Expansion

Choose the correct answers to the following questions:

 1. Which pattern will match only filenames ending with "b"?
a. b*
b. *b
c. *b*
d. [!b]*

 2. Which pattern will match only filenames beginning with "b"?
a. b*
b. *b
c. *b*
d. [!b]*

 3. Which pattern will match only filenames where the first character is not "b"?
a. b*
b. *b
c. *b*
d. [!b]*

 4. Which pattern will match all filenames containing a "b"?
a. b*
b. *b
c. *b*
d. [!b]*

 5. Which pattern will match only filenames that contain a number?
a. *#*
b. *[[:digit:]]*
c. *[digit]*
d. [0-9]

 6. Which pattern will match only filenames that begin with an uppercase letter?
a. ^?*
b. ^*
c. [upper]*
d. [[:upper:]]*
e. [[CAP]]*

RH066-RHEL8-en-1-cef4e50 67



Chapter 3 | Managing Files From the Command Line

 7. Which pattern will match only filenames at least three characters in length?
a. ???*
b. ???
c. \3*
d. +++*
e. ...*

68 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

Solution

Path Name Expansion

Choose the correct answers to the following questions:

 1. Which pattern will match only filenames ending with "b"?
a. b*
b. *b
c. *b*
d. [!b]*

 2. Which pattern will match only filenames beginning with "b"?
a. b*
b. *b
c. *b*
d. [!b]*

 3. Which pattern will match only filenames where the first character is not "b"?
a. b*
b. *b
c. *b*
d. [!b]*

 4. Which pattern will match all filenames containing a "b"?
a. b*
b. *b
c. *b*
d. [!b]*

 5. Which pattern will match only filenames that contain a number?
a. *#*
b. *[[:digit:]]*
c. *[digit]*
d. [0-9]

 6. Which pattern will match only filenames that begin with an uppercase letter?
a. ^?*
b. ^*
c. [upper]*
d. [[:upper:]]*
e. [[CAP]]*

RH066-RHEL8-en-1-cef4e50 69



Chapter 3 | Managing Files From the Command Line

 7. Which pattern will match only filenames at least three characters in length?
a. ???*
b. ???
c. \3*
d. +++*
e. ...*

70 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

Lab

Managing Files with Shell Expansion

In this lab, you will create, move, and remove files and folders using a variety of file name
matching shortcuts.

Outcomes:
• Increased familiarity and practice with using shell wildcards to locate and reference files.

Before You Begin
Start your Amazon EC2 instance and use ssh to log in as the user ec2-user.

Important
This is the first Lab exercise in this course. Unlike a Practice, which is a step-
by-step guided exercise, a Lab will instruct you to perform a set of tasks and
it is up to you to determine how to accomplish each of them based on what
you've learned so far.

However, a complete step-by-step solution to the Lab is also provided after
the last task. This can be used to check your work, but it can also be useful if
you are finding the Lab confusing and just want a step-by-step walkthrough.

Steps
1. Create an initial set of empty practice files to use in this lab.

This should consist of 12 "recorded video files" with names of the form
tv_seasonX_episodeY.ogg. Replace X with the season number (1 or 2). Replace Y with
an episode number (1 through 6). This should result in two "seasons" of six "episodes" each.

Use the ls command with a wildcard to check your work by listing all the files with names
that start with tv.

2. As the author of a successful series of mystery novels, your next bestseller's
chapters are being edited for publishing. Create a total of eight files with names
mystery_chapterX.odf. Replace X with the numbers 1 through 8.

Check your work by listing all the files with names that start with mys.

3. From the home directory, create two subdirectories named season1 and season2 under
the Videos directory. Use one command. (Hint: if Videos does not exist from an earlier
exercise, the -p option for mkdir will create any missing parent directories if necessary.)

4. Move the appropriate tv_seasonX_episodeY.ogg files into the season1 and season2
subdirectories. Use only two commands, specifying destinations using relative paths.

5. To organize the mystery book chapters, create a two-level directory hierarchy with one
command. Create the directory my_bestseller under the Documents directory, and the
directory chapters beneath the new my_bestseller directory.

RH066-RHEL8-en-1-cef4e50 71



Chapter 3 | Managing Files From the Command Line

6. Using one command, create three more subdirectories directly under the my_bestseller
directory. Name these subdirectories editor, changes, and vacation. The create parent
(-p) option is not needed since the my_bestseller parent directory already exists.

7. Change to the chapters directory. Using the tilde (~) home directory shortcut to specify
the source files, move all book chapters into the chapters directory, which is now your
current directory. What is the simplest syntax to specify the destination directory?

8. The first two chapters are sent to the editor for review. To remember to not modify these
chapters during the review, move those two chapters only to the editor directory. Starting
from the chapters subdirectory, use brace expansion with a range to specify the chapter
file names to copy and a relative path for the destination directory.

9. Chapters 7 and 8 will be written while on vacation. Move the files from chapters to
vacation. Use one command, specifying the chapter file names using brace expansion with
a list of strings and without using wildcard characters.

10. Change your working directory to ~/Videos/season2, then copy the first episode of the
season to the vacation directory.

11. With one cd command, change your working directory to ~/Documents/my_bestseller/
vacation. List its files. Return to the season2 directory using cd with its previous working
directory argument. (This will succeed if the last directory change with cd was accomplished
with one command rather than several cd commands.) Copy the episode 2 file into
vacation. Return to vacation using the cd shortcut again.

12. Chapters 5 and 6 may need a plot change. To prevent these changes from modifying
original files, copy both files into changes. Move up one directory to the parent directory of
vacation, then use one command from there. Try using square bracket pattern matching to
specify which chapter numbers to match in the file name with the copy command.

13. Change your current directory to the changes directory.

Use the date +%F command with command substitution to copy mystery_chapter5.odf
to a new file name which includes the full date. The name should have the form
mystery_chapter5_YYYY-MM-DD.odf.

Make another copy of mystery_chapter5.odf, appending the current timestamp (as the
number of seconds since the epoch, 1970-01-01 00:00 UTC) to ensure a unique file name.
Use command substitution with the date +%s command to accomplish this.

14. Delete the changes directory in the following way.

First, delete all of the files in the changes directory. The current working directory should
be changes at this point. Change to its parent directory, because a directory cannot be
deleted while it is the current working directory. Try to delete the empty directory using the
rm command without the recursive option. This attempt should fail. (If you had used the
option, it would succeed.) Finally, use the rmdir command to delete the empty directory,
which will succeed.

15. When the vacation is over, the vacation directory is no longer needed. Delete it using the
rm command with the recursive option.

When finished, return to the ec2-user home directory.

16. This concludes this exercise. Log out and stop your Amazon EC2 instance.

72 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

Solution

Managing Files with Shell Expansion

In this lab, you will create, move, and remove files and folders using a variety of file name
matching shortcuts.

Outcomes:
• Increased familiarity and practice with using shell wildcards to locate and reference files.

Before You Begin
Start your Amazon EC2 instance and use ssh to log in as the user ec2-user.

Important
This is the first Lab exercise in this course. Unlike a Practice, which is a step-
by-step guided exercise, a Lab will instruct you to perform a set of tasks and
it is up to you to determine how to accomplish each of them based on what
you've learned so far.

However, a complete step-by-step solution to the Lab is also provided after
the last task. This can be used to check your work, but it can also be useful if
you are finding the Lab confusing and just want a step-by-step walkthrough.

Steps
1. Create an initial set of empty practice files to use in this lab.

This should consist of 12 "recorded video files" with names of the form
tv_seasonX_episodeY.ogg. Replace X with the season number (1 or 2). Replace Y with
an episode number (1 through 6). This should result in two "seasons" of six "episodes" each.

Use the ls command with a wildcard to check your work by listing all the files with names
that start with tv.

[ec2-user@ip-192-0-2-1 ~]$ touch tv_season{1..2}_episode{1..6}.ogg
[ec2-user@ip-192-0-2-1 ~]$ ls tv*
tv_season1_episode1.ogg  tv_season1_episode5.ogg  tv_season2_episode3.ogg
tv_season1_episode2.ogg  tv_season1_episode6.ogg  tv_season2_episode4.ogg
tv_season1_episode3.ogg  tv_season2_episode1.ogg  tv_season2_episode5.ogg
tv_season1_episode4.ogg  tv_season2_episode2.ogg  tv_season2_episode6.ogg

2. As the author of a successful series of mystery novels, your next bestseller's
chapters are being edited for publishing. Create a total of eight files with names
mystery_chapterX.odf. Replace X with the numbers 1 through 8.

Check your work by listing all the files with names that start with mys.

RH066-RHEL8-en-1-cef4e50 73



Chapter 3 | Managing Files From the Command Line

[ec2-user@ip-192-0-2-1 ~]$ touch mystery_chapter{1..8}.odf
[ec2-user@ip-192-0-2-1 ~]$ ls mys*
mystery_chapter1.odf  mystery_chapter4.odf  mystery_chapter7.odf
mystery_chapter2.odf  mystery_chapter5.odf  mystery_chapter8.odf
mystery_chapter3.odf  mystery_chapter6.odf

3. From the home directory, create two subdirectories named season1 and season2 under
the Videos directory. Use one command. (Hint: if Videos does not exist from an earlier
exercise, the -p option for mkdir will create any missing parent directories if necessary.)

[ec2-user@ip-192-0-2-1 ~]$ mkdir -p Videos/season{1..2}
[ec2-user@ip-192-0-2-1 ~]$ ls Videos
season1  season2

4. Move the appropriate tv_seasonX_episodeY.ogg files into the season1 and season2
subdirectories. Use only two commands, specifying destinations using relative paths.

[ec2-user@ip-192-0-2-1 ~]$ mv tv_season1* Videos/season1
[ec2-user@ip-192-0-2-1 ~]$ mv tv_season2* Videos/season2
[ec2-user@ip-192-0-2-1 ~]$ ls -R Videos
Videos/:
season1  season2

Videos/season1:
tv_season1_episode1.ogg  tv_season1_episode3.ogg  tv_season1_episode5.ogg
tv_season1_episode2.ogg  tv_season1_episode4.ogg  tv_season1_episode6.ogg

Videos/season2:
tv_season2_episode1.ogg  tv_season2_episode3.ogg  tv_season2_episode5.ogg
tv_season2_episode2.ogg  tv_season2_episode4.ogg  tv_season2_episode6.ogg

5. To organize the mystery book chapters, create a two-level directory hierarchy with one
command. Create the directory my_bestseller under the Documents directory, and the
directory chapters beneath the new my_bestseller directory.

[ec2-user@ip-192-0-2-1 ~]$ mkdir -p Documents/my_bestseller/chapters
[ec2-user@ip-192-0-2-1 ~]$ ls -R Documents
Documents/:
my_bestseller

Documents/my_bestseller:
chapters

Documents/my_bestseller/chapters:

74 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

6. Using one command, create three more subdirectories directly under the my_bestseller
directory. Name these subdirectories editor, changes, and vacation. The create parent
(-p) option is not needed since the my_bestseller parent directory already exists.

[ec2-user@ip-192-0-2-1 ~]$ mkdir Documents/my_bestseller/{editor,changes,vacation}
[ec2-user@ip-192-0-2-1 ~]$ ls -R Documents
Documents/:
my_bestseller

Documents/my_bestseller:
changes  chapters  editor  vacation

Documents/my_bestseller/changes:

Documents/my_bestseller/chapters:

Documents/my_bestseller/editor:

Documents/my_bestseller/vacation:

7. Change to the chapters directory. Using the tilde (~) home directory shortcut to specify
the source files, move all book chapters into the chapters directory, which is now your
current directory. What is the simplest syntax to specify the destination directory?

[ec2-user@ip-192-0-2-1 ~]$ cd Documents/my_bestseller/chapters
[ec2-user@ip-192-0-2-1 chapters]$ mv ~/mystery_chapter* .
[ec2-user@ip-192-0-2-1 chapters]$ ls
mystery_chapter1.odf  mystery_chapter4.odf  mystery_chapter7.odf
mystery_chapter2.odf  mystery_chapter5.odf  mystery_chapter8.odf
mystery_chapter3.odf  mystery_chapter6.odf

8. The first two chapters are sent to the editor for review. To remember to not modify these
chapters during the review, move those two chapters only to the editor directory. Starting
from the chapters subdirectory, use brace expansion with a range to specify the chapter
file names to copy and a relative path for the destination directory.

[ec2-user@ip-192-0-2-1 chapters]$ mv mystery_chapter{1..2}.odf ../editor
[ec2-user@ip-192-0-2-1 chapters]$ ls
mystery_chapter3.odf  mystery_chapter5.odf  mystery_chapter7.odf
mystery_chapter4.odf  mystery_chapter6.odf  mystery_chapter8.odf
[ec2-user@ip-192-0-2-1 chapters]$ ls ../editor
mystery_chapter1.odf  mystery_chapter2.odf

9. Chapters 7 and 8 will be written while on vacation. Move the files from chapters to
vacation. Use one command, specifying the chapter file names using brace expansion with
a list of strings and without using wildcard characters.

[ec2-user@ip-192-0-2-1 chapters]$ mv mystery_chapter{7,8}.odf ../vacation
[ec2-user@ip-192-0-2-1 chapters]$ ls
mystery_chapter3.odf  mystery_chapter5.odf
mystery_chapter4.odf  mystery_chapter6.odf
[ec2-user@ip-192-0-2-1 chapters]$ ls ../vacation
mystery_chapter7.odf  mystery_chapter8.odf

RH066-RHEL8-en-1-cef4e50 75



Chapter 3 | Managing Files From the Command Line

10. Change your working directory to ~/Videos/season2, then copy the first episode of the
season to the vacation directory.

[ec2-user@ip-192-0-2-1 chapters]$ cd ~/Videos/season2
[ec2-user@ip-192-0-2-1 season2]$ cp *episode1.ogg ~/Documents/my_bestseller/
vacation

11. With one cd command, change your working directory to ~/Documents/my_bestseller/
vacation. List its files. Return to the season2 directory using cd with its previous working
directory argument. (This will succeed if the last directory change with cd was accomplished
with one command rather than several cd commands.) Copy the episode 2 file into
vacation. Return to vacation using the cd shortcut again.

[ec2-user@ip-192-0-2-1 season2]$ cd ~/Documents/my_bestseller/vacation
[ec2-user@ip-192-0-2-1 vacation]$ ls
mystery_chapter7.odf  mystery_chapter8.odf  tv_season2_episode1.ogg
[ec2-user@ip-192-0-2-1 vacation]$ cd -
/home/ec2-user/Videos/season2
[ec2-user@ip-192-0-2-1 season2]$ cp *episode2.ogg ~/Documents/my_bestseller/
vacation
[ec2-user@ip-192-0-2-1 season2]$ cd -
/home/ec2-user/Documents/my_bestseller/vacation
[ec2-user@ip-192-0-2-1 vacation]$ ls
mystery_chapter7.odf  tv_season2_episode1.ogg
mystery_chapter8.odf  tv_season2_episode2.ogg

12. Chapters 5 and 6 may need a plot change. To prevent these changes from modifying
original files, copy both files into changes. Move up one directory to the parent directory of
vacation, then use one command from there. Try using square bracket pattern matching to
specify which chapter numbers to match in the file name with the copy command.

[ec2-user@ip-192-0-2-1 vacation]$ cd ..
[ec2-user@ip-192-0-2-1 my_bestseller]$ cp chapters/mystery_chapter[56].odf changes
[ec2-user@ip-192-0-2-1 my_bestseller]$ ls chapters
mystery_chapter3.odf  mystery_chapter5.odf
mystery_chapter4.odf  mystery_chapter6.odf
[ec2-user@ip-192-0-2-1 my_bestseller]$ ls changes
mystery_chapter5.odf  mystery_chapter6.odf

76 RH066-RHEL8-en-1-cef4e50



Chapter 3 | Managing Files From the Command Line

13. Change your current directory to the changes directory.

Use the date +%F command with command substitution to copy mystery_chapter5.odf
to a new file name which includes the full date. The name should have the form
mystery_chapter5_YYYY-MM-DD.odf.

Make another copy of mystery_chapter5.odf, appending the current timestamp (as the
number of seconds since the epoch, 1970-01-01 00:00 UTC) to ensure a unique file name.
Use command substitution with the date +%s command to accomplish this.

Important
The following example shows ec2-user using the \ escape followed by a Return
on the command line to start a new line in the terminal without submitting the
command to the shell. The > prompt will appear to indicate that the next line is part
of the same command. This is being done to make it more clear what the command
line arguments should look like (to ensure they don't wrap in the middle of the
argument on screen.) You could also type the whole command after each prompt
without using the \ escape followed by Return in the middle of the command.

[ec2-user@ip-192-0-2-1 my_bestseller]$ cd changes
[ec2-user@ip-192-0-2-1 changes]$ cp mystery_chapter5.odf \
> mystery_chapter5_$(date +%F).odf
[ec2-user@ip-192-0-2-1 changes]$ cp mystery_chapter5.odf \
> mystery_chapter5_$(date +%s).odf
[ec2-user@ip-192-0-2-1 changes]$ ls
mystery_chapter5_1595594872.odf  mystery_chapter5.odf
mystery_chapter5_2020-07-24.odf  mystery_chapter6.odf

14. Delete the changes directory in the following way.

First, delete all of the files in the changes directory. The current working directory should
be changes at this point. Change to its parent directory, because a directory cannot be
deleted while it is the current working directory. Try to delete the empty directory using the
rm command without the recursive option. This attempt should fail. (If you had used the
option, it would succeed.) Finally, use the rmdir command to delete the empty directory,
which will succeed.

[ec2-user@ip-192-0-2-1 changes]$ rm mystery*
[ec2-user@ip-192-0-2-1 changes]$ cd ..
[ec2-user@ip-192-0-2-1 my_bestseller]$ rm changes
rm: cannot remove 'changes': Is a directory
[ec2-user@ip-192-0-2-1 my_bestseller]$ rmdir changes
[ec2-user@ip-192-0-2-1 my_bestseller]$ ls
chapters  editor  vacation

RH066-RHEL8-en-1-cef4e50 77



Chapter 3 | Managing Files From the Command Line

15. When the vacation is over, the vacation directory is no longer needed. Delete it using the
rm command with the recursive option.

When finished, return to the ec2-user home directory.

[ec2-user@ip-192-0-2-1 my_bestseller]$ rm -r vacation
[ec2-user@ip-192-0-2-1 my_bestseller]$ ls
chapters  editor
[ec2-user@ip-192-0-2-1 my_bestseller]$ cd
[ec2-user@ip-192-0-2-1 ~]$ 

16. This concludes this exercise. Log out and stop your Amazon EC2 instance.

78 RH066-RHEL8-en-1-cef4e50



Chapter 4

Creating, Viewing, and Editing
Text Files

Goal To create, view, and edit text files from command
output or in an editor.

Objectives Edit existing text files and create new files from the
shell prompt with a text editor.

Sections Editing Text Files from the Shell Prompt (and
Guided Exercise)

RH066-RHEL8-en-1-cef4e50 79



Chapter 4 | Creating, Viewing, and Editing Text Files

Editing Text Files from the Shell Prompt

Objectives
After completing this section, you should be able to create and edit text files from the command
line using the vim editor.

Editing Files with Vim
A key design principle of Linux is that information and configuration settings are commonly stored
in text-based files. These files can be structured in various ways, as lists of settings, in INI-like
formats, as structured XML or YAML, and so on. However, the advantage of text files is that they
can be viewed and edited using any simple text editor.

Vim is an improved version of the vi editor distributed with Linux and UNIX systems. Vim is highly
configurable and efficient for practiced users, including such features as split screen editing, color
formatting, and highlighting for editing text.

Why Learn Vim?
You should know how to use at least one text editor that can be used from a text-only shell
prompt. If you do, you can edit text-based configuration files from a terminal window, or from
remote logins through ssh or the Web Console. Then you do not need access to a graphical
desktop in order to edit files on a server, and in fact that server might not need to run a graphical
desktop environment at all.

But then, why learn Vim instead of other possible options? The key reason is that Vim is almost
always installed on a server, if any text editor is present. This is because vi was specified by the
POSIX standard that Linux and many other UNIX-like operating systems comply with in large part.

In addition, Vim is often used as the vi implementation on other common operating systems or
distributions. For example, macOS currently includes a lightweight installation of Vim by default.
So Vim skills learned for Linux might also help you get things done elsewhere.

Starting Vim
Vim may be installed in Red Hat Enterprise Linux in two different ways. This can affect the features
and Vim commands available to you.

Your server might only have the vim-minimal package installed. This is a very lightweight
installation that includes only the core feature set and the basic vi command. In this case, you can
open a file for editing with vi filename, and all the core features discussed in this section will be
available to you.

Alternatively, your server might have the vim-enhanced package installed. This provides a much
more comprehensive set of features, an on-line help system, and a tutorial program. In order to
start Vim in this enhanced mode, you use the vim command.

[user@host ~]$ vim filename

Either way, the core features that we will discuss in this section will work with both commands.

80 RH066-RHEL8-en-1-cef4e50



Chapter 4 | Creating, Viewing, and Editing Text Files

Note
If vim-enhanced is installed, regular users will have a shell alias set so that if they run
the vi command, they will automatically get the vim command instead. This does
not apply to root and other users with UIDs below 200 (which are used by system
services).

If you are editing files as the root user and you expect vi to run in enhanced mode,
this can be a surprise. Likewise, if vim-enhanced is installed and a regular user wants
the simple vi for some reason, they might need to use \vi to override the alias
temporarily.

Advanced users can use \vi --version and vim --version to compare the
feature sets of the two commands.

Vim Operating Modes
An unusual characteristic of Vim is that it has several modes of operation, including command
mode, extended command mode, edit mode, and visual mode. Depending on the mode, you may
be issuing commands, editing text, or working with blocks of text. As a new Vim user, you should
always be aware of your current mode as keystrokes have different effects in different modes.

Figure 4.1: Moving between Vim modes

When you first open Vim, it starts in command mode, which is used for navigation, cut and paste,
and other text manipulation. Enter each of the other modes with single character keystrokes to
access specific editing functionality:

• An i keystroke enters insert mode, where all text typed becomes file content. Pressing Esc
returns to command mode.

• A v keystroke enters visual mode, where multiple characters may be selected for text
manipulation. Use Shift+V for multiline and Ctrl+V for block selection. The same keystroke
used to enter visual mode (v, Shift+V or Ctrl+V) is used to exit.

• The : keystroke begins extended command mode for tasks such as writing the file (to save it),
and quitting the Vim editor.

RH066-RHEL8-en-1-cef4e50 81



Chapter 4 | Creating, Viewing, and Editing Text Files

Note
If you are not sure what mode Vim is in, you can try pressing Esc a few times to get
back into command mode. Pressing Esc in command mode is harmless, so a few
extra key presses are okay.

The Minimum, Basic Vim Workflow
Vim has efficient, coordinated keystrokes for advanced editing tasks. Although considered useful
with practice, Vim's capabilities can overwhelm new users.

The i key puts Vim into insert mode. All text entered after this is treated as file contents until you
exit insert mode. The Esc key exits insert mode and returns Vim to command mode. The u key will
undo the most recent edit. Press the x key to delete a single character. The :w command writes
(saves) the file and remains in command mode for more editing. The :wq command writes (saves)
the file and quits Vim. The :q! command quits Vim, discarding all file changes since the last write.
The Vim user must learn these commands to accomplish any editing task.

Rearranging Existing Text
In Vim, copy and paste is known as yank and put, using command characters y and p. Begin by
positioning the cursor on the first character to be selected, and then enter visual mode. Use the
arrow keys to expand the visual selection. When ready, press y to yank the selection into memory.
Position the cursor at the new location, and then press p to put the selection at the cursor.

Visual Mode in Vim
Visual mode is a great way to highlight and manipulate text. There are three keystrokes:

• Character mode: v

• Line mode: Shift+v

• Block mode: Ctrl+v

Character mode highlights sentences in a block of text. The word VISUAL will appear at the
bottom of the screen. Press v to enter visual character mode. Shift+v enters line mode. VISUAL
LINE will appear at the bottom of the screen.

Visual block mode is perfect for manipulating data files. From the cursor, press the Ctrl+v to
enter visual block. VISUAL BLOCK will appear at the bottom of the screen. Use the arrow keys to
highlight the section to change.

Note
Vim has a lot of capabilities, but you should master the basic workflow first. You
do not need to quickly understand the entire editor and its capabilities. Get
comfortable with those basics through practice and then you can expand your Vim
vocabulary by learning additional Vim commands (keystrokes).

The exercise for this section will introduce you to the vimtutor command. This
tutorial, which ships with vim-enhanced, is an excellent way to learn the core
functionality of Vim.

82 RH066-RHEL8-en-1-cef4e50



Chapter 4 | Creating, Viewing, and Editing Text Files

References
vim(1) man page

The :help command in vim (if the vim-enhanced package is installed).

Vim the editor
http://www.vim.org/

Getting Started with Vim visual mode
https://opensource.com/article/19/2/getting-started-vim-visual-mode

RH066-RHEL8-en-1-cef4e50 83

http://www.vim.org/
https://opensource.com/article/19/2/getting-started-vim-visual-mode


Chapter 4 | Creating, Viewing, and Editing Text Files

Guided Exercise

Editing Files with Vim

In this exercise, you will use the Vim tutorial bundled with the editor to practice entry-level
vim editor techniques.

Outcomes:
Basic competency in using the vim text editor, and knowledge of the vimtutor tutorial for
future learning and practice.

Before You Begin
Start your Amazon EC2 instance and use ssh to log in as the user ec2-user.

Steps
 1. This exercise will use the existing Vim tutorial bundled with the Vim editor. Your Amazon

EC2 instance probably has a basic version of vim installed, but not the fully enhanced
version of vim which includes the tutorial and help files. Run the command sudo yum -
y install vim-enhanced to make sure that it is installed. Software installation will be
discussed later in this course.

[ec2-user@ip-192-0-2-1 ~]$ sudo yum -y install vim-enhanced

 2. Run vimtutor. Read the Welcome screen and perform Lesson 1.1.

[ec2-user@ip-192-0-2-1 ~]$ vimtutor

In the lecture, only keyboard arrow keys were used for navigation. In vi's early years, users
could not rely on working keyboard mappings for arrow keys. Therefore, vi was designed
with commands using only standard character keys, such as the conveniently grouped h, j,
k, and l. Here is one way to remember them:

hang back, jump down, kick up, leap forward.

 3. Return to the vimtutor window. Perform Lesson 1.2.

This early lesson teaches how to quit without having to keep an unwanted file change. All
changes are lost, but this is better than leaving a critical file in an incorrect state.

 4. Return to the vimtutor window. Perform Lesson 1.3.

Vim has faster, more efficient keystrokes to delete an exact amount of words, lines,
sentences, and paragraphs. However, any editing job can be accomplished using only x for
single-character deletion.

 5. Return to the vimtutor window. Perform Lesson 1.4.

The minimum required keystrokes are for entering and leaving edit mode, arrow keys, and
deleting. For most edit tasks, the first key pressed is i.

84 RH066-RHEL8-en-1-cef4e50



Chapter 4 | Creating, Viewing, and Editing Text Files

 6. (Optional) Return to the vimtutor window. Perform Lesson 1.5.

In the lecture, only the i (insert) command was taught as the keystroke to enter edit mode.
This vimtutor lesson demonstrates that other keystrokes are available to change the cursor
placement when insert mode is entered. However, once in insert mode, all text typed is still
file content.

 7. Return to the vimtutor window. Perform Lesson 1.6.

Save the file by writing and quitting. This is the last lesson for the minimum required
keystrokes to be able to accomplish any editing task.

 8. Return to the vimtutor window. Finish by reading the Lesson 1 Summary.

There are six more multi-step lessons in vimtutor. None are assigned as further lessons
for this course, but feel free to use vimtutor on your own to learn more about Vim.

 9. This concludes this exercise. Log out and stop your Amazon EC2 instance.

RH066-RHEL8-en-1-cef4e50 85



86 RH066-RHEL8-en-1-cef4e50



Chapter 5

Managing Local Linux Users
and Groups

Goal To manage local Linux users and groups and
administer local password policies.

Objectives • Explain the role of users and groups on a Linux
system and how they are understood by the
computer.

• Run commands as the superuser to administer
a Linux system.

• Create, modify, lock, and delete locally defined
user accounts.

• Create, modify, and delete locally defined group
accounts.

Sections • Users and Groups (and Quiz)
• Gaining Superuser Access (and Guided

Exercise)
• Managing Local User Accounts (and Guided

Exercise)
• Managing Local Group Accounts (and Guided

Exercise)

Lab Managing Local Linux Users and Groups

RH066-RHEL8-en-1-cef4e50 87



Chapter 5 | Managing Local Linux Users and Groups

Users and Groups

Objectives
After completing this section, you should be able to describe the purpose of users and groups on a
Linux system.

What is a User?
A user account is used to provide security boundaries between different people and programs that
can run commands.

Users have user names to identify them to human users and make them easier to work with.
Internally, the system distinguishes user accounts by the unique identification number assigned to
them, the user ID or UID. If a user account is used by humans, it will generally be assigned a secret
password that the user will use to prove that they are the actual authorized user when logging in.

User accounts are fundamental to system security. Every process (running program) on the
system runs as a particular user. Every file has a particular user as its owner. File ownership helps
the system enforce access control for users of the files. The user associated with a running process
determines the files and directories accessible to that process.

There are three main types of user account: the superuser, system users, and regular users.

• The superuser account is for administration of the system. The name of the superuser is root
and the account has UID 0. The superuser has full access to the system.

• The system has system user accounts which are used by processes that provide supporting
services. These processes, or daemons, usually do not need to run as the superuser. They are
assiged non-privileged accounts that allow them to secure their files and other resources from
each other and from regular users on the system. Users do not interactively log in using a system
user account.

• Most users have regular user accounts which they use for their day-to-day work. Like system
users, regular users have limited access to the system.

You can use the id command to show information about the currently logged-in user.

[user01@host ~]$ id
uid=1000(user01) gid=1000(user01) groups=1000(user01)
 context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

To view basic information about another user, pass the username to the id command as an
argument.

[user01@host]$ id user02
uid=1002(user02) gid=1001(user02) groups=1001(user02)
 context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

To view the owner of a file use the ls -l command. To view the owner of a directory use the ls
-ld command. In the following output, the third column shows the username.

88 RH066-RHEL8-en-1-cef4e50



Chapter 5 | Managing Local Linux Users and Groups

[user01@host ~]$ ls -l file1
-rw-rw-r--. 1 user01 user01 0 Feb  5 11:10 file1
[user01@host]$ ls -ld dir1
drwxrwxr-x. 2 user01 user01 6 Feb  5 11:10 dir1

To view process information, use the ps command. The default is to show only processes in the
current shell. Add the a option to view all processes with a terminal. To view the user associated
with a process, include the u option. In the following output, the first column shows the username.

[user01@host]$ ps -au
USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND
root       777  0.0  0.0 225752  1496 tty1     Ss+  11:03   0:00 /sbin/agetty -o -
p -- \u --noclear tty1 linux
root       780  0.0  0.1 225392  2064 ttyS0    Ss+  11:03   0:00 /sbin/agetty -o -
p -- \u --keep-baud 115200,38400,9600
user01      1207  0.0  0.2 234044  5104 pts/0    Ss   11:09   0:00 -bash
user01      1319  0.0  0.2 266904  3876 pts/0    R+   11:33   0:00 ps au

The output of the preceding command displays users by name, but internally the operating
system uses the UIDs to track users. The mapping of usernames to UIDs is defined in databases
of account information. By default, systems use the /etc/passwd file to store information about
local users.

Each line in the /etc/passwd file contains information about one user. It is divided up into seven
colon-separated fields. Here is an example of a line from /etc/passwd:

user01: x: 1000: 1000: User One: /home/user01: /bin/bash

Username for this user (user01).
The user's password used to be stored here in encrypted format. That has been moved to the
/etc/shadow file, which will be covered later. This field should always be x.
The UID number for this user account (1000).
The GID number for this user account's primary group (1000). Groups will be discussed later
in this section.
The real name for this user (User One).
The home directory for this user (/home/user01). This is the initial working directory when
the shell starts and contains the user's data and configuration settings.
The default shell program for this user, which runs on login (/bin/bash). For a regular user,
this is normally the program that provides the user's command-line prompt. A system user
might use /sbin/nologin if interactive logins are not allowed for that user.

What is a Group?
A group is a collection of users that need to share access to files and other system resources.
Groups can be used to grant access to files to a set of users instead of just a single user.

Like users, groups have group names to make them easier to work with. Internally, the system
distinguishes groups by the unique identification number assigned to them, the group ID or GID.

The mapping of group names to GIDs is defined in databases of group account information. By
default, systems use the /etc/group file to store information about local groups.

RH066-RHEL8-en-1-cef4e50 89



Chapter 5 | Managing Local Linux Users and Groups

Each line in the /etc/group file contains information about one group. Each group entry is
divided into four colon-separated fields. Here is an example of a line from /etc/group:

group01: x: 10000: user01,user02,user03

Group name for this group (group01).
Obsolete group password field. This field should always be x.
The GID number for this group (10000).
A list of users who are members of this group as a supplementary group (user01, user02,
user03). Primary (or default) and supplementary groups are discussed later in this section.

Primary Groups and Supplementary Groups
Every user has exactly one primary group. For local users, this is the group listed by GID number in
the /etc/passwd file. By default, this is the group that will own new files created by the user.

Normally, when you create a new regular user, a new group with the same name as that user
is created. That group is used as the primary group for the new user, and that user is the only
member of this User Private Group. It turns out that this helps make management of file
permissions simpler, which will be discussed later in this course.

Users may also have supplementary groups. Membership in supplementary groups is determined
by the /etc/group file. Users are granted access to files based on whether any of their
groups have access. It doesn't matter if the group or groups that have access are primary or
supplementary for the user.

For example, if the user user01 has a primary group user01 and supplementary groups wheel
and webadmin, then that user can read files readable by any of those three groups.

The id command can also be used to find out about group membership for a user.

[user03@host ~]$ id
uid=1003(user03) gid=1003(user03) groups=1003(user03),10(wheel),10000(group01)
 context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

In the preceding example, user03 has the group user03 as their primary group (gid). The
groups item lists all groups for this user, and other than the primary group user03, the user has
groups wheel and group01 as supplementary groups.

References
id(1), passwd(5), and group(5) man pages

info libc (GNU C Library Reference Manual)

• Section 30: Users and groups

(Note that the glibc-devel package must be installed for this info node to be
available.)

90 RH066-RHEL8-en-1-cef4e50



Chapter 5 | Managing Local Linux Users and Groups

Quiz

User and Group Concepts

Choose the correct answer to the following questions:

 1. Which item represents a number that identifies the user at the most fundamental level?
a. primary user
b. UID
c. GID
d. username

 2. Which item represents the program that provides the user's command-line prompt?
a. primary shell
b. home directory
c. login shell
d. command name

 3. Which item or file represents the location of the local group information?
a. home directory
b. /etc/passwd
c. /etc/GID
d. /etc/group

 4. Which item or file represents the location of the user's personal files?
a. home directory
b. login shell
c. /etc/passwd
d. /etc/group

 5. Which item represents a number that identifies the group at the most fundamental
level?
a. primary group
b. UID
c. GID
d. groupid

 6. Which item or file represents the location of the local user account information?
a. home directory
b. /etc/passwd
c. /etc/UID
d. /etc/group

RH066-RHEL8-en-1-cef4e50 91



Chapter 5 | Managing Local Linux Users and Groups

 7. What is the fourth field of the /etc/passwd file?
a. home directory
b. UID
c. login shell
d. primary group

92 RH066-RHEL8-en-1-cef4e50



Chapter 5 | Managing Local Linux Users and Groups

Solution

User and Group Concepts

Choose the correct answer to the following questions:

 1. Which item represents a number that identifies the user at the most fundamental level?
a. primary user
b. UID
c. GID
d. username

 2. Which item represents the program that provides the user's command-line prompt?
a. primary shell
b. home directory
c. login shell
d. command name

 3. Which item or file represents the location of the local group information?
a. home directory
b. /etc/passwd
c. /etc/GID
d. /etc/group

 4. Which item or file represents the location of the user's personal files?
a. home directory
b. login shell
c. /etc/passwd
d. /etc/group

 5. Which item represents a number that identifies the group at the most fundamental
level?
a. primary group
b. UID
c. GID
d. groupid

 6. Which item or file represents the location of the local user account information?
a. home directory
b. /etc/passwd
c. /etc/UID
d. /etc/group

RH066-RHEL8-en-1-cef4e50 93



Chapter 5 | Managing Local Linux Users and Groups

 7. What is the fourth field of the /etc/passwd file?
a. home directory
b. UID
c. login shell
d. primary group

94 RH066-RHEL8-en-1-cef4e50



Chapter 5 | Managing Local Linux Users and Groups

Gaining Superuser Access

Objectives
After completing this section, you will be able to switch to the superuser account to manage a
Linux system, and grant other users superuser access through the sudo command.

The Superuser
Most operating systems have some sort of superuser, a user that has all power over the system.
In Red Hat Enterprise Linux this is the root user. This user has the power to override normal
privileges on the file system, and is used to manage and administer the system. To perform tasks
such as installing or removing software and to manage system files and directories, users must
escalate their privileges to the root user.

The root user only among normal users can control most devices, but there are a few exceptions.
For example, normal users can control removable devices, such as USB devices. Thus, normal users
can add and remove files and otherwise manage a removable device, but only root can manage
"fixed" hard drives by default.

This unlimited privilege, however, comes with responsibility. The root user has unlimited power to
damage the system: remove files and directories, remove user accounts, add back doors, and so
on. If the root user's account is compromised, someone else would have administrative control of
the system. Throughout this course, administrators are encouraged to log in as a normal user and
escalate privileges to root only when needed.

The root account on Linux is roughly equivalent to the local Administrator account on Microsoft
Windows. In Linux, most system administrators log in to the system as an unprivileged user and use
various tools to temporarily gain root privileges.

Warning
One common practice on Microsoft Windows in the past was for the local
Administrator user to log in directly to perform system administrator duties.
Although this is possible on Linux, Red Hat recommends that system administrators
do not log in directly as root. Instead, system administrators should log in as a
normal user and use other mechanisms (su, sudo, or PolicyKit, for example) to
temporarily gain superuser privileges.

By logging in as the superuser, the entire desktop environment unnecessarily runs
with administrative privileges. In that situation, any security vulnerability which would
normally only compromise the user account has the potential to compromise the
entire system.

Switching Users
The su command allows users to switch to a different user account. If you run su from a regular
user account, you will be prompted for the password of the account to which you want to switch.
When root runs su, you do not need to enter the user's password.

RH066-RHEL8-en-1-cef4e50 95



Chapter 5 | Managing Local Linux Users and Groups

[user01@host ~]$ su - user02
Password: 
[user02@host ~]$ 

If you omit the user name, the su or su - command attempts to switch to root by default.

[user01@host ~]$ su -
Password: 
[root@host ~]# 

The command su starts a non-login shell, while the command su - (with the dash option) starts
a login shell. The main distinction between the two commands is that su - sets up the shell
environment as if it were a new login as that user, while su just starts a shell as that user, but uses
the original user's environment settings.

In most cases, administrators should run su - to get a shell with the target user's normal
environment settings. For more information, see the bash(1) man page.

Note
The su command is most frequently used to get a command-line interface (shell
prompt) which is running as another user, typically root. However, with the -c
option, it can be used like the Windows utility runas to run an arbitrary program as
another user. Run info su to view more details.

Running Commands with Sudo
In some cases, the root user's account may not have a valid password at all for security reasons.
In this case, users cannot log in to the system as root directly with a password, and su cannot be
used to get an interactive shell. One tool that can be used to get root access in this case is sudo.

Unlike su, sudo normally requires users to enter their own password for authentication, not
the password of the user account they are trying to access. That is, users who use sudo to
run commands as root do not need to know the root password. Instead, they use their own
passwords to authenticate access.

Additionally, sudo can be configured to allow specific users to run any command as some other
user, or only some commands as that user.

For example, when sudo is configured to allow the user01 user to run the command usermod as
root, user01 could run the following command to lock or unlock a user account:

[user01@host ~]$ sudo usermod -L user02
[sudo] password for user01: 
[user01@host ~]$ su - user02
Password: 
su: Authentication failure
[user01@host ~]$ 

If a user tries to run a command as another user, and the sudo configuration does not permit it,
the command will be blocked, the attempt will be logged, and by default an email will be sent to
the root user.

96 RH066-RHEL8-en-1-cef4e50



Chapter 5 | Managing Local Linux Users and Groups

[user02@host ~]$ sudo tail /var/log/secure
[sudo] password for user02: 
user02 is not in the sudoers file.  This incident will be reported.
[user02@host ~]$ 

One additional benefit to using sudo is that all commands executed are logged by default to /
var/log/secure.

[user01@host ~]$ sudo tail /var/log/secure
...output omitted...
Feb  6 20:45:46 host sudo[2577]:  user01 : TTY=pts/0 ; PWD=/home/user01 ;
 USER=root ; COMMAND=/sbin/usermod -L user02
...output omitted...

In Red Hat Enterprise Linux 7 and Red Hat Enterprise Linux 8, all members of the wheel group
can use sudo to run commands as any user, including root. The user is prompted for their own
password. This is a change from Red Hat Enterprise Linux 6 and earlier, where users who were
members of the wheel group did not get this administrative access by default.

Warning
RHEL 6 did not grant the wheel group any special privileges by default. Sites that
have been using this group for a non-standard purpose might be surprised when
RHEL 7 and RHEL 8 automatically grants all members of wheel full sudo privileges.
This could lead to unauthorized users getting administrative access to RHEL 7 and
RHEL 8 systems.

Historically, UNIX-like systems use membership in the wheel group to grant or
control superuser access.

Getting an Interactive Root Shell with Sudo
If there is a nonadministrative user account on the system that can use sudo to run the su
command, you can run sudo su - from that account to get an interactive root user shell. This
works because sudo will run su - as root, and root does not need to enter a password to use
su.

Another way to access the root account with sudo is to use the sudo -i command. This will
switch to the root account and run that user's default shell (usually bash) and associated shell
login scripts. If you just want to run the shell, you can use the sudo -s command.

For example, an administrator might get an interactive shell as root on an AWS EC2 instance by
using SSH public-key authentication to log in as the normal user ec2-user, and then by running
sudo -i to get the root user's shell.

[ec2-user@host ~]$ sudo -i
[sudo] password for ec2-user: 
[root@host ~]# 

The sudo su - command and sudo -i do not behave exactly the same. This will be discussed
briefly at the end of the section.

RH066-RHEL8-en-1-cef4e50 97



Chapter 5 | Managing Local Linux Users and Groups

Configuring Sudo
The main configuration file for sudo is /etc/sudoers. To avoid problems if multiple
administrators try to edit it at the same time, it should only be edited with the special visudo
command.

For example, the following line from the /etc/sudoers file enables sudo access for members of
group wheel.

%wheel        ALL=(ALL)       ALL

In this line, %wheel is the user or group to whom the rule applies. A % specifies that this is a group,
group wheel. The ALL=(ALL) specifies that on any host that might have this file, wheel can run
any command. The final ALL specifies that wheel can run those commands as any user on the
system.

By default, /etc/sudoers also includes the contents of any files in the /etc/sudoers.d
directory as part of the configuration file. This allows an administrator to add sudo access for a
user simply by putting an appropriate file in that directory.

Note
Using supplementary files under the /etc/sudoers.d directory is convenient
and simple. You can enable or disable sudo access simply by copying a file into the
directory or removing it from the directory.

In this course, you will create and remove files in the /etc/sudoers.d directory to
configure sudo access for users and groups.

To enable full sudo access for the user user01, you could create /etc/sudoers.d/user01
with the following content:

user01  ALL=(ALL)  ALL

To enable full sudo access for the group group01, you could create /etc/sudoers.d/group01
with the following content:

%group01  ALL=(ALL)  ALL

It is also possible to set up sudo to allow a user to run commands as another user without entering
their password:

ansible  ALL=(ALL)  NOPASSWD:ALL

While there are obvious security risks to granting this level of access to a user or group, it is
frequently used with cloud instances, virtual machines, and provisioning systems to help configure
servers. The account with this access must be carefully protected and might require SSH public-
key authentication in order for a user on a remote system to access it at all.

For example, the official AMI for Red Hat Enterprise Linux in the Amazon Web Services
Marketplace ships with the root and the ec2-user users' passwords locked. The ec2-user user
account is set up to allow remote interactive access through SSH public-key authentication. The

98 RH066-RHEL8-en-1-cef4e50



Chapter 5 | Managing Local Linux Users and Groups

user ec2-user can also run any command as root without a password because the last line of
the AMI's /etc/sudoers file is set up as follows:

ec2-user  ALL=(ALL)  NOPASSWD: ALL

The requirement to enter a password for sudo can be re-enabled or other changes may be made
to tighten security as part of the process of configuring the system.

Note
In this course, you may see sudo su - used instead of sudo -i. Both commands
work, but there are some subtle differences between them.

The sudo su - command sets up the root environment exactly like a normal login
because the su - command ignores the settings made by sudo and sets up the
environment from scratch.

The default configuration of the sudo -i command actually sets up some details
of the root user's environment differently than a normal login. For example, it sets
the PATH environment variable slightly differently. This affects where the shell will
look to find commands.

You can make sudo -i behave more like su - by editing /etc/sudoers with
visudo. Find the line

Defaults    secure_path = /sbin:/bin:/usr/sbin:/usr/bin

and replace it with the following two lines:

Defaults      secure_path = /usr/local/bin:/usr/bin
Defaults>root secure_path = /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin

For most purposes, this is not a major difference. However, for consistency of PATH
settings on systems with the default /etc/sudoers file, the authors of this course
use sudo -i in examples and exercises.

References
su(1), sudo(8), visudo(8) and sudoers(5) man pages

info libc persona (GNU C Library Reference Manual)

• Section 30.2: The Persona of a Process

(Note that the glibc-devel package must be installed for this info node to be
available.)

RH066-RHEL8-en-1-cef4e50 99



Chapter 5 | Managing Local Linux Users and Groups

Guided Exercise

Running Commands as root

In this exercise, you will practice running commands as root.

Outcomes
• Use the sudo command to run other commands as root.

• Use sudo to run su to get an interactive shell as root when the superuser does not have
a valid password.

• Explain how su and su - can affect the shell environment through not running or running
login scripts.

Before You Begin
Start your Amazon EC2 instance and use ssh to log in as the user ec2-user.

It is assumed that the AMI that you are using is pre-configured to allow the ec2-user to run
any command as any user without a password using sudo.

Steps
 1. Explore the characteristics of the ec2-user shell environment.

1.1. View the current user and group information and display the current working
directory.

[ec2-user@ip-192-0-2-1 ~]$ id
uid=1000(ec2-user) gid=1000(ec2-user) groups=1000(ec2-user),4(adm),190(systemd-
journal) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
[ec2-user@ip-192-0-2-1 ~]$ pwd
/home/ec2-user

1.2. View the environment variables which specify the user's home directory and the
locations searched for executable files.

[ec2-user@ip-192-0-2-1 ~]$ echo $HOME
/home/ec2-user
[ec2-user@ip-192-0-2-1 ~]$ echo $PATH
/home/ec2-user/.local/bin:/home/ec2-user/bin:/usr/local/bin:/usr/bin:/usr/local/
sbin:/usr/sbin

 2. Switch to root by using sudo to run su without the dash, and explore the characteristics of
the new shell environment.

2.1. Become the root user at the shell prompt.

100 RH066-RHEL8-en-1-cef4e50



Chapter 5 | Managing Local Linux Users and Groups

[ec2-user@ip-192-0-2-1 ~]$ sudo su
[root@ip-192-0-2-1 ec2-user]# 

2.2. View the current user and group information and display the current working
directory. Note that the user identity changed, but not the current working directory.

[root@ip-192-0-2-1 ec2-user]# id
uid=0(root) gid=0(root) groups=0(root)
 context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
[root@ip-192-0-2-1 ec2-user]# pwd
/home/ec2-user

2.3. View the environment variables which specify the home directory and the locations
searched for executable files. Look for references to the ec2-user and root
accounts.

[root@ip-192-0-2-1 ec2-user]# echo $HOME
/root
[root@ip-192-0-2-1 ec2-user]# echo $PATH
/sbin:/bin:/usr/sbin:/usr/bin

Important
If you already have some experience with Linux and the su command, you may have
expected that using su without the - option to become root would cause you to
keep the current PATH of ec2-user (as seen in the previous step). That did not
happen! But as you'll see in the next step, this isn't the normal PATH for root either.

What happened? The difference is that you did not run su directly (because root
doesn't have a valid password, and since you are not root you need to use a
password to use su). Instead, you ran su as root using the sudo command so you
did not need a root password.

It turns out that sudo initially overrides the PATH from the initial environment for
security reasons. That variable can still be updated by the command that was run
after that initial override, which is what su - will do in a moment.

2.4. Exit the shell to return to the ec2-user user.

[root@ip-192-0-2-1 ec2-user]# exit
exit
[ec2-user@ip-192-0-2-1 ~]$ 

 3. Switch to root by using sudo to run su -, and compare the characteristics of the new
shell environment with those of the preceding example.

3.1. Become the root user at the shell prompt. Be sure all the login scripts are also
executed.

RH066-RHEL8-en-1-cef4e50 101



Chapter 5 | Managing Local Linux Users and Groups

[ec2-user@ip-192-0-2-1 ~]$ sudo su -
Last login: Fri Jul 24 17:16:01 EDT 2020 on pts/0
[root@ip-192-0-2-1 ~]# 

Note the differences: the Last login message and the difference in the shell
prompt.

3.2. View the current user and group information and display the current working
directory.

[root@ip-192-0-2-1 ~]# id
uid=0(root) gid=0(root) groups=0(root)
 context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
[root@ip-192-0-2-1 ~]# pwd
/root

3.3. View the environment variables which specify the home directory and the locations
searched for executable files. Look for references to the ec2-user and root
accounts.

[root@ip-192-0-2-1 ~]# echo $HOME
/root
[root@ip-192-0-2-1 ~]# echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/root/bin

Important
In this example, after sudo reset the PATH environment variable from the settings
in the ec2-user shell environment, the su - command ran the shell login scripts
for root and set PATH again, to yet another value. The su command without the -
option (in the previous example in this exercise) did not do that.

3.4. Exit the root shell to return to the ec2-user shell.

[root@ip-192-0-2-1 ~]# exit
logout
[ec2-user@ip-192-0-2-1 ~]$ 

 4. Next, run several commands as ec2-user which require root access. Then, rather than
using sudo su - to run them as root from an interactive root shell, use sudo to run
those commands as root from the ec2-user shell as one-off commands.

4.1. View the last 5 lines of the /var/log/messages. Your output may vary from this
example.

[ec2-user@ip-192-0-2-1 ~]$ tail -n 5 /var/log/messages
tail: cannot open '/var/log/messages' for reading: Permission denied
[ec2-user@ip-192-0-2-1 ~]$ sudo tail -n 5 /var/log/messages
Jul 24 17:10:10 ip-192-0-2-1 systemd: Started Network Manager Script Dispatcher
 Service.

102 RH066-RHEL8-en-1-cef4e50



Chapter 5 | Managing Local Linux Users and Groups

Jul 24 17:10:10 ip-192-0-2-1 nm-dispatcher: req:1 'dhcp4-change' [eth0]: new
 request (3 scripts)
Jul 24 17:10:10 ip-192-0-2-1 nm-dispatcher: req:1 'dhcp4-change' [eth0]: start
 running ordered scripts...
Jul 24 17:16:01 ip-192-0-2-1 su: (to root) ec2-user on pts/0
Jul 24 17:18:12 ip-192-0-2-1 su: (to root) ec2-user on pts/0
[ec2-user@ip-192-0-2-1 ~]$ 

4.2. Make a backup of a configuration file in the /etc directory.

[ec2-user@ip-192-0-2-1 ~]$ cp /etc/issue /etc/issueOLD
cp: cannot create regular file '/etc/issueOLD': Permission denied
[ec2-user@ip-192-0-2-1 ~]$ sudo cp /etc/issue /etc/issueOLD
[ec2-user@ip-192-0-2-1 ~]$ 

4.3. Remove the /etc/issueOLD file that was just created.

[ec2-user@ip-192-0-2-1 ~]$ rm /etc/issueOLD
rm: remove write-protected regular empty file '/etc/issueOLD'? y
rm: cannot remove '/etc/issueOLD': Permission denied
[ec2-user@ip-192-0-2-1 ~]$ sudo rm /etc/issueOLD
[ec2-user@ip-192-0-2-1 ~]$ 

 5. This concludes this exercise. Log out and stop your Amazon EC2 instance.

RH066-RHEL8-en-1-cef4e50 103



Chapter 5 | Managing Local Linux Users and Groups

Managing Local User Accounts

Objectives
After completing this section, you should be able to create, modify, and delete local user accounts.

Managing Local Users
A number of command-line tools can be used to manage local user accounts.

Creating Users from the Command Line

• The useradd username command creates a new user named username. It sets up the
user's home directory and account information, and creates a private group for the user named
username. At this point the account does not have a valid password set, and the user cannot log
in until a password is set.

• The useradd --help command displays the basic options that can be used to override the
defaults. In most cases, the same options can be used with the usermod command to modify an
existing user.

• Some defaults, such as the range of valid UID numbers and default password aging rules, are
read from the /etc/login.defs file. Values in this file are only used when creating new users.
A change to this file does not affect existing users.

Modifying Existing Users from the Command Line

• The usermod --help command displays the basic options that can be used to modify an
account. Some common options include:

usermod options: Usage

-c, --comment COMMENT Add the user's real name to the comment field.

-g, --gid GROUP Specify the primary group for the user account.

-G, --groups GROUPS Specify a comma-separated list of supplementary groups for
the user account.

-a, --append Used with the -G option to add the supplementary groups
to the user's current set of group memberships instead of
replacing the set of supplementary groups with a new set.

-d, --home HOME_DIR Specify a particular home directory for the user account.

-m, --move-home Move the user's home directory to a new location. Must be
used with the -d option.

-s, --shell SHELL Specify a particular login shell for the user account.

-L, --lock Lock the user account.

104 RH066-RHEL8-en-1-cef4e50



Chapter 5 | Managing Local Linux Users and Groups

usermod options: Usage

-U, --unlock Unlock the user account.

Deleting Users from the Command Line

• The userdel username command removes the details of username from /etc/passwd, but
leaves the user's home directory intact.

• The userdel -r username command removes the details of username from /etc/passwd
and also deletes the user's home directory.

Warning
When a user is removed with userdel without the -r option specified, the system
will have files that are owned by an unassigned UID. This can also happen when a
file, having a deleted user as its owner, exists outside that user's home directory.
This situation can lead to information leakage and other security issues.

In Red Hat Enterprise Linux 7 and Red Hat Enterprise Linux 8, the useradd
command assigns new users the first free UID greater than or equal to 1000, unless
you explicitly specify one using the -u option.

This is how information leakage can occur. If the first free UID had been previously
assigned to a user account which has since been removed from the system, the old
user's UID will get reassigned to the new user, giving the new user ownership of the
old user's remaining files.

The following scenario demonstrates this situation.

[root@host ~]# useradd user01
[root@host ~]# ls -l /home
drwx------. 3 user01  user01    74 Feb  4 15:22 user01
[root@host ~]# userdel user01
[root@host ~]# ls -l /home
drwx------. 3    1000    1000   74 Feb  4 15:22 user01
[root@host ~]# useradd user02
[root@host ~]# ls -l /home
drwx------. 3 user02     user02       74 Feb  4 15:23 user02
drwx------. 3 user02     user02       74 Feb  4 15:22 user01

Notice that user02 now owns all files that user01 previously owned.

Depending on the situation, one solution to this problem is to remove all unowned
files from the system when the user that created them is deleted. Another solution
is to manually assign the unowned files to a different user. The root user can use
the find / -nouser -o -nogroup command to find all unowned files and
directories.

Setting Passwords from the Command Line

• The passwd username command sets the initial password or changes the existing password of
username.

RH066-RHEL8-en-1-cef4e50 105



Chapter 5 | Managing Local Linux Users and Groups

• The root user can set a password to any value. A message is displayed if the password does
not meet the minimum recommended criteria, but is followed by a prompt to retype the new
password and all tokens are updated successfully.

[root@host ~]# passwd user01
Changing password for user user01.
New password: redhat
BAD PASSWORD: The password fails the dictionary check - it is based on a
 dictionary word
Retype new password: redhat
passwd: all authentication tokens updated successfully.
[root@host ~]# 

• A regular user must choose a password at least eight characters long and is also not based on a
dictionary word, the username, or the previous password.

UID Ranges

Specific UID numbers and ranges of numbers are used for specific purposes by Red Hat
Enterprise Linux.

• UID 0 is always assigned to the superuser account, root.

• UID 1-200 is a range of "system users" assigned statically to system processes by Red Hat.

• UID 201-999 is a range of "system users" used by system processes that do not own files on the
file system. They are typically assigned dynamically from the available pool when the software
that needs them is installed. Programs run as these "unprivileged" system users in order to limit
their access to only the resources they need to function.

• UID 1000+ is the range available for assignment to regular users.

Note
Prior to RHEL 7, the convention was that UID 1-499 was used for system users and
UID 500+ for regular users. Default ranges used by useradd and groupadd can be
changed in the /etc/login.defs file.

References
useradd(8), usermod(8), userdel(8) man pages

106 RH066-RHEL8-en-1-cef4e50



Chapter 5 | Managing Local Linux Users and Groups

Guided Exercise

Creating Users Using Command-line
Tools

In this exercise, you will create a number of users on your Linux system, setting and recording
an initial password for each user.

Outcomes
• Be able to configure a Linux system with additional user accounts.

Before You Begin
Start your Amazon EC2 instance and use ssh to log in as the user ec2-user. It is assumed
that ec2-user can use sudo to run commands as root.

Steps
 1. Become the root user at the shell prompt.

[ec2-user@ip-192-0-2-1 ~]$ sudo su -
[root@ip-192-0-2-1 ~]# 

 2. Add the user juliet.

[root@ip-192-0-2-1 ~]# useradd juliet

 3. Confirm that juliet has been added by examining the /etc/passwd file.

[root@ip-192-0-2-1 ~]# tail -n 2 /etc/passwd
ec2-user:x:1000:1000:Cloud User:/home/ec2-user:/bin/bash
juliet:x:1001:1001::/home/juliet:/bin/bash

RH066-RHEL8-en-1-cef4e50 107



Chapter 5 | Managing Local Linux Users and Groups

 4. Use the passwd command to initialize juliet's password. For this and any other
passwords you set in this section, the values are not important but should be "secure". Be
careful, the root user can set arbitrarily weak passwords!

The example below assumes you typed something (the same thing!) for the New
password and Retype new password prompts.

Warning
It is assumed that the AMI used for your Amazon EC2 instance was pre-configured
for security reasons to prohibit remote logins over ssh which have been
authenticated by password, and that key-based authentication is required. Please
read the Warning box at the end of this exercise for further discussion.

[root@ip-192-0-2-1 ~]# passwd juliet
Changing password for user juliet.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
[root@ip-192-0-2-1 ~]# 

 5. Continue adding the remaining users in the steps below and set initial passwords. These
users will be used in the next exercise.

5.1. romeo

[root@ip-192-0-2-1 ~]# useradd romeo
[root@ip-192-0-2-1 ~]# passwd romeo
Changing password for user romeo.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
[root@ip-192-0-2-1 ~]# 

5.2. hamlet

[root@ip-192-0-2-1 ~]# useradd hamlet
[root@ip-192-0-2-1 ~]# passwd hamlet

5.3. sunni

[root@ip-192-0-2-1 ~]# useradd sunni
[root@ip-192-0-2-1 ~]# passwd sunni

5.4. huong

[root@ip-192-0-2-1 ~]# useradd huong
[root@ip-192-0-2-1 ~]# passwd huong

5.5. jerlene

108 RH066-RHEL8-en-1-cef4e50



Chapter 5 | Managing Local Linux Users and Groups

[root@ip-192-0-2-1 ~]# useradd jerlene
[root@ip-192-0-2-1 ~]# passwd jerlene

 6. This concludes this exercise. Log out and stop your Amazon EC2 instance.

Warning
In this exercise, you set passwords for various accounts on a cloud instance that is
accessible from the public Internet. This is not a recommended practice if users can
connect to the instance using ssh and authenticate using their password.

Attackers have been known to scan public cloud providers for instances providing
remote ssh access and configured with weak passwords. The recommended
AMI used to develop this course was configured to prohibit password-based ssh
authentication, and to provide only ssh as a public-facing service, so setting those
passwords for this exercise should not matter in practice. However, this is not
necessarily true of a default Red Hat Enterprise Linux installation.

Additional keys can be installed by users to allow key-based authentication, but the
procedure is beyond the scope of this course.

RH066-RHEL8-en-1-cef4e50 109



Chapter 5 | Managing Local Linux Users and Groups

Managing Local Group Accounts

Objectives
After completing this section, students should be able to create, modify, and delete local group
accounts.

Managing Local Groups
A group must exist before a user can be added to that group. Several command-line tools are used
to manage local group accounts.

Creating Groups from the Command Line

• The groupadd command creates groups. Without options the groupadd command uses the
next available GID from the range specified in the /etc/login.defs file while creating the
groups.

• The -g option specifies a particular GID for the group to use.

[user01@host ~]$ sudo groupadd -g 10000 group01
[user01@host ~]$ tail /etc/group
...output omitted...
group01:x:10000:

Note
Given the automatic creation of user private groups (GID 1000+), it is generally
recommended to set aside a range of GIDs to be used for supplementary groups. A
higher range will avoid a collision with a system group (GID 0-999).

• The -r option creates a system group using a GID from the range of valid system GIDs listed
in the /etc/login.defs file. The SYS_GID_MIN and SYS_GID_MAX configuration items in /
etc/login.defs define the range of system GIDs.

[user01@host ~]$ sudo groupadd -r group02
[user01@host ~]$ tail /etc/group
...output omitted...
group01:x:10000:
group02:x:988:

Modifying Existing Groups from the Command Line

• The groupmod command changes the properties of an existing group. The -n option specifies a
new name for the group.

110 RH066-RHEL8-en-1-cef4e50



Chapter 5 | Managing Local Linux Users and Groups

[user01@host ~]$ sudo groupmod -n group0022 group02
[user01@host ~]$ tail /etc/group
...output omitted...
group0022:x:988:

Notice that the group name is updated to group0022 from group02.

• The -g option specifies a new GID.

[user01@host ~]$ sudo groupmod -g 20000 group0022
[user01@host ~]$ tail /etc/group
...output omitted...
group0022:x:20000:

Notice that the GID is updated to 20000 from 988.

Deleting Groups from the Command Line

• The groupdel command removes groups.

[user01@host ~]$ sudo groupdel group0022

Note
You cannot remove a group if it is the primary group of any existing user. As with
userdel, check all file systems to ensure that no files remain on the system that are
owned by the group.

Changing Group Membership from the Command Line

• The membership of a group is controlled with user management. Use the usermod -g
command to change a user's primary group.

[user01@host ~]$ id user02
uid=1006(user02) gid=1008(user02) groups=1008(user02)
[user01@host ~]$ sudo usermod -g group01 user02
[user01@host ~]$ id user02
uid=1006(user02) gid=10000(group01) groups=10000(group01)

• Use the usermod -aG command to add a user to a supplementary group.

[user01@host ~]$ id user03
uid=1007(user03) gid=1009(user03) groups=1009(user03)
[user01@host ~]$ sudo usermod -aG group01 user03
[user01@host ~]$ id user03
uid=1007(user03) gid=1009(user03) groups=1009(user03),10000(group01)

RH066-RHEL8-en-1-cef4e50 111



Chapter 5 | Managing Local Linux Users and Groups

Important
The use of the -a option makes usermod function in append mode. Without -a, the
user will be removed from any of their current supplementary groups that are not
included in the -G option's list.

References
group(5), groupadd(8),groupdel(8), and usermod(8) man pages

112 RH066-RHEL8-en-1-cef4e50



Chapter 5 | Managing Local Linux Users and Groups

Guided Exercise

Managing Groups Using Command-line
Tools

In this exercise, you will add users to newly created supplementary groups.

Outcomes
• The shakespeare group consists of users juliet, romeo, and hamlet.

• The artists group consists of users sunni, huong, and jerlene.

Before You Begin
Start your Amazon EC2 instance and use ssh to log in as the user ec2-user. It is assumed
that ec2-user can use sudo to run commands as root.

Steps
 1. Become the root user at the shell prompt.

[ec2-user@ip-192-0-2-1 ~]$ sudo su -

 2. Create a supplementary group called shakespeare with a group ID of 30000.

[root@ip-192-0-2-1 ~]# groupadd -g 30000 shakespeare

 3. Create a supplementary group called artists.

[root@ip-192-0-2-1 ~]# groupadd artists

 4. Confirm that shakespeare and artists have been added by examining the /etc/
group file.

[root@ip-192-0-2-1 ~]# tail -n 5 /etc/group
sunni:x:1004:
huong:x:1005:
jerlene:x:1006:
shakespeare:x:30000:
artists:x:30001:

 5. Add the juliet user to the shakespeare group as a supplementary group.

[root@ip-192-0-2-1 ~]# usermod -G shakespeare juliet

 6. Confirm that juliet has been added using the id command.

RH066-RHEL8-en-1-cef4e50 113



Chapter 5 | Managing Local Linux Users and Groups

[root@ip-192-0-2-1 ~]# id juliet
uid=1001(juliet) gid=1001(juliet) groups=1001(juliet),30000(shakespeare)

 7. Continue adding the remaining users to groups as follows:

7.1. Add romeo and hamlet to the shakespeare group.

[root@ip-192-0-2-1 ~]# usermod -G shakespeare romeo
[root@ip-192-0-2-1 ~]# usermod -G shakespeare hamlet

7.2. Add sunni, huong, and jerlene to the artists group.

[root@ip-192-0-2-1 ~]# usermod -G artists sunni
[root@ip-192-0-2-1 ~]# usermod -G artists huong
[root@ip-192-0-2-1 ~]# usermod -G artists jerlene

7.3. Verify the supplemental group memberships by examining the /etc/group file.

[root@ip-192-0-2-1 ~]# tail -n 5 /etc/group
sunni:x:1004:
huong:x:1005:
jerlene:x:1006:
shakespeare:x:30000:juliet,romeo,hamlet
artists:x:30001:sunni,huong,jerlene

 8. This concludes this exercise. Log out and stop your Amazon EC2 instance.

114 RH066-RHEL8-en-1-cef4e50



Chapter 5 | Managing Local Linux Users and Groups

Lab

Managing Local Linux Users and Groups

In this lab, you will create three new users and a group, and make those users members of
that group as a supplementary group.

Outcomes
• Be able to create three new user acccounts for Dinesh Jonasen (djonasen), Sumiko

Alves (salves), and Denver Tyson (dtyson).

• Be able to create a new group called consultants, including the three new user
accounts for Dinesh Jonasen, Sumiko Alves, and Denver Tyson as members.

Before You Begin
Start your Amazon EC2 instance and use ssh to log in as the user ec2-user. It is assumed
that ec2-user can use sudo to run commands as root.

Steps
1. Create a new group named consultants with a GID of 40000.

2. Create three new users: djonasen, salves, and dtyson, set a password for each, and add
each to the supplementary group consultants. Each user's primary group should be a user
private group with the same name as the user.

Warning
It's assumed that you set a "secure" password for each of these users, as discussed
in the Warning in a previous exercise in this chapter.

3. Check each user to confirm the account exists and has the correct group memberships.

4. This concludes this lab. Log out and stop your Amazon EC2 instance.

RH066-RHEL8-en-1-cef4e50 115



Chapter 5 | Managing Local Linux Users and Groups

Solution

Managing Local Linux Users and Groups

In this lab, you will create three new users and a group, and make those users members of
that group as a supplementary group.

Outcomes
• Be able to create three new user acccounts for Dinesh Jonasen (djonasen), Sumiko

Alves (salves), and Denver Tyson (dtyson).

• Be able to create a new group called consultants, including the three new user
accounts for Dinesh Jonasen, Sumiko Alves, and Denver Tyson as members.

Before You Begin
Start your Amazon EC2 instance and use ssh to log in as the user ec2-user. It is assumed
that ec2-user can use sudo to run commands as root.

Steps
1. Create a new group named consultants with a GID of 40000.

[ec2-user@ip-192-0-2-1 ~]$ sudo groupadd -g 40000 consultants
[ec2-user@ip-192-0-2-1 ~]$ tail -n 5 /etc/group
huong:x:1005:
jerlene:x:1006:
shakespeare:x:30000:juliet,romeo,hamlet
artists:x:30001:sunni,huong,jerlene
consultants:x:40000:

2. Create three new users: djonasen, salves, and dtyson, set a password for each, and add
each to the supplementary group consultants. Each user's primary group should be a user
private group with the same name as the user.

Warning
It's assumed that you set a "secure" password for each of these users, as discussed
in the Warning in a previous exercise in this chapter.

[ec2-user@ip-192-0-2-1 ~]$ sudo useradd -G consultants djonasen
[ec2-user@ip-192-0-2-1 ~]$ sudo useradd -G consultants salves
[ec2-user@ip-192-0-2-1 ~]$ sudo useradd -G consultants dtyson
[ec2-user@ip-192-0-2-1 ~]$ tail -n 5 /etc/group
artists:x:30001:sunni,huong,jerlene
consultants:x:40000:djonasen,salves,dtyson
djonasen:x:1007:
salves:x:1008:
dtyson:x:1009:

116 RH066-RHEL8-en-1-cef4e50



Chapter 5 | Managing Local Linux Users and Groups

[ec2-user@ip-192-0-2-1 ~]$ sudo passwd djonasen
Changing password for user djonasen.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
[ec2-user@ip-192-0-2-1 ~]$ sudo passwd salves
Changing password for user salves.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
[ec2-user@ip-192-0-2-1 ~]$ sudo passwd dtyson
Changing password for user dtyson.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.

3. Check each user to confirm the account exists and has the correct group memberships.

The exact UID numbers may differ for your solution, but the names of the users and groups
should be correct, and consultants should have GID 40000.

[ec2-user@ip-192-0-2-1 ~]$ id djonasen
uid=1007(djonasen) gid=1007(djonasen) groups=1007(djonasen),40000(consultants)
[ec2-user@ip-192-0-2-1 ~]$ id salves
uid=1008(salves) gid=1008(salves) groups=1008(salves),40000(consultants)
[ec2-user@ip-192-0-2-1 ~]$ id dtyson
uid=1009(dtyson) gid=1009(dtyson) groups=1009(dtyson),40000(consultants)

4. This concludes this lab. Log out and stop your Amazon EC2 instance.

RH066-RHEL8-en-1-cef4e50 117



118 RH066-RHEL8-en-1-cef4e50



Chapter 6

Controlling Access to Files with
Linux File System Permissions

Goal To set Linux file system permissions on files
and interpret the security effects of different
permission settings.

Objectives • Explain how the Linux file permissions model
works.

• Change the permissions and ownership of files
using command-line tools.

• Configure a directory in which newly created
files are automatically writable by members
of the group which owns the directory, using
special permissions and default umask settings.

Sections • Linux File System Permissions (and Quiz)
• Managing File System Permissions from the

Command Line (and Guided Exercise)
• Managing Default Permissions and File Access

(and Guided Exercise)

Lab Controlling Access to Files with Linux File System
Permissions

RH066-RHEL8-en-1-cef4e50 119



Chapter 6 | Controlling Access to Files with Linux File System Permissions

Linux File System Permissions

Objectives
After completing this section, you should be able to list file-system permissions on files and
directories, and interpret the effect of those permissions on access by users and groups.

Linux File-system Permissions
File permissions control access to files. Linux file permissions are simple but flexible, easy to
understand and apply, yet still able to handle most normal permission cases easily.

Files have three user categories to which permissions apply. The file is owned by a user, normally
the one who created the file. The file is also owned by a single group, usually the primary group
of the user who created the file, but this can be changed. Different permissions can be set for
the owning user, the owning group, and for all other users on the system that are not the user or a
member of the owning group.

The most specific permissions take precedence. User permissions override group permissions,
which override other permissions.

In Figure 6.1, joshua is a member of the groups joshua and web, and allison is a member of
allison, wheel, and web. When joshua and allison need to collaborate, the files should be
associated with the group web and group permissions should allow the desired access.

Figure 6.1: Example group membership to facilitate collaboration

Three permission categories apply: read, write, and execute. The following table explains how
these permissions affect access to files and directories.

Effects of Permissions on Files and Directories

Permission Effect on files Effect on directories

r (read) File contents can be read. Contents of the directory (the file names) can
be listed.

w (write) File contents can be
changed.

Any file in the directory can be created or
deleted.

120 RH066-RHEL8-en-1-cef4e50



Chapter 6 | Controlling Access to Files with Linux File System Permissions

Permission Effect on files Effect on directories

x (execute) Files can be executed as
commands.

The directory can become the current working
directory. (You can cd into it, but also require
read permission to list files found there.)

Users normally have both read and execute permissions on read-only directories so that they can
list the directory and have full read-only access to its contents. If a user only has read access on a
directory, the names of the files in it can be listed, but no other information, including permissions
or time stamps, are available, nor can they be accessed. If a user only has execute access on a
directory, they cannot list file names in the directory. If they know the name of a file that they
have permission to read, they can access the contents of that file from outside the directory by
explicitly specifying the relative file name.

A file may be removed by anyone who has ownership of, or write permission to, the directory in
which the file resides, regardless of the ownership or permissions on the file itself. This can be
overridden with a special permission, the sticky bit, discussed later in this chapter.

Note
Linux file permissions work differently than the permissions system used by the
NTFS file system for Microsoft Windows.

On Linux, permissions apply only to the file or directory on which they are set. That
is, permissions on a directory are not inherited automatically by the subdirectories
and files within it. However, permissions on a directory can block access to the
contents of the directory depending on how restrictive they are.

The read permission on a directory in Linux is roughly equivalent to List folder
contents in Windows.

The write permission on a directory in Linux is equivalent to Modify in Windows; it
implies the ability to delete files and subdirectories. In Linux, if write and the sticky
bit are both set on a directory, then only the file or subdirectory owner may delete
it, which is similar to the Windows Write permission behavior.

The Linux root user has the equivalent of the Windows Full Control permission on
all files. However, root may have access restricted by the system's SELinux policy
using process and file security contexts. SELinux will be discussed in a later course.

Viewing File and Directory Permissions and Ownership
The -l option of the ls command shows detailed information about permissions and ownership:

[user@host~]$ ls -l test
-rw-rw-r--. 1 student student 0 Feb  8 17:36 test

Use the -d option to show detailed information about a directory itself, and not its contents.

[user@host ~]$ ls -ld /home
drwxr-xr-x. 5 root root 4096 Jan 31 22:00 /home

The first character of the long listing is the file type, interpreted like this:

RH066-RHEL8-en-1-cef4e50 121



Chapter 6 | Controlling Access to Files with Linux File System Permissions

• - is a regular file.
• d is a directory.
• l is a soft link.
• Other characters represent hardware devices (b and c) or other special-purpose files (p and s).

The next nine characters are the file permissions. These are in three sets of three characters:
permissions that apply to the user that owns the file, the group that owns the file, and all other
users. If the set shows rwx, that category has all three permissions, read, write, and execute. If a
letter has been replaced by -, then that category does not have that permission.

After the link count, the first name specifies the user that owns the file, and the second name the
group that owns the file.

So in the example above, the permissions for user student are specified by the first set of three
characters. User student has read and write on test, but not execute.

Group student is specified by the second set of three characters: it also has read and write on
test, but not execute.

Any other user's permissions are specified by the third set of three characters: they only have read
permission on test.

The most specific set of permissions apply. So if user student has different permissions than
group student, and user student is also a member of that group, then the user permissions will
be the ones that apply.

Examples of Permission Effects
The following examples will help illustrate how file permissions interact. For these examples, we
have four users with the following group memberships:

User Group Memberships

operator1 operator1, consultant1

database1 database1, consultant1

database2 database2, operator2

contractor1 contractor1, operator2

Those users will be working with files in the dir directory. This is a long listing of the files in that
directory:

[database1@host dir]$ ls -la
total 24
drwxrwxr-x.  2 database1 consultant1   4096 Apr  4 10:23 .
drwxr-xr-x. 10 root      root          4096 Apr  1 17:34 ..
-rw-rw-r--.  1 operator1 operator1     1024 Apr  4 11:02 lfile1
-rw-r--rw-.  1 operator1 consultant1   3144 Apr  4 11:02 lfile2
-rw-rw-r--.  1 database1 consultant1  10234 Apr  4 10:14 rfile1
-rw-r-----.  1 database1 consultant1   2048 Apr  4 10:18 rfile2

The -a option shows the permissions of hidden files, including the special files used to represent
the directory and its parent. In this example, . reflects the permissions of dir itself, and .. the
permissions of its parent directory.

122 RH066-RHEL8-en-1-cef4e50



Chapter 6 | Controlling Access to Files with Linux File System Permissions

What are the permissions of rfile1? The user that owns the file (database1) has read and write
but not execute. The group that owns the file (consultant1) has read and write but not execute.
All other users have read but not write or execute.

The following table explores some of the effects of this set of permissions for these users:

Effect Why is this true?

The user operator1 can change the
contents of rfile1.

User operator1 is a member of the
consultant1 group, and that group has
both read and write permissions on rfile1.

The user database1 can view and modify the
contents of rfile2.

User database1 owns the file and has both
read and write access to rfile2.

The user operator1 can view but not modify
the contents of rfile2 (without deleting it
and recreating it).

User operator1 is a member of the
consultant1 group, and that group only has
read access to rfile2.

The users database2 and contractor1
do not have any access to the contents of
rfile2.

other permissions apply to users
database2 and contractor1, and those
permissions do not include read or write
permission.

operator1 is the only user who can change
the contents of lfile1 (without deleting it
and recreating it).

User and group operator1 have write
permission on the file, other users do not. But
the only member of group operator1 is user
operator1.

The user database2 can change the
contents of lfile2.

User database2 is not the user that owns
the file and is not in group consultant1, so
other permissions apply. Those grant write
permission.

The user database1 can view the contents
of lfile2, but cannot modify the contents of
lfile2 (without deleting it and recreating it).

User database1 is a member of the group
consultant1, and that group only has read
permissions on lfile2. Even though other
has write permission, the group permissions
take precedence.

The user database1 can delete lfile1 and
lfile2.

User database1 has write permissions on
the directory containing both files (shown by
.), and therefore can delete any file in that
directory. This is true even if database1 does
not have write permission on the file itself.

References
ls(1) man page

info coreutils (GNU Coreutils)

• Section 13: Changing file attributes

RH066-RHEL8-en-1-cef4e50 123



Chapter 6 | Controlling Access to Files with Linux File System Permissions

Quiz

Interpreting File and Directory
Permissions

Review the following information and use it to answer the quiz questions.

The system has four users assigned to the following groups:

• User consultant1 is in groups consultant1 and database1
• User operator1 is in groups operator1 and database1
• User contractor1 is in groups contractor1 and contractor3
• User operator2 is in groups operator2 and contractor3

The current directory (.) contains four files with the following permissions information:

drwxrwxr-x.   operator1     database1     .
-rw-rw-r--.   consultant1   consultant1   lfile1
-rw-r--rw-.   consultant1   database1     lfile2
-rw-rw-r--.   operator1     database1     rfile1
-rw-r-----.   operator1     database1     rfile2

 1. Which regular file is owned by operator1 and readable by all users?
a. lfile1
b. lfile2
c. rfile1
d. rfile2

 2. Which file can be modified by the contractor1 user?
a. lfile1
b. lfile2
c. rfile1
d. rfile2

 3. Which file cannot be read by the operator2 user?
a. lfile1
b. lfile2
c. rfile1
d. rfile2

124 RH066-RHEL8-en-1-cef4e50



Chapter 6 | Controlling Access to Files with Linux File System Permissions

 4. Which file has a group ownership of consultant1?
a. lfile1
b. lfile2
c. rfile1
d. rfile2

 5. Which files can be deleted by the operator1 user?
a. rfile1
b. rfile2
c. All of the above.
d. None of the above.

 6. Which files can be deleted by the operator2 user?
a. lfile1
b. lfile2
c. All of the above.
d. None of the above.

RH066-RHEL8-en-1-cef4e50 125



Chapter 6 | Controlling Access to Files with Linux File System Permissions

Solution

Interpreting File and Directory
Permissions

Review the following information and use it to answer the quiz questions.

The system has four users assigned to the following groups:

• User consultant1 is in groups consultant1 and database1
• User operator1 is in groups operator1 and database1
• User contractor1 is in groups contractor1 and contractor3
• User operator2 is in groups operator2 and contractor3

The current directory (.) contains four files with the following permissions information:

drwxrwxr-x.   operator1     database1     .
-rw-rw-r--.   consultant1   consultant1   lfile1
-rw-r--rw-.   consultant1   database1     lfile2
-rw-rw-r--.   operator1     database1     rfile1
-rw-r-----.   operator1     database1     rfile2

 1. Which regular file is owned by operator1 and readable by all users?
a. lfile1
b. lfile2
c. rfile1
d. rfile2

 2. Which file can be modified by the contractor1 user?
a. lfile1
b. lfile2
c. rfile1
d. rfile2

 3. Which file cannot be read by the operator2 user?
a. lfile1
b. lfile2
c. rfile1
d. rfile2

126 RH066-RHEL8-en-1-cef4e50



Chapter 6 | Controlling Access to Files with Linux File System Permissions

 4. Which file has a group ownership of consultant1?
a. lfile1
b. lfile2
c. rfile1
d. rfile2

 5. Which files can be deleted by the operator1 user?
a. rfile1
b. rfile2
c. All of the above.
d. None of the above.

 6. Which files can be deleted by the operator2 user?
a. lfile1
b. lfile2
c. All of the above.
d. None of the above.

RH066-RHEL8-en-1-cef4e50 127



Chapter 6 | Controlling Access to Files with Linux File System Permissions

Managing File System Permissions from
the Command Line

Objectives
After completing this section, you should be able to change the permissions and ownership of files
using command-line tools.

Changing File and Directory Permissions
The command used to change permissions from the command line is chmod, which means
"change mode" (permissions are also called the mode of a file). The chmod command takes
a permission instruction followed by a list of files or directories to change. The permission
instruction can be issued either symbolically (the symbolic method) or numerically (the numeric
method).

Changing Permissions with the Symbolic Method

chmod WhoWhatWhich file|directory

• Who is u, g, o, a (for user, group, other, all)

• What is +, -, = (for add, remove, set exactly)

• Which is r, w, x (for read, write, execute)

The symbolic method of changing file permissions uses letters to represent the different groups of
permissions: u for user, g for group, o for other, and a for all.

With the symbolic method, it is not necessary to set a complete new group of permissions. Instead,
you can change one or more of the existing permissions. Use + or - to add or remove permissions,
respectively, or use = to replace the entire set for a group of permissions.

The permissions themselves are represented by a single letter: r for read, w for write, and x for
execute. When using chmod to change permissions with the symbolic method, using a capital X as
the permission flag will add execute permission only if the file is a directory or already has execute
set for user, group, or other.

128 RH066-RHEL8-en-1-cef4e50



Chapter 6 | Controlling Access to Files with Linux File System Permissions

Note
The chmod command supports the -R option to recursively set permissions on
the files in an entire directory tree. When using the -R option, it can be useful to
set permissions symbolically using the X option. This allows the execute (search)
permission to be set on directories so that their contents can be accessed, without
changing permissions on most files. Be cautious with the X option, however, because
if a file has any execute permission set, X will set the specified execute permission
on that file as well. For example, the following command recursively sets read and
write access on demodir and all its children for their group owner, but only applies
group execute permissions to directories and files that already have execute set for
user, group, or other.

[root@host opt]# chmod -R g+rwX demodir

Examples

• Remove read and write permission for group and other on file1:

[user@host ~]$ chmod go-rw file1

• Add execute permission for everyone on file2:

[user@host ~]$ chmod a+x file2

Changing Permissions with the Numeric Method
In the example below the # character represents a digit.

chmod ### file|directory

• Each digit represents permissions for an access level: user, group, other.

• The digit is calculated by adding together numbers for each permission you want to add, 4 for
read, 2 for write, and 1 for execute.

Using the numeric method, permissions are represented by a 3-digit (or 4-digit, when setting
advanced permissions) octal number. A single octal digit can represent any single value from 0-7.

In the 3-digit octal (numeric) representation of permissions, each digit stands for one access level,
from left to right: user, group, and other. To determine each digit:

1. Start with 0.
2. If the read permission should be present for this access level, add 4.
3. If the write permission should be present, add 2.
4. If the execute permission should be present, add 1.

Examine the permissions -rwxr-x---. For the user, rwx is calculated as 4+2+1=7. For the group,
r-x is calculated as 4+0+1=5, and for other users, --- is represented with 0. Putting these three
together, the numeric representation of those permissions is 750.

This calculation can also be performed in the opposite direction. Look at the permissions 640.
For the user permissions, 6 represents read (4) and write (2), which displays as rw-. For the group

RH066-RHEL8-en-1-cef4e50 129



Chapter 6 | Controlling Access to Files with Linux File System Permissions

part, 4 only includes read (4) and displays as r--. The 0 for other provides no permissions (---)
and the final set of symbolic permissions for this file is -rw-r-----.

Experienced administrators often use numeric permissions because they are shorter to type and
pronounce, while still giving full control over all permissions.

Examples

• Set read and write permissions for user, read permission for group and other, on samplefile:

[user@host ~]$ chmod 644 samplefile

• Set read, write, and execute permissions for user, read and execute permissions for group, and
no permission for other on sampledir:

[user@host ~]$ chmod 750 sampledir

Changing File and Directory User or Group Ownership
A newly created file is owned by the user who creates that file. By default, new files have a group
ownership that is the primary group of the user creating the file. In Red Hat Enterprise Linux, a
user's primary group is usually a private group with only that user as a member. To grant access to
a file based on group membership, the group that owns the file may need to be changed.

Only root can change the user that owns a file. Group ownership, however, can be set by root or
by the file's owner. root can grant file ownership to any group, but regular users can make a group
the owner of a file only if they are a member of that group.

File ownership can be changed with the chown (change owner) command. For example, to grant
ownership of the test_file file to the student user, use the following command:

[root@host ~]# chown student test_file

chown can be used with the -R option to recursively change the ownership of an entire directory
tree. The following command grants ownership of test_dir and all files and subdirectories within
it to student:

[root@host ~]# chown -R student test_dir

The chown command can also be used to change group ownership of a file by preceding the
group name with a colon (:). For example, the following command changes the group test_dir to
admins:

[root@host ~]# chown :admins test_dir

The chown command can also be used to change both owner and group at the same time by using
the owner:group syntax. For example, to change the ownership of test_dir to visitor and the
group to guests, use the following command:

[root@host ~]# chown visitor:guests test_dir

130 RH066-RHEL8-en-1-cef4e50



Chapter 6 | Controlling Access to Files with Linux File System Permissions

Instead of using chown, some users change the group ownership by using the chgrp command.
This command works just like chown, except that it is only used to change group ownership and
the colon (:) before the group name is not required.

Important
You may encounter examples of chown commands using an alternative syntax that
separates owner and group with a period instead of a colon:

[root@host ~]# chown owner.group filename

You should not use this syntax. Always use a colon.

A period is a valid character in a user name, but a colon is not. If the user
enoch.root, the user enoch, and the group root exist on the system, the result
of chown enoch.root filename will be to have filename owned by the user
enoch.root. You may have been trying to set the file ownership to the user enoch
and group root. This can be confusing.

If you always use the chown colon syntax when setting the user and group at the
same time, the results are always easy to predict.

References
ls(1), chmod(1), chown(1), and chgrp(1) man pages

RH066-RHEL8-en-1-cef4e50 131



Chapter 6 | Controlling Access to Files with Linux File System Permissions

Guided Exercise

Managing File Security from the
Command Line

In this exercise, you will create a collaborative directory for pre-existing users.

Outcomes
• Create a directory with permissions that make it accessible by all members of the ateam

group.

• Create a file owned by user andy that can be modified by alice.

Before You Begin
Start your Amazon EC2 instance and use ssh to log in as the user ec2-user. It is assumed
that ec2-user can use sudo to run commands as root.

Steps
 1. Become the root user at the shell prompt.

[ec2-user@ip-192-0-2-1 ~]$ sudo su -
[root@ip-192-0-2-1 ~]# 

 2. Create a group, ateam. Create two new users, andy and alice, who are members of that
group.

[root@ip-192-0-2-1 ~]# groupadd ateam
[root@ip-192-0-2-1 ~]# useradd -G ateam andy
[root@ip-192-0-2-1 ~]# useradd -G ateam alice
[root@ip-192-0-2-1 ~]# id andy; id alice
uid=1010(andy) gid=1010(andy) groups=1010(andy),40001(ateam)
uid=1011(alice) gid=1011(alice) groups=1011(alice),40001(ateam)

 3. Create a directory in /home called ateam-text.

[root@ip-192-0-2-1 ~]# mkdir /home/ateam-text

 4. Change the group ownership of the ateam-text directory to ateam.

[root@ip-192-0-2-1 ~]# chown :ateam /home/ateam-text

 5. Ensure the permissions of ateam-text allows group members to create and delete files.

[root@ip-192-0-2-1 ~]# chmod g+w /home/ateam-text

132 RH066-RHEL8-en-1-cef4e50



Chapter 6 | Controlling Access to Files with Linux File System Permissions

 6. Ensure the permissions of ateam-text forbids others from accessing its files.

[root@ip-192-0-2-1 ~]# chmod 770 /home/ateam-text
[root@ip-192-0-2-1 ~]$ ls -ld /home/ateam-text
drwxrwx---.  2 root ateam 6 Jul 24 12:50 /home/ateam-text

 7. Exit the root shell and switch to the user andy.

[root@ip-192-0-2-1 ~]# exit
[ec2-user@ip-192-0-2-1 ~]$ sudo su - andy
[andy@ip-192-0-2-1 ~]$ 

 8. Navigate to the /home/ateam-text folder (remember to open a terminal window first).

[andy@ip-192-0-2-1 ~]$ cd /home/ateam-text

 9. Create an empty file called andyfile3.

[andy@ip-192-0-2-1 ateam-text]$ touch andyfile3

 10. Record the default user and group ownership of the new file and its permissions.

[andy@ip-192-0-2-1 ateam-text]$ ls -l andyfile3
-rw-rw-r--.  1 andy andy 0 Jul 24 12:59 andyfile3

 11. Change the group ownership of the new file to ateam and record the new ownership and
permissions.

[andy@ip-192-0-2-1 ateam-text]$ chown :ateam andyfile3
[andy@ip-192-0-2-1 ateam-text]$ ls -l andyfile3
-rw-rw-r--.  1 andy ateam 0 Jul 24 12:59 andyfile3

 12. Exit the shell and switch to the user alice.

[andy@ip-192-0-2-1 ateam-text]$ exit
[ec2-user@ip-192-0-2-1 ~]$ sudo su - alice
[alice@ip-192-0-2-1 ~]$ 

 13. Navigate to the /home/ateam-text folder.

[alice@ip-192-0-2-1 ~]$ cd /home/ateam-text

RH066-RHEL8-en-1-cef4e50 133



Chapter 6 | Controlling Access to Files with Linux File System Permissions

 14. Determine alice's privileges to access and/or modify andyfile3.

[alice@ip-192-0-2-1 ateam-text]$ echo "text" >> andyfile3
[alice@ip-192-0-2-1 ateam-text]$ cat andyfile3
text

If you didn't set the permissions correctly, the above commands will instead result in
something like the following:

[alice@ip-192-0-2-1 ateam-text]$ echo "text" >> andyfile3
-bash: /home/ateam-text/andyfile3: Permission denied

Important
In the preceding example, the command echo "text" >> andyfile3 is using a
technique called shell I/O redirection to append the line text to the end of the file
andyfile3. The output of the echo command is appended to the end of the file
that the >> points at. Be careful to use >> and not just one >, since the > operator
will overwrite the entire file and replace its contents with only the line text.

If you are interested in more information on shell I/O redirection, an overview is
available at http://wiki.bash-hackers.org/syntax/redirection.

Be careful if you choose to test this by having alice edit andyfile3 with vim. If
the permissions are wrong on the file, vim will warn you that you're editing a read-
only file. But if the /home/ateam-test directory is writable by alice, then vim
will still let you use :wq! to write the file, even if alice doen't have write permission
on the file!

How is this possible? It turns out vim is "smart" enough to recognize that it can
overwrite the file by deleting the file from the directory and creating a new copy.
This is allowed because having write on a directory means you can delete any file in
that directory, even if you can't write the file directly. The ! on the vim command
:wq! indicates that you want it to do everything it can to write the file.

Note that one side effect of this is that the file's owner will change to alice, and
other permissions may change as well.

 15. This completes this exercise. Log out and stop your Amazon EC2 instance.

134 RH066-RHEL8-en-1-cef4e50

http://wiki.bash-hackers.org/syntax/redirection


Chapter 6 | Controlling Access to Files with Linux File System Permissions

Managing Default Permissions and File
Access

Objectives
After completing this section, students should be able to:

• Control the default permissions of new files created by users.

• Explain the effect of special permissions.

• Use special permissions and default permissions to set the group owner of files created in a
particular directory.

Special Permissions
Special permissions constitute a fourth permission type in addition to the basic user, group, and
other types. As the name implies, these permissions provide additional access-related features
over and above what the basic permission types allow. This section details the impact of special
permissions, summarized in the table below.

Effects of Special Permissions on Files and Directories

Special
permission

Effect on files Effect on directories

u+s (suid) File executes as the user that owns
the file, not the user that ran the file.

No effect.

g+s (sgid) File executes as the group that owns
the file.

Files newly created in the directory
have their group owner set to match
the group owner of the directory.

o+t (sticky) No effect. Users with write access to the
directory can only remove files that
they own; they cannot remove or
force saves to files owned by other
users.

The setuid permission on an executable file means that commands run as the user owning the file,
not as the user that ran the command. One example is the passwd command:

[user@host ~]$ ls -l /usr/bin/passwd
-rwsr-xr-x. 1 root root 35504 Jul 16  2010 /usr/bin/passwd

In a long listing, you can identify the setuid permissions by a lowercase s where you would normally
expect the x (owner execute permissions) to be. If the owner does not have execute permissions,
this is replaced by an uppercase S.

The special permission setgid on a directory means that files created in the directory inherit
their group ownership from the directory, rather than inheriting it from the creating user. This is
commonly used on group collaborative directories to automatically change a file from the default

RH066-RHEL8-en-1-cef4e50 135



Chapter 6 | Controlling Access to Files with Linux File System Permissions

private group to the shared group, or if files in a directory should be always owned by a specific
group. An example of this is the /run/log/journal directory:

[user@host ~]$ ls -ld /run/log/journal
drwxr-sr-x. 3 root systemd-journal 60 May 18 09:15 /run/log/journal

If setgid is set on an executable file, commands run as the group that owns that file, not as the user
that ran the command, in a similar way to setuid works. One example is the locate command:

[user@host ~]$ ls -ld /usr/bin/locate
-rwx--s--x. 1 root slocate 47128 Aug 12 17:17 /usr/bin/locate

In a long listing, you can identify the setgid permissions by a lowercase s where you would normally
expect the x (group execute permissions) to be. If the group does not have execute permissions,
this is replaced by an uppercase S.

Lastly, the sticky bit for a directory sets a special restriction on deletion of files. Only the owner of
the file (and root) can delete files within the directory. An example is /tmp:

[user@host ~]$ ls -ld /tmp
drwxrwxrwt. 39 root root 4096 Feb  8 20:52 /tmp

In a long listing, you can identify the sticky permissions by a lowercase t where you would normally
expect the x (other execute permissions) to be. If other does not have execute permissions, this is
replaced by an uppercase T.

Setting Special Permissions

• Symbolically: setuid = u+s; setgid = g+s; sticky = o+t

• Numerically (fourth preceding digit): setuid = 4; setgid = 2; sticky = 1

Examples

• Add the setgid bit on directory:

[user@host ~]# chmod g+s directory

• Set the setgid bit and add read/write/execute permissions for user and group, with no access
for others, on directory:

[user@host ~]# chmod 2770 directory

Default File Permissions
When you create a new file or directory, it is assigned initial permissions. There are two things that
affect these initial permissions. The first is whether you are creating a regular file or a directory.
The second is the current umask.

If you create a new directory, the operating system starts by assigning it octal permissions 0777
(drwxrwxrwx). If you create a new regular file, the operating system assignes it octal permissions
0666 (-rw-rw-rw-). You always have to explicitly add execute permission to a regular file. This

136 RH066-RHEL8-en-1-cef4e50



Chapter 6 | Controlling Access to Files with Linux File System Permissions

makes it harder for an attacker to compromise a network service so that it creates a new file and
immediately executes it as a program.

However, the shell session will also set a umask to further restrict the permissions that are initially
set. This is an octal bitmask used to clear the permissions of new files and directories created by
a process. If a bit is set in the umask, then the corresponding permission is cleared on new files.
For example, the umask 0002 clears the write bit for other users. The leading zeros indicate the
special, user, and group permissions are not cleared. A umask of 0077 clears all the group and
other permissions of newly created files.

The umask command without arguments will display the current value of the shell's umask:

[user@host ~]$ umask
0002

Use the umask command with a single numeric argument to change the umask of the current
shell. The numeric argument should be an octal value corresponding to the new umask value. You
can omit any leading zeros in the umask.

The system's default umask values for Bash shell users are defined in the /etc/profile and /
etc/bashrc files. Users can override the system defaults in the .bash_profile and .bashrc
files in their home directories.

umask Example
The following example explains how the umask affects the permissions of files and directories.
Look at the default umask permissions for both files and directories in the current shell. The owner
and group both have read and write permission on files, and other is set to read. The owner and
group both have read, write, and execute permissions on directories. The only permission for other
is read.

[user@host ~]$ umask
0002
[user@host ~]$ touch default
[user@host ~]$ ls -l default.txt
-rw-rw-r--. 1 user user 0 May  9 01:54 default.txt
[user@host ~]$ mkdir default
[user@host ~]$ ls -ld default
drwxrwxr-x. 2 user user 0 May  9 01:54 default 

By setting the umask value to 0, the file permissions for other change from read to read and write.
The directory permissions for other changes from read and execute to read, write, and execute.

[user@host ~]$ umask 0
[user@host ~]$ touch zero.txt
[user@host ~]$ ls -l zero.txt
-rw-rw-rw-. 1 user user 0 May  9 01:54 zero.txt
[user@host ~]$ mkdir zero
[user@host ~]$ ls -ld zero
drwxrwxrwx. 2 user user 0 May  9 01:54 zero 

To mask all file and directory permissions for other, set the umask value to 007.

RH066-RHEL8-en-1-cef4e50 137



Chapter 6 | Controlling Access to Files with Linux File System Permissions

[user@host ~]$ umask 007
[user@host ~]$ touch seven.txt
[user@host ~]$ ls -l seven.txt
-rw-rw----. 1 user user 0 May  9 01:55 seven.txt
[user@host ~]$ mkdir seven
[user@host ~]$ ls -ld seven
drwxrwx---. 2 user user 0 May  9 01:54 seven

A umask of 027 ensures that new files have read and write permissions for user and read
permission for group. New directories have read and write access for group and no permissions for
other.

[user@host ~]$ umask 027
[user@host ~]$ touch two-seven.txt
[user@host ~]$ ls -l two-seven.txt
-rw-r-----. 1 user user 0 May  9 01:55 two-seven.txt
[user@host ~]$ mkdir two-seven
[user@host ~]$ ls -ld two-seven
drwxr-x---. 2 user user 0 May  9 01:54 two-seven 

The default umask for users is set by the shell startup scripts. By default, if your account's UID
is 200 or more and your username and primary group name are the same, you will be assigned a
umask of 002. Otherwise, your umask will be 022.

As root, you can change this by adding a shell startup script named /etc/profile.d/local-
umask.sh that looks something like the output in this example:

[root@host ~]# cat /etc/profile.d/local-umask.sh
# Overrides default umask configuration
if [ $UID -gt 199 ] && [ "`id -gn`" = "`id -un`" ]; then
    umask 007
else
    umask 022
fi

The preceding example will set the umask to 007 for users with a UID greater than 199 and with a
username and primary group name that match, and to 022 for everyone else. If you just wanted to
set the umask for everyone to 022, you could create that file with just the following content:

# Overrides default umask configuration
umask 022

To ensure that global umask changes take effect you must log out of the shell and log back in.
Until that time the umask configured in the current shell is still in effect.

References
bash(1), ls(1), chmod(1), and umask(1) man pages

138 RH066-RHEL8-en-1-cef4e50



Chapter 6 | Controlling Access to Files with Linux File System Permissions

Guided Exercise

Controlling New File Permissions and
Ownership

In this exercise, you will control default permissions on new files using the umask command
and setgid permission.

Outcomes
• Create a shared directory where new files are automatically owned by the group ateam.

• Experiment with various umask settings.

• Adjust default permissions for specific users.

• Confirm your adjustment is correct.

Before You Begin
Start your Amazon EC2 instance and use ssh to log in as the user ec2-user. It is assumed
that ec2-user can use sudo to run commands as root.

It is also assumed that you have completed the steps from the preceding exercise in this
chapter. The users alice and andy should exist on your system. The primary group for both
users should be a user private group with the same name as the user's username. Both users
should also be members of the group ateam.

Steps
 1. Use sudo to switch user to alice.

[ec2-user@ip-192-0-2-1 ~]$ sudo su - alice
Last login: Fri Jul 24 17:01:55 EDT 2020 on pts/0
[alice@ip-192-0-2-1 ~]$ 

 2. Use the umask command without arguments to display Alice's default umask value.

[alice@ip-192-0-2-1 ~]$ umask
0002

 3. Create a new directory /tmp/shared and a new file /tmp/shared/defaults to see how
the default umask affects permissions.

[alice@ip-192-0-2-1 ~]$ mkdir /tmp/shared
[alice@ip-192-0-2-1 ~]$ ls -ld /tmp/shared
drwxrwxr-x. 2 alice alice 6 Jul 24 18:43 /tmp/shared
[alice@ip-192-0-2-1 ~]$ touch /tmp/shared/defaults
[alice@ip-192-0-2-1 ~]$ ls -l /tmp/shared/defaults
-rw-rw-r--. 1 alice alice 0 Jul 24 18:43 /tmp/shared/defaults

RH066-RHEL8-en-1-cef4e50 139



Chapter 6 | Controlling Access to Files with Linux File System Permissions

 4. Change the group ownership of /tmp/shared to ateam and record the new ownership
and permissions.

[alice@ip-192-0-2-1 ~]$ chown :ateam /tmp/shared
[alice@ip-192-0-2-1 ~]$ ls -ld /tmp/shared
drwxrwxr-x. 2 alice ateam 21 Jul 24 18:43 /tmp/shared

 5. Create a new file in /tmp/shared and record the ownership and permissions.

[alice@ip-192-0-2-1 ~]$ touch /tmp/shared/alice3
[alice@ip-192-0-2-1 ~]$ ls -l /tmp/shared/alice3
-rw-rw-r--. 1 alice alice 0 Jul 24 18:46 /tmp/shared/alice3

 6. Ensure the permissions of /tmp/shared cause files created in that directory to inherit the
group ownership of ateam.

[alice@ip-192-0-2-1 ~]$ chmod g+s /tmp/shared
[alice@ip-192-0-2-1 ~]$ ls -ld /tmp/shared
drwxrwsr-x. 2 alice ateam 34 Jul 24 18:46 /tmp/shared
[alice@ip-192-0-2-1 ~]$ touch /tmp/shared/alice4
[alice@ip-192-0-2-1 ~]$ ls -l /tmp/shared
total 0
-rw-rw-r--. 1 alice alice 0 Jul 24 18:46 alice3
-rw-rw-r--. 1 alice ateam 0 Jul 24 18:48 alice4
-rw-rw-r--. 1 alice alice 0 Jul 24 18:43 defaults

 7. Change the umask for alice such that new files are created with read-only access for
the group and no access for other users. Create a new file and record the ownership and
permissions.

[alice@ip-192-0-2-1 ~]$ umask 027
[alice@ip-192-0-2-1 ~]$ touch /tmp/shared/alice5
[alice@ip-192-0-2-1 ~]$ ls -l /tmp/shared
total 0
-rw-rw-r--. 1 alice alice 0 Jul 24 18:46 alice3
-rw-rw-r--. 1 alice ateam 0 Jul 24 18:48 alice4
-rw-r-----. 1 alice ateam 0 Jul 24 18:50 alice5
-rw-rw-r--. 1 alice alice 0 Jul 24 18:43 defaults

 8. Log out and log back in again as alice, starting a new shell, and view her umask.

[alice@ip-192-0-2-1 ~]$ umask
0027
[alice@ip-192-0-2-1 ~]$ exit
logout
[ec2-user@ip-192-0-2-1 ~]$ sudo su - alice
Last login: Fri Jul 24 18:31:25 EDT 2020 on pts/0
[alice@ip-192-0-2-1 ~]$ umask
0002

Note that alice's umask reverted to her default settings.

140 RH066-RHEL8-en-1-cef4e50



Chapter 6 | Controlling Access to Files with Linux File System Permissions

 9. Change the default umask for alice to prohibit all access to "other" on files the user
creates, by appending umask 007 to the end of the ~/.bashrc file.

[alice@ip-192-0-2-1 ~]$ echo "umask 007" >> ~/.bashrc
[alice@ip-192-0-2-1 ~]$ cat ~/.bashrc
# .bashrc

# Source global definitions
if [ -f /etc/bashrc ]; then
 . /etc/bashrc
fi

# User specific environment
PATH="$HOME/.local/bin:$HOME/bin:$PATH"
export PATH

# Uncomment the following line if you don't like systemctl's auto-paging feature:
# export SYSTEMD_PAGER=

# User specific aliases and functions
umask 007

Important
Rather than using redirection, you could instead simply edit the file with the
command vim ~/.bashrc, and add umask 007 as the last line of the file, as
shown in the output of cat ~/.bashrc from the example.

If you are interested in more in-depth information on shell I/O redirection, an
overview is available at http://wiki.bash-hackers.org/syntax/redirection.

 10. Log out of alice's su session, and then log back into alice's account and confirm that
the umask changes you made are persistent.

[alice@ip-192-0-2-1 ~]$ exit
logout
[ec2-user@ip-192-0-2-1 ~]$ sudo su - alice
Last login: Fri Jul 24 18:54:02 EDT 2020 on pts/0
[alice@ip-192-0-2-1 ~]$ umask
0007

 11. This concludes this exercise. Log out and stop your Amazon EC2 instance.

RH066-RHEL8-en-1-cef4e50 141

http://wiki.bash-hackers.org/syntax/redirection


Chapter 6 | Controlling Access to Files with Linux File System Permissions

Lab

Controlling Access to Files with Linux File
System Permissions

In this lab, you will configure a directory that users in the same group can use to easily share
files that are automatically writable by the entire group.

Outcomes
• A directory called /home/operators where the members of group operators can work

collaboratively on files.

• Only the root user and operators group can access, create, and delete files in this
directory.

• Files created in this directory should automatically be assigned a group ownership of
operators.

• New files created in this directory will not be accessible to normal users who are not in the
group or own the files.

Before You Begin
Start your Amazon EC2 instance and use ssh to log in as the user ec2-user. It is assumed
that ec2-user can use sudo to run commands as root.

Steps
1. Use sudo to get an interactive shell as root.

2. Create a new group named operators.

3. Create three users, yasmine, louis, and liza. The primary group for each of these users
should be a user private group that has the same name as their username. They should also
be members of group operators.

You may set passwords for these users so that you can use commands like su - yasmine
to switch between the users to test your work, or you may leave the accounts locked with
invalid passwords and switch between them from the ec2-user account with sudo.

4. Create the /home/operators directory.

5. Change group permissions on the /home/operators directory so that it belongs to the
operators group.

6. Set permissions on the /home/operators directory so it is set GID, the owner and group
have full read/write/execute permissions, and other users have no permissions on the
directory.

7. Check that the permissions were set properly.

8. When you finish, check your work to ensure you have done everything correctly.

9. This concludes this lab. Log out and stop your Amazon EC2 instance.

142 RH066-RHEL8-en-1-cef4e50



Chapter 6 | Controlling Access to Files with Linux File System Permissions

Solution

Controlling Access to Files with Linux File
System Permissions

In this lab, you will configure a directory that users in the same group can use to easily share
files that are automatically writable by the entire group.

Outcomes
• A directory called /home/operators where the members of group operators can work

collaboratively on files.

• Only the root user and operators group can access, create, and delete files in this
directory.

• Files created in this directory should automatically be assigned a group ownership of
operators.

• New files created in this directory will not be accessible to normal users who are not in the
group or own the files.

Before You Begin
Start your Amazon EC2 instance and use ssh to log in as the user ec2-user. It is assumed
that ec2-user can use sudo to run commands as root.

Steps
1. Use sudo to get an interactive shell as root.

[ec2-user@ip-192-0-2-1 ~]$ sudo su -
Last login: Fri Jul 24 20:57:08 EDT 2020 on pts/0
[root@ip-192-0-2-1 ~]# 

2. Create a new group named operators.

[root@ip-192-0-2-1 ~]# groupadd operators

3. Create three users, yasmine, louis, and liza. The primary group for each of these users
should be a user private group that has the same name as their username. They should also
be members of group operators.

You may set passwords for these users so that you can use commands like su - yasmine
to switch between the users to test your work, or you may leave the accounts locked with
invalid passwords and switch between them from the ec2-user account with sudo.

[root@ip-192-0-2-1 ~]# useradd -G operators yasmine
[root@ip-192-0-2-1 ~]# useradd -G operators louis
[root@ip-192-0-2-1 ~]# useradd -G operators liza

4. Create the /home/operators directory.

RH066-RHEL8-en-1-cef4e50 143



Chapter 6 | Controlling Access to Files with Linux File System Permissions

[root@ip-192-0-2-1 ~]# mkdir /home/operators

5. Change group permissions on the /home/operators directory so that it belongs to the
operators group.

[root@ip-192-0-2-1 ~]# chown :operators /home/operators

6. Set permissions on the /home/operators directory so it is set GID, the owner and group
have full read/write/execute permissions, and other users have no permissions on the
directory.

[root@ip-192-0-2-1 ~]# chmod 2770 /home/operators

7. Check that the permissions were set properly.

[root@ip-192-0-2-1 ~]# ls -ld /home/operators
drwxrws---. 2 root operators 6 Jul 24 11:38 /home/operators

8. When you finish, check your work to ensure you have done everything correctly.

[root@ip-192-0-2-1 ~]# exit
logout
[ec2-user@ip-192-0-2-1 ~]$ touch /home/operators/ec2-user-test
touch: cannot touch ‘/home/operators/ec2-user-test’: Permission denied
[ec2-user@ip-192-0-2-1 ~]$ sudo su - yasmine
[yasmine@ip-192-0-2-1 ~]$ touch /home/operators/yasmine-test
[yasmine@ip-192-0-2-1 ~]$ ls -l /home/operators
total 0
-rw-rw-r--. 1 yasmine operators 0 Jul 24 11:47 yasmine-test
[yasmine@ip-192-0-2-1 ~]$ exit
logout
[ec2-user@ip-192-0-2-1 ~]$ sudo su - louis
[louis@ip-192-0-2-1 ~]$ touch /home/operators/louis-test
[louis@ip-192-0-2-1 ~]$ ls -l /home/operators
total 0
-rw-rw-r--. 1 louis   operators 0 Jul 24 11:48 louis-test
-rw-rw-r--. 1 yasmine operators 0 Jul 24 11:47 yasmine-test
[louis@ip-192-0-2-1 ~]$ exit
logout
[ec2-user@ip-192-0-2-1 ~]$ 

9. This concludes this lab. Log out and stop your Amazon EC2 instance.

144 RH066-RHEL8-en-1-cef4e50



Chapter 7

Monitoring and Managing Linux
Processes

Goal To evaluate and control processes running on a
Red Hat Enterprise Linux system.

Objectives • List and interpret basic information about
processes running on the system.

• Control processes in the shell's session using
bash job control.

• Terminate and control processes using signals.
• Monitor resource usage and system load due to

process activity.

Sections • Processes (and Quiz)
• Controlling Jobs (and Guided Exercise)
• Killing Processes (and Guided Exercise)
• Monitoring Processes (and Guided Exercise)

RH066-RHEL8-en-1-cef4e50 145



Chapter 7 | Monitoring and Managing Linux Processes

Processes

Objectives
After completing this section, you should be able to get information about programs running on a
system to determine status, resource use, and ownership, so you can control them.

Definition of a Process
A process is a running instance of a launched, executable program. A process consists of:

• An address space of allocated memory

• Security properties including ownership credentials and privileges

• One or more execution threads of program code

• Process state

The environment of a process includes:

• Local and global variables

• A current scheduling context

• Allocated system resources, such as file descriptors and network ports

An existing (parent) process duplicates its own address space (fork) to create a new (child)
process structure. Every new process is assigned a unique process ID (PID) for tracking
and security. The PID and the parent's process ID (PPID) are elements of the new process
environment. Any process may create a child process. All processes are descendants of the first
system process, systemd on a Red Hat Enterprise Linux 8 system).

Figure 7.1: Process life cycle

Through the fork routine, a child process inherits security identities, previous and current file
descriptors, port and resource privileges, environment variables, and program code. A child
process may then exec its own program code. Normally, a parent process sleeps while the child
process runs, setting a request (wait) to be signaled when the child completes. Upon exit, the
child process has already closed or discarded its resources and environment. The only remaining
resource, called a zombie, is an entry in the process table. The parent, signaled awake when the
child exited, cleans the process table of the child's entry, thus freeing the last resource of the child
process. The parent process then continues with its own program code execution.

146 RH066-RHEL8-en-1-cef4e50



Chapter 7 | Monitoring and Managing Linux Processes

Describing Process States
In a multitasking operating system, each CPU (or CPU core) can be working on one process at
a single point in time. As a process runs, its immediate requirements for CPU time and resource
allocation change. Processes are assigned a state, which changes as circumstances dictate.

Figure 7.2: Linux process states

Linux process states are illustrated in the previous diagram and described in the following table:

Linux Process States

Name Flag Kernel-defined state name and description

Running R
TASK_RUNNING: The process is either executing on a CPU or waiting to
run. Process can be executing user routines or kernel routines (system
calls), or be queued and ready when in the Running (or Runnable) state.

S
TASK_INTERRUPTIBLE: The process is waiting for some condition: a
hardware request, system resource access, or signal. When an event or
signal satisfies the condition, the process returns to Running.

D
TASK_UNINTERRUPTIBLE: This process is also Sleeping, but unlike S state,
does not respond to signals. Used only when process interruption may
cause an unpredictable device state.

Sleeping

K
TASK_KILLABLE: Identical to the uninterruptible D state, but modified to
allow a waiting task to respond to the signal that it should be killed (exit
completely). Utilities frequently display Killable processes as D state.

RH066-RHEL8-en-1-cef4e50 147



Chapter 7 | Monitoring and Managing Linux Processes

Name Flag Kernel-defined state name and description

I

TASK_REPORT_IDLE: A subset of state D. The kernel does not count
these processes when calculating load average. Used for kernel threads.
Flags TASK_UNINTERRUPTABLE and TASK_NOLOAD are set. Similar to
TASK_KILLABLE, also a subset of state D. It accepts fatal signals.

T
TASK_STOPPED: The process has been Stopped (suspended), usually by
being signaled by a user or another process. The process can be continued
(resumed) by another signal to return to Running.Stopped

T TASK_TRACED: A process that is being debugged is also temporarily
Stopped and shares the same T state flag.

Z EXIT_ZOMBIE: A child process signals its parent as it exits. All resources
except for the process identity (PID) are released.

Zombie

X
EXIT_DEAD: When the parent cleans up (reaps) the remaining child process
structure, the process is now released completely. This state will never be
observed in process-listing utilities.

Why Process States are Important
When troubleshooting a system, it is important to understand how the kernel communicates with
processes and how processes communicate with each other. At process creation, the system
assigns the process a state. The S column of the top command or the STAT column of the ps
show the state of each process. On a single CPU system, only one process can run at a time. It
is possible to see several processes with a state of R. However, not all of them will be running
consecutively, some of them will be in status waiting.

[user@host ~]$ top
PID USER  PR  NI    VIRT    RES    SHR S  %CPU  %MEM     TIME+ COMMAND
  1 root  20   0  244344  13684   9024 S   0.0   0.7   0:02.46 systemd
  2 root  20   0       0      0      0 S   0.0   0.0   0:00.00 kthreadd
...output omitted... 

[user@host ~]$ ps aux
USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND
...output omitted...
root         2  0.0  0.0      0     0 ?        S    11:57   0:00 [kthreadd]
student   3448  0.0  0.2 266904  3836 pts/0    R+   18:07   0:00 ps aux
...output omitted... 

Process can be suspended, stopped, resumed, terminated, and interrupted using signals. Signals
are discussed in more detail later in this chapter. Signals can be used by other processes, by the
kernel itself, or by users logged into the system.

Listing Processes
The ps command is used for listing current processes. It can provide detailed process information,
including:

• User identification (UID), which determines process privileges

148 RH066-RHEL8-en-1-cef4e50



Chapter 7 | Monitoring and Managing Linux Processes

• Unique process identification (PID)

• CPU and real time already expended

• How much memory the process has allocated in various locations

• The location of process stdout, known as the controlling terminal

• The current process state

Important
The Linux version of ps supports three option formats:

• UNIX (POSIX) options, which may be grouped and must be preceded by a dash

• BSD options, which may be grouped and must not be used with a dash

• GNU long options, which are preceded by two dashes

For example, ps -aux is not the same as ps aux.

Perhaps the most common set of options, aux, displays all processes including processes without
a controlling terminal. A long listing (options lax) provides more technical detail, but may display
faster by avoiding user name lookups. The similar UNIX syntax uses the options -ef to display all
processes.

[user@host ~]$ ps aux
USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND
root         1  0.1  0.1  51648  7504 ?        Ss   17:45   0:03 /usr/lib/systemd/
syst
root         2  0.0  0.0      0     0 ?        S    17:45   0:00 [kthreadd]
root         3  0.0  0.0      0     0 ?        S    17:45   0:00 [ksoftirqd/0]
root         5  0.0  0.0      0     0 ?        S<   17:45   0:00 [kworker/0:0H]
root         7  0.0  0.0      0     0 ?        S    17:45   0:00 [migration/0]
...output omitted...
[user@host ~]$ ps lax
F   UID   PID  PPID PRI  NI    VSZ   RSS WCHAN  STAT TTY     TIME COMMAND
4     0     1     0  20   0  51648  7504 ep_pol Ss   ?       0:03 /usr/lib/
systemd/
1     0     2     0  20   0      0     0 kthrea S    ?       0:00 [kthreadd]
1     0     3     2  20   0      0     0 smpboo S    ?       0:00 [ksoftirqd/0]
1     0     5     2   0 -20      0     0 worker S<   ?       0:00 [kworker/0:0H]
1     0     7     2 -100  -      0     0 smpboo S    ?       0:00 [migration/0]
...output omitted...
[user@host ~]$ ps -ef
UID        PID  PPID  C STIME TTY          TIME CMD
root         1     0  0 17:45 ?        00:00:03 /usr/lib/systemd/systemd --
switched-ro
root         2     0  0 17:45 ?        00:00:00 [kthreadd]
root         3     2  0 17:45 ?        00:00:00 [ksoftirqd/0]
root         5     2  0 17:45 ?        00:00:00 [kworker/0:0H]
root         7     2  0 17:45 ?        00:00:00 [migration/0]
...output omitted...

RH066-RHEL8-en-1-cef4e50 149



Chapter 7 | Monitoring and Managing Linux Processes

By default, ps with no options selects all processes with the same effective user ID (EUID) as the
current user, and which are associated with the same terminal where ps was invoked.

• Processes in brackets (usually at the top of the list) are scheduled kernel threads.

• Zombies are listed as exiting or defunct.

• The output of ps displays once. Use top for a process display that dynamically updates.

• ps can display in tree format so you can view relationships between parent and child processes.

• The default output is sorted by process ID number. At first glance, this may appear to be
chronological order. However, the kernel reuses process IDs, so the order is less structured than
it appears. To sort, use the -O or --sort options. Display order matches that of the system
process table, which reuses table rows as processes die and new ones are created. Output may
appear chronological, but is not guaranteed unless explicit -O or --sort options are used.

References
info libc signal (GNU C Library Reference Manual)

• Section 24: Signal Handling

info libc processes (GNU C Library Reference Manual)

• Section 26: Processes

ps(1) and signal(7) man pages

150 RH066-RHEL8-en-1-cef4e50



Chapter 7 | Monitoring and Managing Linux Processes

Quiz

Processes

Choose the correct answers to the following questions:

 1. Which state represents a process that has been stopped or suspended?
a. D
b. R
c. S
d. T
e. Z

 2. Which state represents a process that has released all of its resources except its PID?
a. D
b. R
c. S
d. T
e. Z

 3. Which process does a parent use to duplicate to create a new child process?
a. exec
b. fork
c. zombie
d. syscall
e. reap

 4. Which state represents a process that is sleeping until some condition is met?
a. D
b. R
c. S
d. T
e. Z

RH066-RHEL8-en-1-cef4e50 151



Chapter 7 | Monitoring and Managing Linux Processes

Solution

Processes

Choose the correct answers to the following questions:

 1. Which state represents a process that has been stopped or suspended?
a. D
b. R
c. S
d. T
e. Z

 2. Which state represents a process that has released all of its resources except its PID?
a. D
b. R
c. S
d. T
e. Z

 3. Which process does a parent use to duplicate to create a new child process?
a. exec
b. fork
c. zombie
d. syscall
e. reap

 4. Which state represents a process that is sleeping until some condition is met?
a. D
b. R
c. S
d. T
e. Z

152 RH066-RHEL8-en-1-cef4e50



Chapter 7 | Monitoring and Managing Linux Processes

Controlling Jobs

Objectives
After completing this section, you should be able to use Bash job control to manage multiple
processes started from the same terminal session.

Describing Jobs and Sessions
Job control is a feature of the shell which allows a single shell instance to run and manage multiple
commands.

A job is associated with each pipeline entered at a shell prompt. All processes in that pipeline are
part of the job and are members of the same process group. If only one command is entered at a
shell prompt, that can be considered to be a minimal “pipeline” of one command, creating a job
with only one member.

Only one job can read input and keyboard generated signals from a particular terminal window at a
time. Processes that are part of that job are foreground processes of that controlling terminal.

A background process of that controlling terminal is a member of any other job associated
with that terminal. Background processes of a terminal cannot read input or receive keyboard
generated interrupts from the terminal, but may be able to write to the terminal. A job in the
background may be stopped (suspended) or it may be running. If a running background job tries to
read from the terminal, it will be automatically suspended.

Each terminal is its own session, and can have a foreground process and any number of
independent background processes. A job is part of exactly one session: the one belonging to its
controlling terminal.

The ps command shows the device name of the controlling terminal of a process in the TTY
column. Some processes, such as system daemons, are started by the system and not from a shell
prompt. These processes do not have a controlling terminal, are not members of a job, and cannot
be brought to the foreground. The ps command displays a question mark (?) in the TTY column
for these processes.

Running Jobs in the Background
Any command or pipeline can be started in the background by appending an ampersand (&) to
the end of the command line. The Bash shell displays a job number (unique to the session) and the
PID of the new child process. The shell does not wait for the child process to terminate, but rather
displays the shell prompt.

[user@host ~]$ sleep 10000 &
[1] 5947
[user@host ~]$ 

RH066-RHEL8-en-1-cef4e50 153



Chapter 7 | Monitoring and Managing Linux Processes

Note
When a command line containing a pipe is sent to the background using an
ampersand, the PID of the last command in the pipeline is used as output. All
processes in the pipeline are still members of that job.

[user@host ~]$  example_command | sort | mail -s "Sort output" &
[1] 5998

You can display the list of jobs that Bash is tracking for a particular session with the jobs
command.

[user@host ~]$ jobs
[1]+  Running                 sleep 10000 &
[user@host ~]$ 

A background job can be brought to the foreground by using the fg command with its job ID (%job
number).

[user@host ~]$ fg %1
sleep 10000

In the preceding example, the sleep command is now running in the foreground on the controlling
terminal. The shell itself is again asleep, waiting for this child process to exit.

To send a foreground process to the background, first press the keyboard generated suspend
request (Ctrl+z) in the terminal.

sleep 10000
^Z
[1]+  Stopped                 sleep 10000
[user@host ~]$ 

The job is immediately placed in the background and is suspended.

The ps j command displays information relating to jobs. The PID is the unique process ID of
the process. THe PPID is the PID of the parent process of this process, the process that started
(forked) it. The PGID is the PID of the process group leader, normally the first process in the job's
pipeline. The SID is the PID of the session leader, which (for a job) is normally the interactive
shell that is running on its controlling terminal. Since the example sleep command is currently
suspended, its process state is T.

[user@host ~]$ ps j
 PPID   PID  PGID   SID TTY      TPGID STAT   UID   TIME COMMAND
 2764  2768  2768  2768 pts/0     6377 Ss    1000   0:00 /bin/bash
 2768  5947  5947  2768 pts/0     6377 T     1000   0:00 sleep 10000
 2768  6377  6377  2768 pts/0     6377 R+    1000   0:00 ps j

To start the suspended process running in the background, use the bg command with the same
job ID.

154 RH066-RHEL8-en-1-cef4e50



Chapter 7 | Monitoring and Managing Linux Processes

[user@host ~]$ bg %1
[1]+ sleep 10000 &

The shell will warn a user who attempts to exit a terminal window (session) with suspended jobs. If
the user tries exiting again immediately, the suspended jobs are killed.

Note
Note the + sign after the [1] in the examples above. The + sign indicates that this
job is the current default job. That is, if a command is used that expects a %job
number argument and a job number is not provided, then the action is taken on the
job with the + indicator.

References
Bash info page (The GNU Bash Reference Manual)
https://www.gnu.org/software/bash/manual

• Section 7: Job Control

bash(1), builtins(1), ps(1), sleep(1) man pages

RH066-RHEL8-en-1-cef4e50 155

https://www.gnu.org/software/bash/manual


Chapter 7 | Monitoring and Managing Linux Processes

Guided Exercise

Background and Foreground Processes

In this exercise, students will start, suspend, and reconnect to multiple processes using job
control.

Outcomes
• Practice suspending and restarting user processes.

Before You Begin
Start your Amazon EC2 instance.

Important
The exercises in this chapter require you to have two simultaneous ssh
login sessions as the user ec2-user open to your Red Hat Enterprise Linux
instance. The instructions assume that the program you are using to run ssh
allows you to do this in two separate windows.

For example, macOS users can use Terminal to open two windows each with
a shell prompt, which can each use the same ssh command and private key
to open independent shells on the Red Hat Enterprise Linux instance on
Amazon EC2. Other programs and operating systems may require you to
access different tabs in the same window or run two separate instances of the
same program to get two ssh sessions running.

The following instructions refer to your two login sessions as being in a left
window and a right window respectively. If you can arrange the terminals or
applications running ssh in this way on your personal workstation, this will
make the exercises easier to understand. It does not actually matter whether
they are really two separate windows or two tabs in the same window as long
as you can keep straight which window or tab is the left window and which the
right window from the perspective of the exercise's instructions.

Steps
 1. We need a short program to demonstrate job control. In either window, make a new

directory named /home/ec2-user/bin. In that new directory, use vim to create a short
shell script named forever as shown:

#!/bin/bash

while true; do
  echo -n "$@ " >> ~/outfile
  sleep 1
done

156 RH066-RHEL8-en-1-cef4e50



Chapter 7 | Monitoring and Managing Linux Processes

The forever script will run until terminated and will append any command line arguments
passed to it to the file ~/outfile, once per second. Set the executable permission on the
file so ec2-user can run this script like any other program.

[ec2-user@ip-192-0-2-1 ~]$ mkdir bin
[ec2-user@ip-192-0-2-1 ~]$ vim bin/forever
  ...output omitted...
[ec2-user@ip-192-0-2-1 ~]$ cat bin/forever
#!/bin/bash

while true; do
  echo -n "$@ " >> ~/outfile
  sleep 1
done
[ec2-user@ip-192-0-2-1 ~]$ chmod +x bin/forever

 2. In the left window, use your forever script to start a process that continuously appends
the word "rock" and a space to the file ~/outfile at one-second intervals.

[ec2-user@ip-192-0-2-1 ~]$ forever rock

 3. In the right window, use tail to confirm that the new process is writing to the file.

[ec2-user@ip-192-0-2-1 ~]$ tail -f ~/outfile

 4. In the left window, suspend the running process by pressing Ctrl+z. The shell returns the
job ID in square brackets. In the right window, confirm that the process output has stopped.

^Z
[1]+  Stopped                 forever rock
[ec2-user@ip-192-0-2-1 ~]$ 

The tail command running in the right window should show that rock is no longer being
appended to the ~/outfile every second.

 5. In the left window, view the jobs list. The + denotes the current job. Restart the job in the
background. In the right window, confirm that the process output is again active.

[ec2-user@ip-192-0-2-1 ~]$ jobs
[1]+  Stopped                 forever rock
[ec2-user@ip-192-0-2-1 ~]$ bg
[1]+ forever rock &
[ec2-user@ip-192-0-2-1 ~]$ jobs
[1]+  Running                 forever rock &

RH066-RHEL8-en-1-cef4e50 157



Chapter 7 | Monitoring and Managing Linux Processes

 6. In the left window, use forever to start two more processes which append strings to ~/
outfile. Use the ampersand (&) to start the processes in the background, and use the
arguments paper and scissors in place of rock so you can tell all three processes apart.

[ec2-user@ip-192-0-2-1 ~]$ forever paper &
[2] 11986
[ec2-user@ip-192-0-2-1 ~]$ forever scissors &
[3] 12010

The job number of each new process is printed in square brackets. The second number is
the unique system-wide process ID number (PID) for the process, which will probably be
different when you run these commands.

 7. In the left window, view jobs to see all three processes "Running". In the right window,
confirm that all three processes are appending to the file.

[ec2-user@ip-192-0-2-1 ~]$ jobs
[1]   Running                 forever rock &
[2]-  Running                 forever paper &
[3]+  Running                 forever scissors &

 8. Suspend the forever rock process. In the left window, foreground the job, using the
job ID determined from the jobs listing, then suspend it using Ctrl+z. Confirm that the
forever rock process is " Stopped. In the right window, confirm that "rock" is no longer
being appended to ~/outfile every second.

[ec2-user@ip-192-0-2-1 ~]$ jobs
[1]   Running                 forever rock &
[2]-  Running                 forever paper &
[3]+  Running                 forever scissors &
[ec2-user@ip-192-0-2-1 ~]$ fg %1
forever rock
^Z
[1]+  Stopped                 forever rock
[ec2-user@ip-192-0-2-1 ~]$ 

 9. Terminate the forever paper process. In the left window, foreground the job, then
terminate it using Ctrl+c. Confirm that the forever paper process has disappeared
using jobs. In the right window, confirm that forever paper output is no longer active.

[ec2-user@ip-192-0-2-1 ~]$ jobs
[1]+  Stopped                 forever rock
[2]   Running                 forever paper &
[3]-  Running                 forever scissors &
[ec2-user@ip-192-0-2-1 ~]$ fg %2
forever paper
^C
[ec2-user@ip-192-0-2-1 ~]$ jobs
[1]+  Stopped                 forever rock
[3]-  Running                 forever scissors &
[ec2-user@ip-192-0-2-1 ~]$ 

158 RH066-RHEL8-en-1-cef4e50



Chapter 7 | Monitoring and Managing Linux Processes

 10. In the left window, view the remaining jobs associated with the left window session by using
the ps jT command. The suspended job has state T. The other background job is sleeping
(S), since ps is "on cpu" (R) while displaying.

[ec2-user@ip-192-0-2-1 ~]$ ps jT
 PPID   PID  PGID   SID TTY      TPGID STAT   UID   TIME COMMAND
 2773 10960 10960 10960 pts/0    16325 Ss    1000   0:00 -bash
10960 11029 11029 10960 pts/0    16325 T     1000   0:00 /bin/bash /home/ec2-use
10960 12010 12010 10960 pts/0    16325 S     1000   0:00 /bin/bash /home/ec2-use
11029 14167 11029 10960 pts/0    16325 T     1000   0:00 sleep 1
12010 16323 12010 10960 pts/0    16325 S     1000   0:00 sleep 1
10960 16325 16325 10960 pts/0    16325 R+    1000   0:00 ps jT

 11. Terminate the remaining two jobs. In the left window, foreground either job. Terminate it
using Ctrl+c. Repeat with the remaining job. The Stopped job will temporarily restart
when foregrounded. Confirm that no jobs remain and that output has stopped.

[ec2-user@ip-192-0-2-1 ~]$ jobs
[1]+  Stopped                 forever rock
[3]-  Running                 forever scissors &
[ec2-user@ip-192-0-2-1 ~]$ fg %1
forever rock
^C
[ec2-user@ip-192-0-2-1 ~]$ fg %3
forever scissors
^C
[ec2-user@ip-192-0-2-1 ~]$ jobs
[ec2-user@ip-192-0-2-1 ~]$ 

 12. In the right window, use Ctrl+c to terminate the tail command. Remove ~/outfile.

[ec2-user@ip-192-0-2-1 ~]$ rm ~/outfile

 13. This concludes this exercise. Log out of both sessions and stop your Amazon EC2 instance.

RH066-RHEL8-en-1-cef4e50 159



Chapter 7 | Monitoring and Managing Linux Processes

Killing Processes

Objectives
After completing this section, you should be able to:

• Use commands to kill and communicate with processes.

• Define the characteristics of a daemon process.

• End user sessions and processes.

Process Control Using Signals
A signal is a software interrupt delivered to a process. Signals report events to an executing
program. Events that generate a signal can be an error, external event (an I/O request or an
expired timer), or by explicit use of a signal-sending command or keyboard sequence.

The following table lists the fundamental signals used by system administrators for routine process
management. Refer to signals by either their short (HUP) or proper (SIGHUP) name.

Fundamental Process Management Signals

Signal
number

Short
name Definition Purpose

1 HUP Hangup
Used to report termination of the controlling process of
a terminal. Also used to request process reinitialization
(configuration reload) without termination.

2 INT Keyboard
interrupt

Causes program termination. Can be blocked or handled.
Sent by pressing INTR key sequence (Ctrl+c).

3 QUIT Keyboard
quit

Similar to SIGINT; adds a process dump at termination.
Sent by pressing QUIT key sequence (Ctrl+\).

9 KILL Kill,
unblockable

Causes abrupt program termination. Cannot be blocked,
ignored, or handled; always fatal.

15
default

TERM Terminate
Causes program termination. Unlike SIGKILL, can be
blocked, ignored, or handled. The “polite” way to ask a
program to terminate; allows self-cleanup.

18 CONT Continue Sent to a process to resume, if stopped. Cannot be
blocked. Even if handled, always resumes the process.

19 STOP Stop,
unblockable

Suspends the process. Cannot be blocked or handled.

20 TSTP Keyboard
stop

Unlike SIGSTOP, can be blocked, ignored, or handled.
Sent by pressing SUSP key sequence (Ctrl+z).

160 RH066-RHEL8-en-1-cef4e50



Chapter 7 | Monitoring and Managing Linux Processes

Note
Signal numbers vary on different Linux hardware platforms, but signal names and
meanings are standardized. For command use, it is advised to use signal names
instead of numbers. The numbers discussed in this section are for x86_64 systems.

Each signal has a default action, usually one of the following:

• Term - Cause a program to terminate (exit) at once.

• Core - Cause a program to save a memory image (core dump), then terminate.

• Stop - Cause a program to stop executing (suspend) and wait to continue (resume).

Programs can be prepared to react to expected event signals by implementing handler routines to
ignore, replace, or extend a signal's default action.

Commands for Sending Signals by Explicit Request
You signal the current foreground process by pressing a keyboard control sequence to suspend
(Ctrl+z), kill (Ctrl+c), or core dump (Ctrl+\) the process. However, you will use signal-sending
commands to send signals to a background process or to processes in a different session.

Signals can be specified as options either by name (for example, -HUP or -SIGHUP) or by number
(the related -1). Users may kill their own processes, but root privilege is required to kill processes
owned by others.

The kill command sends a signal to a process by PID number. Despite its name, the kill
command can be used to send any signal, not just those for terminating programs. You can use the
kill -l command to list the names and numbers of all available signals.

[user@host ~]$ kill -l
 1) SIGHUP      2) SIGINT      3) SIGQUIT     4) SIGILL      5) SIGTRAP
 6) SIGABRT     7) SIGBUS      8) SIGFPE      9) SIGKILL    10) SIGUSR1
11) SIGSEGV    12) SIGUSR2    13) SIGPIPE    14) SIGALRM    15) SIGTERM
16) SIGSTKFLT  17) SIGCHLD    18) SIGCONT    19) SIGSTOP    20) SIGTSTP
...output omitted...
[user@host ~]$ ps aux | grep job
5194  0.0  0.1 222448  2980 pts/1    S    16:39   0:00 /bin/bash /home/user/bin/
control job1
5199  0.0  0.1 222448  3132 pts/1    S    16:39   0:00 /bin/bash /home/user/bin/
control job2
5205  0.0  0.1 222448  3124 pts/1    S    16:39   0:00 /bin/bash /home/user/bin/
control job3
5430  0.0  0.0 221860  1096 pts/1    S+   16:41   0:00 grep --color=auto job
[user@host ~]$ kill 5194
[user@host ~]$ ps aux | grep job
user   5199  0.0  0.1 222448  3132 pts/1    S    16:39   0:00 /bin/bash /home/
user/bin/control job2
user   5205  0.0  0.1 222448  3124 pts/1    S    16:39   0:00 /bin/bash /home/
user/bin/control job3
user   5783  0.0  0.0 221860   964 pts/1    S+   16:43   0:00 grep --color=auto
 job
[1]   Terminated              control job1
[user@host ~]$ kill -9 5199

RH066-RHEL8-en-1-cef4e50 161



Chapter 7 | Monitoring and Managing Linux Processes

[user@host ~]$ ps aux | grep job
user   5205  0.0  0.1 222448  3124 pts/1    S    16:39   0:00 /bin/bash /home/
user/bin/control job3
user   5930  0.0  0.0 221860  1048 pts/1    S+   16:44   0:00 grep --color=auto
 job
[2]-  Killed                  control job2
[user@host ~]$ kill -SIGTERM 5205
user   5986  0.0  0.0 221860  1048 pts/1    S+   16:45   0:00 grep --color=auto
 job
[3]+  Terminated              control job3

The killall command can signal multiple processes, based on their command name.

[user@host ~]$ ps aux | grep job
5194  0.0  0.1 222448  2980 pts/1    S    16:39   0:00 /bin/bash /home/user/bin/
control job1
5199  0.0  0.1 222448  3132 pts/1    S    16:39   0:00 /bin/bash /home/user/bin/
control job2
5205  0.0  0.1 222448  3124 pts/1    S    16:39   0:00 /bin/bash /home/user/bin/
control job3
5430  0.0  0.0 221860  1096 pts/1    S+   16:41   0:00 grep --color=auto job
[user@host ~]$ killall control
[1]   Terminated              control job1
[2]-  Terminated              control job2
[3]+  Terminated              control job3
[user@host ~]$ 

Use pkill to send a signal to one or more processes which match selection criteria. Selection
criteria can be a command name, a process owned by a specific user, or all system-wide processes.
The pkill command includes advanced selection criteria:

• Command - Processes with a pattern-matched command name.
• UID - Processes owned by a Linux user account, effective or real.
• GID - Processes owned by a Linux group account, effective or real.
• Parent - Child processes of a specific parent process.
• Terminal - Processes running on a specific controlling terminal.

[user@host ~]$ ps aux | grep pkill
user   5992  0.0  0.1 222448  3040 pts/1    S    16:59   0:00 /bin/bash /home/
user/bin/control pkill1
user   5996  0.0  0.1 222448  3048 pts/1    S    16:59   0:00 /bin/bash /home/
user/bin/control pkill2
user   6004  0.0  0.1 222448  3048 pts/1    S    16:59   0:00 /bin/bash /home/
user/bin/control pkill3
[user@host ~]$ pkill control
[1]   Terminated              control pkill1
[2]-  Terminated              control pkill2
[user@host ~]$ ps aux | grep pkill
user   6219  0.0  0.0 221860  1052 pts/1    S+   17:00   0:00 grep --color=auto
 pkill
[3]+  Terminated              control pkill3
[user@host ~]$ ps aux | grep test
user   6281  0.0  0.1 222448  3012 pts/1    S    17:04   0:00 /bin/bash /home/
user/bin/control test1

162 RH066-RHEL8-en-1-cef4e50



Chapter 7 | Monitoring and Managing Linux Processes

user   6285  0.0  0.1 222448  3128 pts/1    S    17:04   0:00 /bin/bash /home/
user/bin/control test2
user   6292  0.0  0.1 222448  3064 pts/1    S    17:04   0:00 /bin/bash /home/
user/bin/control test3
user   6318  0.0  0.0 221860  1080 pts/1    S+   17:04   0:00 grep --color=auto
 test
[user@host ~]$ pkill -U user
[user@host ~]$ ps aux | grep test
user   6870  0.0  0.0 221860  1048 pts/0    S+   17:07   0:00 grep --color=auto
 test
[user@host ~]$ 

Logging Users Out Administratively
You may need to log other users off for any of a variety of reasons. To name a few of the many
possibilities: the user committed a security violation; the user may have overused resources; the
user may have an unresponsive system; or the user has improper access to materials. In these
cases, you may need to administratively terminate their session using signals.

To log off a user, first identify the login session to be terminated. Use the w command to list user
logins and current running processes. Note the TTY and FROM columns to determine the sessions
to close.

All user login sessions are associated with a terminal device (TTY). If the device name is of the
form pts/N, it is a pseudo-terminal associated with a graphical terminal window or remote login
session. If it is of the form ttyN, the user is on a system console, alternate console, or other
directly connected terminal device.

[user@host ~]$ w
 12:43:06 up 27 min,  5 users,  load average: 0.03, 0.17, 0.66
USER     TTY      FROM             LOGIN@   IDLE   JCPU   PCPU WHAT
root     tty2                      12:26   14:58   0.04s  0.04s -bash
bob      tty3                      12:28   14:42   0.02s  0.02s -bash
user     pts/1    desk.example.com 12:41    2.00s  0.03s  0.03s w
[user@host ~]$ 

Discover how long a user has been on the system by viewing the session login time. For each
session, CPU resources consumed by current jobs, including background tasks and child
processes, are in the JCPU column. Current foreground process CPU consumption is in the PCPU
column.

Processes and sessions can be individually or collectively signaled. To terminate all processes for
one user, use the pkill command. Because the initial process in a login session (session leader) is
designed to handle session termination requests and ignore unintended keyboard signals, killing all
of a user's processes and login shells requires using the SIGKILL signal.

Important
SIGKILL is commonly used too quickly by administrators.

Since the SIGKILL signal cannot be handled or ignored, it is always fatal. However, it
forces termination without allowing the killed process to run self-cleanup routines.
It is recommended to send SIGTERM first, then try SIGINT, and only if both fail retry
with SIGKILL.

RH066-RHEL8-en-1-cef4e50 163



Chapter 7 | Monitoring and Managing Linux Processes

First identify the PID numbers to be killed using pgrep, which operates much like pkill, including
using the same options, except that pgrep lists processes rather than killing them.

[root@host ~]# pgrep -l -u bob
6964 bash
6998 sleep
6999 sleep
7000 sleep
[root@host ~]# pkill -SIGKILL -u bob
[root@host ~]# pgrep -l -u bob
[root@host ~]# 

When processes requiring attention are in the same login session, it may not be necessary to kill
all of a user's processes. Determine the controlling terminal for the session using the w command,
then kill only processes referencing the same terminal ID. Unless SIGKILL is specified, the session
leader (here, the Bash login shell) successfully handles and survives the termination request, but
all other session processes are terminated.

[root@host ~]# pgrep -l -u bob
7391 bash
7426 sleep
7427 sleep
7428 sleep
[root@host ~]# w -h -u bob
bob      tty3      18:37    5:04   0.03s  0.03s -bash
[root@host ~]# pkill -t tty3
[root@host ~]# pgrep -l -u bob
7391 bash
[root@host ~]# pkill -SIGKILL -t tty3
[root@host ~]# pgrep -l -u bob
[root@host ~]# 

The same selective process termination can be applied using parent and child process
relationships. Use the pstree command to view a process tree for the system or a single user. Use
the parent process's PID to kill all children they have created. This time, the parent Bash login shell
survives because the signal is directed only at its child processes.

[root@host ~]# pstree -p bob
bash(8391)─┬─sleep(8425)
           ├─sleep(8426)
           └─sleep(8427)
[root@host ~]# pkill -P 8391
[root@host ~]# pgrep -l -u bob
bash(8391)
[root@host ~]# pkill -SIGKILL -P 8391
[root@host ~]# pgrep -l -u bob
bash(8391)
[root@host ~]# 

164 RH066-RHEL8-en-1-cef4e50



Chapter 7 | Monitoring and Managing Linux Processes

References
info libc signal (GNU C Library Reference Manual)

• Section 24: Signal Handling

info libc processes (GNU C Library Reference Manual)

• Section 26: Processes

kill(1), killall(1), pgrep(1), pkill(1), pstree(1), signal(7), and w(1) man
pages

RH066-RHEL8-en-1-cef4e50 165



Chapter 7 | Monitoring and Managing Linux Processes

Guided Exercise

Killing Processes

In this exercise, students will use keyboard sequences and signals to manage and stop
processes.

Outcomes
• Experience with observing the results of starting and stopping multiple shell processes.

Before You Begin
Start your Amazon EC2 instance.

This exercise assumes that you have completed the preceding exercise. You will need two
terminals running independent ssh sessions as ec2-user on your Red Hat Enterprise Linux
instance again, which will be referred to as your left window and your right window.

This exercise also assumes that you still have the program to demonstrate job control from
the preceding exercise. This is the file /home/ec2-user/bin/forever, which should have
the executable permission set and should contain the content

#!/bin/bash

while true; do
  echo -n "$@ " >> ~/outfile
  sleep 1
done

Steps
 1. In the left window, start three forever processes that append text to ~/outfile at one-

second intervals.

[ec2-user@ip-192-0-2-1 ~]$ forever game &
[1] 9613
[ec2-user@ip-192-0-2-1 ~]$ forever set &
[2] 9618
[ec2-user@ip-192-0-2-1 ~]$ forever match & 
[3] 9627
[ec2-user@ip-192-0-2-1 ~]$ 

Your processes will probably have different PID numbers than the example above.

 2. In the right window, use tail to confirm that all three processes are appending to the file.

[ec2-user@ip-192-0-2-1 ~]$ tail -f ~/outfile

 3. In the left window, view jobs to see all three processes in state Running.

166 RH066-RHEL8-en-1-cef4e50



Chapter 7 | Monitoring and Managing Linux Processes

[ec2-user@ip-192-0-2-1 ~]$ jobs
[1]   Running                 forever game &
[2]-  Running                 forever set &
[3]+  Running                 forever match &
[ec2-user@ip-192-0-2-1 ~]$ 

 4. Suspend the forever game process using signals. Confirm that the "game" process is
Stopped. In the right window, confirm that game output is no longer being appended to ~/
outfile.

[ec2-user@ip-192-0-2-1 ~]$ kill -SIGSTOP %1
[ec2-user@ip-192-0-2-1 ~]$ jobs
[1]+  Stopped                 forever game
[2]   Running                 forever set &
[3]-  Running                 forever match &

 5. Terminate the forever set process using signals. Confirm that the forever set job
has disappeared. In the right window, confirm that set output is no longer being appended
to ~/outfile.

[ec2-user@ip-192-0-2-1 ~]$ kill -SIGTERM %2
[ec2-user@ip-192-0-2-1 ~]$ jobs
[1]+  Stopped                 forever game
[2]   Terminated              forever set
[3]-  Running                 forever match &

 6. Continue the forever game process using signals. Confirm that the forever game
process is Running. In the right window, confirm that game output is again being appended
to ~/outfile.

[ec2-user@ip-192-0-2-1 ~]$ kill -SIGCONT %1
[ec2-user@ip-192-0-2-1 ~]$ jobs
[1]+  Running                 forever game &
[3]-  Running                 forever match &

RH066-RHEL8-en-1-cef4e50 167



Chapter 7 | Monitoring and Managing Linux Processes

 7. Terminate the remaining two jobs. Confirm that no jobs remain and that output has
stopped. From the left window, use pkill to terminate all tail commands running as
ec2-user by name. Remove ~/outfile.

[ec2-user@ip-192-0-2-1 ~]$ kill -SIGTERM %1
[ec2-user@ip-192-0-2-1 ~]$ kill -SIGTERM %3
[1]+  Terminated              forever game
[ec2-user@ip-192-0-2-1 ~]$ jobs
[3]+  Terminated              forever match
[ec2-user@ip-192-0-2-1 ~]$ pkill -SIGTERM tail
[ec2-user@ip-192-0-2-1 ~]$ rm ~/outfile

Note
Note that the shell reported the termination of forever game automatically when
the next command was run. In fact, if we'd simply pressed Enter to get a new
shell prompt after the second kill command, the shell would have automatically
reported the termination of job 3.

 8. This concludes this exercise. Log out of both sessions and stop your Amazon EC2 instance.

168 RH066-RHEL8-en-1-cef4e50



Chapter 7 | Monitoring and Managing Linux Processes

Monitoring Processes

Objectives
After completing this section, you should be able to describe what load average is and determine
processes responsible for high resource use on a server.

Describing Load Average
Load average is a measurement provided by the Linux kernel that is a simple way to represent the
perceived system load over time. It can be used as a rough gauge of how many system resource
requests are pending, and to determine whether system load is increasing or decreasing over time.

Every five seconds, the kernel collects the current load number, based on the number of processes
in runnable and uninterruptible states. This number is accumulated and reported as an exponential
moving average over the most recent 1, 5, and 15 minutes.

Understanding the Linux Load Average Calculation
The load average represents the perceived system load over a time period. Linux determines this
by reporting how many processes are ready to run on a CPU, and how many processes are waiting
for disk or network I/O to complete.

• The load number is a running average of the number of processes that are ready to run (in
process state R) or are waiting for I/O to complete (in process state D).

• Some UNIX systems only consider CPU utilization or run queue length to indicate system load.
Linux also includes disk or network utilization because that can have as significant an impact
on system performance as CPU load. When experiencing high load averages with minimal CPU
activity, examine disk and network activity.

Load average is a rough measurement of how many processes are currently waiting for a request
to complete before they can do anything else. The request might be for CPU time to run the
process. Alternatively, the request might be for a critical disk I/O operation to complete, and the
process cannot be run on the CPU until the request completes, even if the CPU is idle. Either way,
system load is impacted and the system appears to run more slowly because processes are waiting
to run.

Interpreting Displayed Load Average Values
The uptime command is one way to display the current load average. It prints the current time,
how long the machine has been up, how many user sessions are running, and the current load
average.

[user@host ~]$ uptime
 15:29:03 up 14 min,  2 users,  load average: 2.92, 4.48, 5.20

The three values for the load average represent the load over the last 1, 5, and 15 minutes. A quick
glance indicates whether system load appears to be increasing or decreasing.

RH066-RHEL8-en-1-cef4e50 169



Chapter 7 | Monitoring and Managing Linux Processes

If the main contribution to load average is from processes waiting for the CPU, you can calculate
the approximate per CPU load value to determine whether the system is experiencing significant
waiting.

The lscpu command can help you determine how many CPUs a system has.

In the following example, the system is a dual-core single socket system with two hyperthreads per
core. Roughly speaking, Linux will treat this as a four CPU system for scheduling purposes.

[user@host ~]$ lscpu
Architecture:        x86_64
CPU op-mode(s):      32-bit, 64-bit
Byte Order:          Little Endian
CPU(s):              4
On-line CPU(s) list: 0-3
Thread(s) per core:  2
Core(s) per socket:  2
Socket(s):           1
NUMA node(s):        1
...output omitted...

For a moment, imagine that the only contribution to the load number is from processes that need
CPU time. Then you can divide the displayed load average values by the number of logical CPUs
in the system. A value below 1 indicates satisfactory resource utilization and minimal wait times. A
value above 1 indicates resource saturation and some amount of processing delay.

# From lscpu, the system has four logical CPUs, so divide by 4:
#                               load average: 2.92, 4.48, 5.20
#           divide by number of logical CPUs:    4     4     4
#                                             ----  ----  ----
#                       per-CPU load average: 0.73  1.12  1.30
#
# This system's load average appears to be decreasing.
# With a load average of 2.92 on four CPUs, all CPUs were in use ~73% of the time.
# During the last 5 minutes, the system was overloaded by ~12%.
# During the last 15 minutes, the system was overloaded by ~30%.

An idle CPU queue has a load number of 0. Each process waiting for a CPU adds a count of 1 to
the load number. If one process is running on a CPU, the load number is one, the resource (the
CPU) is in use, but there are no requests waiting. If that process is running for a full minute, its
contribution to the one-minute load average will be 1.

However, processes uninterruptibly sleeping for critical I/O due to a busy disk or network resource
are also included in the count and increase the load average. While not an indication of CPU
utilization, these processes are added to the queue count because they are waiting for resources
and cannot run on a CPU until they get them. This is still system load due to resource limitations
that is causing processes not to run.

Until resource saturation, a load average remains below 1, since tasks are seldom found waiting in
queue. Load average only increases when resource saturation causes requests to remain queued
and are counted by the load calculation routine. When resource utilization approaches 100%, each
additional request starts experiencing service wait time.

A number of additional tools report load average, including w and top.

170 RH066-RHEL8-en-1-cef4e50



Chapter 7 | Monitoring and Managing Linux Processes

Real-time Process Monitoring
The top program is a dynamic view of the system's processes, displaying a summary header
followed by a process or thread list similar to ps information. Unlike the static ps output, top
continuously refreshes at a configurable interval, and provides capabilities for column reordering,
sorting, and highlighting. User configurations can be saved and made persistent.

Default output columns are recognizable from other resource tools:

• The process ID (PID).

• User name (USER) is the process owner.

• Virtual memory (VIRT) is all memory the process is using, including the resident set, shared
libraries, and any mapped or swapped memory pages. (Labeled VSZ in the ps command.)

• Resident memory (RES) is the physical memory used by the process, including any resident
shared objects. (Labeled RSS in the ps command.)

• Process state (S) displays as:

– D = Uninterruptible Sleeping

– R = Running or Runnable

– S = Sleeping

– T = Stopped or Traced

– Z = Zombie

• CPU time (TIME) is the total processing time since the process started. May be toggled to
include cumulative time of all previous children.

• The process command name (COMMAND).

Fundamental Keystrokes in top

Key Purpose

? or h Help for interactive keystrokes.

l, t, m Toggles for load, threads, and memory header lines.

1 Toggle showing individual CPUs or a summary for all CPUs in header.

s (1) Change the refresh (screen) rate, in decimal seconds (e.g., 0.5, 1, 5).

b Toggle reverse highlighting for Running processes; default is bold only.

Shift+b Enables use of bold in display, in the header, and for Running processes.

Shift+h Toggle threads; show process summary or individual threads.

u, Shift+u Filter for any user name (effective, real).

Shift+m Sorts process listing by memory usage, in descending order.

Shift+p Sorts process listing by processor utilization, in descending order.

RH066-RHEL8-en-1-cef4e50 171



Chapter 7 | Monitoring and Managing Linux Processes

Key Purpose

k (1) Kill a process. When prompted, enter PID, then signal.

r (1) Renice a process. When prompted, enter PID, then nice_value.

Shift+w Write (save) the current display configuration for use at the next top restart.

q Quit.

f Manage the columns by enabling or disabling fields. Also allows you to set the
sort field for top.

Note: (1)  Not available if top started in secure mode. See top(1).

References
ps(1), top(1), uptime(1), and w(1) man pages

172 RH066-RHEL8-en-1-cef4e50



Chapter 7 | Monitoring and Managing Linux Processes

Guided Exercise

Monitoring Process Activity

In this exercise, students will use the top command to dynamically view, sort, and stop
processes.

Outcomes
• Practice with managing processes in real time.

Before You Begin
Start your Amazon EC2 instance.

This exercise assumes that you have completed the preceding exercises in this chapter. You
will need two terminals running independent ssh sessions as ec2-user on your Red Hat
Enterprise Linux instance again, which will be referred to as your left window and your right
window.

Steps
 1. We need a short program which will generate artificial CPU load. In either window, use vim

to create a file named /home/ec2-user/bin/process101 which contains a short shell
script as shown:

#!/bin/bash

while true; do
  var=1
  while [[ var -lt 50000 ]]; do
    var=$(($var+1))
  done
  sleep 1
done

The process101 script will endlessly perform fifty thousand addition problems, then sleep
for one second, then reset the variable and repeat.

Set the executable permission on the file so that ec2-user can run this script like any
other program.

[ec2-user@ip-192-0-2-1 ~]$ vim bin/process101
  ...output omitted...
[ec2-user@ip-192-0-2-1 ~]$ cat bin/process101
#!/bin/bash

while true; do
  var=1
  while [[ var -lt 50000 ]]; do
    var=$(($var+1))
  done

RH066-RHEL8-en-1-cef4e50 173



Chapter 7 | Monitoring and Managing Linux Processes

  sleep 1
done
[ec2-user@ip-192-0-2-1 ~]$ chmod +x bin/process101

 2. In the right window, run the top utility. Size the window to be as tall as possible.

[ec2-user@ip-192-0-2-1 ~]$ top

 3. In the left window, determine the number of logical CPUs on this virtual machine.

[ec2-user@ip-192-0-2-1 ~]$ grep "model name" /proc/cpuinfo | wc -l
1

 4. In the left window, run a single instance of the process101 executable.

[ec2-user@ip-192-0-2-1 ~]$ process101 &
[1] 32105

 5. In the right window, observe the top display. Use the single keystrokes l, t, and m to toggle
the load, threads, and memory header lines. After observing this behavior, ensure that all
headers are displaying.

 6. Note the process ID (PID) for process101. View the CPU percentage for the process,
which is expected to hover around 15% or 30%.

View the load averages. On a single-CPU virtual machine, for example, the one-minute load
average is currently less than a value of 1. The value observed may be affected by resource
contention from other processes you may be running.

 7. In the left window, run a second instance of process101.

[ec2-user@ip-192-0-2-1 ~]$ process101 &
[2] 32252

 8. In top, note the process ID (PID) for the second process101. View the CPU percentage
for the process, also expected to hover around 15% or 30%.

View the one-minute load average again, which may still be less than 1. Wait up to one
minute to allow the calculation to adjust to the new workload.

 9. In the left window, run a third instance of process101.

[ec2-user@ip-192-0-2-1 ~]$ process101 &
[3] 32408

 10. Note the process ID (PID) for the third process101. View the CPU percentage for each of
the process101 processes. It may begin to drop as they each contend for the single CPU
on the system.

View the one-minute load average again, which may now be above 1. Wait up to one minute
to allow the calculation to again adjust to the new workload.

174 RH066-RHEL8-en-1-cef4e50



Chapter 7 | Monitoring and Managing Linux Processes

 11. When finished observing the load average values, terminate each of the process101
processes from within top.

11.1. Press k. Observe the prompt below the headers and above the columns. (The default
pid will probably be different on your system.)

PID to signal/kill [default pid = 32105] 

11.2. Type the PID for one of the process101 instances. Press Enter.

11.3. Press Enter again to use the default SIGTERM signal 15.

Confirm that the selected process is no longer observed in top. If the PID still remains,
repeat these terminating steps, substituting SIGKILL signal 9 when prompted.

 12. Repeat the previous step for each remaining process101 instance. Confirm that no
process101 instances remain in top.

 13. In the right window, press q to exit top.

 14. This concludes this exercise. Log out of both sessions and stop your Amazon EC2 instance.

RH066-RHEL8-en-1-cef4e50 175



176 RH066-RHEL8-en-1-cef4e50



Chapter 8

Installing and Updating
Software Packages

Goal To download, install, update, and manage software
packages from Red Hat and YUM package
repositories.

Objectives • Explain what an RPM package is and how RPM
packages are used to manage software on a
Red Hat Enterprise Linux system.

• Find, install, and update software packages
using the yum command.

Sections • RPM Software Packages and Yum (and Quiz)
• Managing Software Updates with Yum (and

Guided Exercise)

RH066-RHEL8-en-1-cef4e50 177



Chapter 8 | Installing and Updating Software Packages

RPM Software Packages and Yum

Objectives
After completing this section, you should be able to explain how software is provided as RPM
packages, and investigate the packages installed on the system with Yum and RPM.

Software packages and RPM
The RPM Package Manager, originally developed by Red Hat, provides a standard way to package
software for distribution. Managing software in the form of RPM packages is much simpler than
working with software that has simply been extracted into a file system from an archive. It lets
administrators track which files were installed by the software package and which ones need to be
removed if it is uninstalled, and check to ensure that supporting packages are present when it is
installed. Information about installed packages is stored in a local RPM database on each system.
All software provided by Red Hat for Red Hat Enterprise Linux is provided as an RPM package.

RPM package files names consist of four elements (plus the .rpm suffix): name-version-
release.architecture:

Figure 8.1: RPM file name elements

• NAME is one or more words describing the contents (coreutils).

• VERSION is the version number of the original software (8.30).

• RELEASE is the release number of the package based on that version, and is set by the
packager, who might not be the original software developer (4.el8).

• ARCH is the processor architecture the package was compiled to run on. noarch indicates
that this package's contents are not architecture-specific (as opposed to x86_64 for 64-bit,
aarch64 for 64-bit ARM, and so on).

Only the package name is required for installing packages from repositories. If multiple versions
exist, the package with the higher version number is installed. If multiple releases of a single
version exist, the package with the higher release number is installed.

Each RPM package is a special archive made up of three components:

• The files installed by the package.

• Information about the package (metadata), such as the name, version, release, and arch; a
summary and description of the package; whether it requires other packages to be installed;
licensing; a package change log; and other details.

178 RH066-RHEL8-en-1-cef4e50



Chapter 8 | Installing and Updating Software Packages

• Scripts that may run when this package is installed, updated, or removed, or are triggered when
other packages are installed, updated, or removed.

Typically, software providers digitally sign RPM packages using GPG keys (Red Hat digitally
signs all packages it releases). The RPM system verifies package integrity by confirming that the
package was signed by the appropriate GPG key. The RPM system refuses to install a package if
the GPG signature does not match.

Updating Software with RPM Packages
Red Hat generates a complete RPM package to update software. An administrator installing that
package gets only the most recent version of the package. Red Hat does not require that older
packages be installed and then patched. To update software, RPM removes the older version
of the package and installs the new version. Updates usually retain configuration files, but the
packager of the new version defines the exact behavior.

In most cases, only one version or release of a package may be installed at a time. However, if a
package is built so that there are no conflicting file names, then multiple versions may be installed.
The most important example of this is the kernel package. Since a new kernel can only be tested
by booting to that kernel, the package is specifically designed so that multiple versions may be
installed at once. If the new kernel fails to boot, the old kernel is still available and bootable.

References
rpm(8) man page

RH066-RHEL8-en-1-cef4e50 179



Chapter 8 | Installing and Updating Software Packages

Quiz

RPM Software Packages

Choose the correct answer to the following questions:

 1. Which portion of an RPM references the version of the upstream course code?
a. Repository
b. Version
c. Release
d. Changelog

 2. Which portion of an RPM lists the reasons for each package build?
a. Errata
b. Version
c. Release
d. Changelog

 3. Which portion of an RPM references the version of the package build?
a. Errata
b. Version
c. Release
d. Changelog

 4. Which portion of an RPM references the processor type required for a specific
package?
a. Architecture
b. Release
c. Version
d. Errata

 5. Which term is used to descibe a collection of RPM packages and package groups?
a. Software Collection
b. Distribution
c. Repository
d. Changelog

 6. Which term is used to verify the source and integrity of a package?
a. Release
b. GPG signature
c. Repository Certificate
d. Changelog

180 RH066-RHEL8-en-1-cef4e50



Chapter 8 | Installing and Updating Software Packages

Solution

RPM Software Packages

Choose the correct answer to the following questions:

 1. Which portion of an RPM references the version of the upstream course code?
a. Repository
b. Version
c. Release
d. Changelog

 2. Which portion of an RPM lists the reasons for each package build?
a. Errata
b. Version
c. Release
d. Changelog

 3. Which portion of an RPM references the version of the package build?
a. Errata
b. Version
c. Release
d. Changelog

 4. Which portion of an RPM references the processor type required for a specific
package?
a. Architecture
b. Release
c. Version
d. Errata

 5. Which term is used to descibe a collection of RPM packages and package groups?
a. Software Collection
b. Distribution
c. Repository
d. Changelog

 6. Which term is used to verify the source and integrity of a package?
a. Release
b. GPG signature
c. Repository Certificate
d. Changelog

RH066-RHEL8-en-1-cef4e50 181



Chapter 8 | Installing and Updating Software Packages

Managing Software Updates with Yum

Objectives
After completing this section, you should be able to find, install, and update software packages,
using the yum command.

Managing Software Packages with Yum
The low-level rpm command can be used to install packages, but it is not designed to work with
package repositories or resolve dependencies from multiple sources automatically.

Yum is designed to be a better system for managing RPM-based software installation and
updates. The yum command allows you to install, update, remove, and get information about
software packages and their dependencies. You can get a history of transactions performed and
work with multiple Red Hat and third-party software repositories.

Finding Software with Yum

• yum help displays usage information.

• yum list displays installed and available packages.

[user@host ~]$ yum list 'http*'
Available Packages
http-parser.i686              2.8.0-2.el8                        rhel8-appstream
http-parser.x86_64            2.8.0-2.el8                        rhel8-appstream
httpcomponents-client.noarch  4.5.5-4.module+el8+2452+b359bfcd   rhel8-appstream
httpcomponents-core.noarch    4.4.10-3.module+el8+2452+b359bfcd  rhel8-appstream
httpd.x86_64                  2.4.37-7.module+el8+2443+605475b7  rhel8-appstream
httpd-devel.x86_64            2.4.37-7.module+el8+2443+605475b7  rhel8-appstream
httpd-filesystem.noarch       2.4.37-7.module+el8+2443+605475b7  rhel8-appstream
httpd-manual.noarch           2.4.37-7.module+el8+2443+605475b7  rhel8-appstream
httpd-tools.x86_64            2.4.37-7.module+el8+2443+605475b7  rhel8-appstream

• yum search KEYWORD lists packages by keywords found in the name and summary fields only.

To search for packages that have “web server” in their name, summary, and description fields,
use search all:

[user@host ~]$ yum search all 'web server'
================= Summary & Description Matched: web server ====================
pcp-pmda-weblog.x86_64 : Performance Co-Pilot (PCP) metrics from web server logs
nginx.x86_64 : A high performance web server and reverse proxy server
======================== Summary Matched: web server ===========================
libcurl.x86_64 : A library for getting files from web servers
libcurl.i686 : A library for getting files from web servers
libcurl.x86_64 : A library for getting files from web servers
====================== Description Matched: web server =========================
httpd.x86_64 : Apache HTTP Server

182 RH066-RHEL8-en-1-cef4e50



Chapter 8 | Installing and Updating Software Packages

git-instaweb.x86_64 : Repository browser in gitweb
...output omitted...

• yum info PACKAGENAME returns detailed information about a package, including the disk
space needed for installation.

To get information on the Apache HTTP Server:

[user@host ~]$ yum info httpd
Available Packages
Name         : httpd
Version      : 2.4.37
Release      : 7.module+el8+2443+605475b7
Arch         : x86_64
Size         : 1.4 M
Source       : httpd-2.4.37-7.module+el8+2443+605475b7.src.rpm
Repo         : rhel8-appstream
Summary      : Apache HTTP Server
URL          : https://httpd.apache.org/
License      : ASL 2.0
Description  : The Apache HTTP Server is a powerful, efficient, and extensible
             : web server.

• yum provides PATHNAME displays packages that match the path name specified (which
often include wildcard characters).

To find packages that provide the /var/www/html directory, use:

[user@host ~]$ yum provides /var/www/html
httpd-filesystem-2.4.37-7.module+el8+2443+605475b7.noarch : The basic directory
 layout for the Apache HTTP server
Repo        : rhel8-appstream
Matched from:
Filename    : /var/www/html

Installing and removing software with yum

• yum install PACKAGENAME obtains and installs a software package, including any
dependencies.

[user@host ~]$ yum install httpd
Dependencies resolved.
================================================================================
 Package                  Arch       Version             Repository        Size
================================================================================
Installing:
 httpd                    x86_64     2.4.37-7.module...  rhel8-appstream   1.4 M
Installing dependencies:
 apr                      x86_64     1.6.3-8.el8         rhel8-appstream   125 k
 apr-util                 x86_64     1.6.1-6.el8         rhel8-appstream   105 k
...output omitted...
Transaction Summary
================================================================================
Install  9 Packages

RH066-RHEL8-en-1-cef4e50 183



Chapter 8 | Installing and Updating Software Packages

Total download size: 2.0 M
Installed size: 5.4 M
Is this ok [y/N]: y
Downloading Packages:
(1/9): apr-util-bdb-1.6.1-6.el8.x86_64.rpm           464 kB/s |  25 kB     00:00
(2/9): apr-1.6.3-8.el8.x86_64.rpm                    1.9 MB/s | 125 kB     00:00
(3/9): apr-util-1.6.1-6.el8.x86_64.rpm               1.3 MB/s | 105 kB     00:00
...output omitted...
Total                                                8.6 MB/s | 2.0 MB     00:00
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.
Running transaction
  Preparing        :                                                         1/1
  Installing       : apr-1.6.3-8.el8.x86_64                                  1/9
  Running scriptlet: apr-1.6.3-8.el8.x86_64                                  1/9
  Installing       : apr-util-bdb-1.6.1-6.el8.x86_64                         2/9
...output omitted...
Installed:
  httpd-2.4.37-7.module+el8+2443+605475b7.x86_64 apr-util-bdb-1.6.1-6.el8.x86_64
  apr-util-openssl-1.6.1-6.el8.x86_64            apr-1.6.3-8.el8.x86_64
...output omitted...
Complete!

• yum update PACKAGENAME obtains and installs a newer version of the specified package,
including any dependencies. Generally the process tries to preserve configuration files in place,
but in some cases, they may be renamed if the packager thinks the old one will not work after
the update. With no PACKAGENAME specified, it installs all relevant updates.

[user@host ~]$ sudo yum update

Since a new kernel can only be tested by booting to that kernel, the package is specifically
designed so that multiple versions may be installed at once. If the new kernel fails to boot, the
old kernel is still available. Using yum update kernel will actually install the new kernel. The
configuration files hold a list of packages to always install even if the administrator requests an
update.

184 RH066-RHEL8-en-1-cef4e50



Chapter 8 | Installing and Updating Software Packages

Note
Use yum list kernel to list all installed and available kernels. To view the
currently running kernel, use the uname command. The -r option only shows
the kernel version and release, and the -a option shows the kernel release and
additional information.

[user@host ~]$ yum list kernel
Installed Packages
kernel.x86_64         4.18.0-60.el8         @anaconda
kernel.x86_64         4.18.0-67.el8         @rhel-8-for-x86_64-baseos-htb-rpms
[user@host ~]$ uname -r
4.18.0-60.el8.x86_64
[user@host ~]$ uname -a
Linux host.lab.example.com 4.18.0-60.el8.x86_64 #1 SMP Fri Jan 11 19:08:11 UTC
 2019 x86_64 x86_64 x86_64 GNU/Linux
 

• yum remove PACKAGENAME removes an installed software package, including any supported
packages.

[user@host ~]$ sudo yum remove httpd

Warning
The yum remove command removes the packages listed and any package that
requires the packages being removed (and packages which require those packages,
and so on). This can lead to unexpected removal of packages, so carefully review the
list of packages to be removed.

Installing and removing groups of software with yum

• yum also has the concept of groups, which are collections of related software installed together
for a particular purpose. In Red Hat Enterprise Linux 8, there are two kinds of groups. Regular
groups are collections of packages. Environment groups are collections of regular groups. The
packages or groups provided by a group may be mandatory (they must be installed if the
group is installed), default (normally installed if the group is installed), or optional (not
installed when the group is installed, unless specifically requested).

Like yum list, the yum group list command shows the names of installed and available
groups.

[user@host ~]$ yum group list
Available Environment Groups:
   Server with GUI
   Minimal Install
   Server
...output omitted...
Available Groups:
   Container Management
   .NET Core Development

RH066-RHEL8-en-1-cef4e50 185



Chapter 8 | Installing and Updating Software Packages

   RPM Development Tools
...output omitted...

Some groups are normally installed through environment groups and are hidden by default. List
these hidden groups with the yum group list hidden command.

• yum group info displays information about a group. It includes a list of mandatory, default,
and optional package names.

[user@host ~]$ yum group info "RPM Development Tools"
Group: RPM Development Tools
 Description: These tools include core development tools such rpmbuild.
  Mandatory Packages:
    redhat-rpm-config
    rpm-build
  Default Packages:
    rpmdevtools
  Optional Packages:
    rpmlint

• yum group install installs a group that installs its mandatory and default packages and the
packages they depend on.

[user@host ~]$ sudo yum group install "RPM Development Tools"
...output omitted...
Installing Groups:
 RPM Development Tools

 Transaction Summary
 ===============================================================================
 Install  64 Packages

 Total download size: 21 M
 Installed size: 62 M
 Is this ok [y/N]: y
...output omitted...

186 RH066-RHEL8-en-1-cef4e50



Chapter 8 | Installing and Updating Software Packages

Important
The behavior of Yum groups changed starting in Red Hat Enterprise Linux 7. In
RHEL 7 and later, groups are treated as objects, and are tracked by the system. If
an installed group is updated, and new mandatory or default packages have been
added to the group by the Yum repository, those new packages are installed upon
update.

RHEL 6 and earlier consider a group to be installed if all its mandatory packages
have been installed, or if it had no mandatory packages, or if any default or optional
packages in the group are installed. Starting in RHEL 7, a group is considered to
be installed only if yum group install was used to install it. The command yum
group mark install GROUPNAME can be used to mark a group as installed, and
any missing packages and their dependencies are installed upon the next update.

Finally, RHEL 6 and earlier did not have the two-word form of the yum group
commands. In other words, in RHEL 6 the command yum grouplist existed, but
the equivalent RHEL 7 and RHEL 8 command yum group list did not.

Viewing transaction history

• All install and remove transactions are logged in /var/log/dnf.rpm.log.

[user@host ~]$ tail -n 5 /var/log/dnf.rpm.log
2019-02-26T18:27:00Z SUBDEBUG Installed: rpm-build-4.14.2-9.el8.x86_64
2019-02-26T18:27:01Z SUBDEBUG Installed: rpm-build-4.14.2-9.el8.x86_64
2019-02-26T18:27:01Z SUBDEBUG Installed: rpmdevtools-8.10-7.el8.noarch
2019-02-26T18:27:01Z SUBDEBUG Installed: rpmdevtools-8.10-7.el8.noarch
2019-02-26T18:38:40Z INFO --- logging initialized ---

• yum history displays a summary of install and remove transactions.

[user@host ~]$ sudo yum history
ID     | Command line             | Date and time    | Action(s)      | Altered
-------------------------------------------------------------------------------
     7 | group install RPM Develo | 2019-02-26 13:26 | Install        |   65
     6 | update kernel            | 2019-02-26 11:41 | Install        |    4
     5 | install httpd            | 2019-02-25 14:31 | Install        |    9
     4 | -y install @base firewal | 2019-02-04 11:27 | Install        |  127 EE
     3 | -C -y remove firewalld - | 2019-01-16 13:12 | Removed        |   11 EE
     2 | -C -y remove linux-firmw | 2019-01-16 13:12 | Removed        |    1
     1 |                          | 2019-01-16 13:05 | Install        |  447 EE

• The history undo option reverses a transaction.

[user@host ~]$ sudo yum history undo 5
Undoing transaction 7, from Tue 26 Feb 2019 10:40:32 AM EST
    Install apr-1.6.3-8.el8.x86_64                              @rhel8-appstream
    Install apr-util-1.6.1-6.el8.x86_64                         @rhel8-appstream
    Install apr-util-bdb-1.6.1-6.el8.x86_64                     @rhel8-appstream
    Install apr-util-openssl-1.6.1-6.el8.x86_64                 @rhel8-appstream
    Install httpd-2.4.37-7.module+el8+2443+605475b7.x86_64      @rhel8-appstream
...output omitted...

RH066-RHEL8-en-1-cef4e50 187



Chapter 8 | Installing and Updating Software Packages

Summary of Yum Commands
Packages can be located, installed, updated, and removed by name or by package groups.

Task: Command:

List installed and available packages by name yum list [NAME-PATTERN]

List installed and available groups yum group list

Search for a package by keyword yum search KEYWORD

Show details of a package yum info PACKAGENAME

Install a package yum install PACKAGENAME

Install a package group yum group install GROUPNAME

Update all packages yum update

Remove a package yum remove PACKAGENAME

Display transaction history yum history

References
yum(1) and yum.conf(5) man pages

For more information, refer to the Installing software packages chapter in the
Red Hat Enterprise Linux 8 Configuring basic system settings guide at
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/
html-single/configuring_basic_system_settings/index#installing-software-
packages_managing-software-packages

188 RH066-RHEL8-en-1-cef4e50

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#installing-software-packages_managing-software-packages
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#installing-software-packages_managing-software-packages
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#installing-software-packages_managing-software-packages


Chapter 8 | Installing and Updating Software Packages

Guided Exercise

Installing and Updating Software with
Yum

In this exercise, you will install and remove software packages and package groups.

Outcomes
• Install and remove packages which have dependencies.

Before You Begin
Start your Amazon EC2 instance and use ssh to log in as the user ec2-user. It is assumed
that ec2-user can use sudo to run commands as root.

It is also assumed that the AMI that you are using for your Amazon EC2 instance has been
pre-configured with a Red Hat Enterprise Linux subscription and can get software packages
and updates from the Red Hat Update Infrastructure (RHUI) in AWS. This should be the case
for all official AMIs as discussed at https://aws.amazon.com/partners/redhat/faqs/.

Steps
 1. Attempt to run the gnuplot command.

1.1. Attempt to run the gnuplot command. You should find that it is not installed.

[ec2-user@ip-192-0-2-1 ~]$ gnuplot
-bash: gnuplot: command not found

 2. Search for the package that provides gnuplot.

2.1. Get an interactive shell as the root user.

[ec2-user@ip-192-0-2-1 ~]$ sudo su -
Last login: Fri Jul 24 15:42:55 EDT 2020 on pts/0
[root@ip-192-0-2-1 ~]# 

2.2. Search for plotting packages.

[root@ip-192-0-2-1 ~]# yum search plot
Last metadata expiration check: 0:51:39 ago on Tue 28 Jul 2020 07:00:56 AM UTC.
======================== Name & Summary Matched: plot ========================
gnuplot-common.x86_64 : The common gnuplot parts
texlive-pst-plot.noarch : Plot data using PSTricks
gnuplot.x86_64 : A program for plotting mathematical expressions and data
[root@ip-192-0-2-1 ~]# 

2.3. Find out more information about the gnuplot package.

RH066-RHEL8-en-1-cef4e50 189

https://aws.amazon.com/partners/redhat/faqs/


Chapter 8 | Installing and Updating Software Packages

[root@ip-192-0-2-1 ~]# yum info gnuplot
Last metadata expiration check: 0:51:53 ago on Tue 28 Jul 2020 07:00:56 AM UTC.
Available Packages
Name         : gnuplot
Version      : 5.2.4
Release      : 1.el8
Architecture : x86_64
Size         : 892 k
Source       : gnuplot-5.2.4-1.el8.src.rpm
Repository   : rhel-8-for-x86_64-appstream-rpms
Summary      : A program for plotting mathematical expressions and data
URL          : http://www.gnuplot.info/
License      : gnuplot and MIT
Description  : Gnuplot is a command-line driven, interactive function plotting
             : program especially suited for scientific data representation.
             : Gnuplot can be used to plot functions and data points in both
             : two and three dimensions and in many different formats.
             :
             : Install gnuplot if you need a graphics package for scientific
             : data representation.
             :
             : This package provides a Qt based terminal version of gnuplot.

[root@ip-192-0-2-1 ~]# 

 3. Install the gnuplot package.

[root@ip-192-0-2-1 ~]# yum install gnuplot
Last metadata expiration check: 0:53:39 ago on Tue 28 Jul 2020 07:00:56 AM UTC.
Dependencies resolved.
================================================================================
 Package          Arch   Version        Repository                        Size
================================================================================
Installing:
 gnuplot          x86_64 5.2.4-1.el8    rhel-8-for-x86_64-appstream-rpms 892 k
Installing dependencies:
 avahi-libs       x86_64 0.7-19.el8     rhel-8-for-x86_64-baseos-rpms     63 k
 cairo            x86_64 1.15.12-3.el8  rhel-8-for-x86_64-appstream-rpms 721 k
...output omitted...
Transaction Summary
================================================================================
Install  59 Packages

Total download size: 28 M
Installed size: 88 M
Is this ok [y/N]: y
Downloading Packages:
(1/59): fontpackages-filesystem-1.44-22.el8.noa  39 kB/s |  16 kB     00:00
(2/59): dejavu-fonts-common-2.35-6.el8.noarch.r 157 kB/s |  74 kB     00:00
...output omitted...
  Installing       : libjpeg-turbo-1.5.3-10.el8.x86_64                     1/59
  Installing       : libX11-xcb-1.6.8-3.el8.x86_64                         2/59
  Installing       : mesa-libglapi-19.3.4-2.el8.x86_64                     3/59

190 RH066-RHEL8-en-1-cef4e50



Chapter 8 | Installing and Updating Software Packages

...output omitted...
  Verifying        : fontpackages-filesystem-1.44-22.el8.noarch            1/59
  Verifying        : dejavu-fonts-common-2.35-6.el8.noarch                 2/59
  Verifying        : dejavu-sans-fonts-2.35-6.el8.noarch                   3/59
...output omitted...
Installed:
  avahi-libs-0.7-19.el8.x86_64
  cairo-1.15.12-3.el8.x86_64
  cups-libs-1:2.2.6-33.el8.x86_64
...output omitted...
Complete!
[root@ip-192-0-2-1 ~]# 

 4. Test the gnuplot command.

[root@ip-192-0-2-1 ~]# gnuplot

 G N U P L O T
 Version 5.2 patchlevel 4    last modified 2018-06-01

 Copyright (C) 1986-1993, 1998, 2004, 2007-2018
 Thomas Williams, Colin Kelley and many others

 gnuplot home:     http://www.gnuplot.info
 faq, bugs, etc:   type "help FAQ"
 immediate help:   type "help"  (plot window: hit 'h')

Terminal type is now 'qt'
gnuplot> quit
[root@ip-192-0-2-1 ~]# 

 5. Test the yum remove command.

5.1. Use the yum remove command to remove the gnuplot package, but respond with no
when prompted. How many packages would be removed?

[root@ip-192-0-2-1 ~]# yum remove gnuplot
Dependencies resolved.
================================================================================
 Package          Arch   Version       Repository                         Size
================================================================================
Removing:
 gnuplot          x86_64 5.2.4-1.el8   @rhel-8-for-x86_64-appstream-rpms 2.1 M
Removing unused dependencies:
 avahi-libs       x86_64 0.7-19.el8    @rhel-8-for-x86_64-baseos-rpms    159 k
 cairo            x86_64 1.15.12-3.el8 @rhel-8-for-x86_64-appstream-rpms 1.8 M
...output omitted...
Transaction Summary
================================================================================
Remove  59 Packages

Freed space: 88 M

RH066-RHEL8-en-1-cef4e50 191



Chapter 8 | Installing and Updating Software Packages

Is this ok [y/N]: n
Operation aborted.
[root@ip-192-0-2-1 ~]# 

5.2. Use the yum remove command to remove the gnuplot-common package, but
respond with no when prompted. How many packages would be removed?

[root@ip-192-0-2-1 ~]# yum remove gnuplot-common
Dependencies resolved.
================================================================================
 Package          Arch   Version       Repository                         Size
================================================================================
Removing:
 gnuplot-common   x86_64 5.2.4-1.el8   @rhel-8-for-x86_64-appstream-rpms 1.7 M
Removing dependent packages:
 gnuplot          x86_64 5.2.4-1.el8   @rhel-8-for-x86_64-appstream-rpms 2.1 M
Removing unused dependencies:
 avahi-libs       x86_64 0.7-19.el8    @rhel-8-for-x86_64-baseos-rpms    159 k
 cairo            x86_64 1.15.12-3.el8 @rhel-8-for-x86_64-appstream-rpms 1.8 M
...output omitted...
Transaction Summary
================================================================================
Remove  59 Packages

Freed space: 88 M
Is this ok [y/N]: n
Operation aborted.
[root@ip-192-0-2-1 ~]# 

 6. Gather information about the “RPM Development Tools” component group and install it.

6.1. Use the yum group list command to list all available component groups.

[root@ip-192-0-2-1 ~]# yum group list
Last metadata expiration check: 0:55:45 ago on Tue 28 Jul 2020 07:00:56 AM UTC.
Available Environment Groups:
   Server with GUI
   Server
   Minimal Install
   Workstation
   Virtualization Host
   Custom Operating System
Available Groups:
   RPM Development Tools
   Container Management
   .NET Core Development
   Graphical Administration Tools
   Network Servers
   System Tools
   Scientific Support
   Smart Card Support
   Headless Management
   Development Tools

192 RH066-RHEL8-en-1-cef4e50



Chapter 8 | Installing and Updating Software Packages

   Legacy UNIX Compatibility
   Security Tools
[root@ip-192-0-2-1 ~]# 

6.2. Use the yum group info command to find out more information about the RPM
Development Tools component group, including a list of included packages.

[root@ip-192-0-2-1 ~]# yum group info "RPM Development Tools"
Last metadata expiration check: 0:56:48 ago on Tue 28 Jul 2020 07:00:56 AM UTC.

Group: RPM Development Tools
 Description: Tools used for building RPMs, such as rpmbuild.
 Mandatory Packages:
   redhat-rpm-config
   rpm-build
 Default Packages:
   rpmdevtools
 Optional Packages:
   rpmlint
[root@ip-192-0-2-1 ~]# 

6.3. Use the yum group install command to install the RPM Development Tools
component group.

[root@ip-192-0-2-1 ~]# yum group install "RPM Development Tools"
Last metadata expiration check: 0:57:17 ago on Tue 28 Jul 2020 07:00:56 AM UTC.
Dependencies resolved.
================================================================================
 Package           Arch   Version        Repository                        Size
================================================================================
Installing group/module packages:
 redhat-rpm-config noarch 122-1.el8      rhel-8-for-x86_64-appstream-rpms  83 k
 rpm-build         x86_64 4.14.2-37.el8  rhel-8-for-x86_64-appstream-rpms 171 k
 rpmdevtools       noarch 8.10-7.el8     rhel-8-for-x86_64-appstream-rpms  87 k
Installing dependencies:
 binutils          x86_64 2.30-73.el8    rhel-8-for-x86_64-baseos-rpms    5.7 M
 bzip2             x86_64 1.0.6-26.el8   rhel-8-for-x86_64-baseos-rpms     60 k
...output omitted...
Transaction Summary
================================================================================
Install  74 Packages

Total download size: 28 M
Installed size: 90 M
Is this ok [y/N]: y
Downloading Packages:
(1/75): perl-Scalar-List-Utils-1.49-2.el8.x86_6 200 kB/s |  68 kB     00:00
(2/75): perl-PathTools-3.74-1.el8.x86_64.rpm    249 kB/s |  90 kB     00:00
...output omitted...
  Installing       : perl-Carp-1.42-396.el8.noarch                         1/75
  Installing       : perl-Exporter-5.72-396.el8.noarch                     2/75
  Installing       : perl-libs-4:5.26.3-416.el8.x86_64                     3/75
...output omitted...
  Verifying        : perl-Scalar-List-Utils-3:1.49-2.el8.x86_64            1/75

RH066-RHEL8-en-1-cef4e50 193



Chapter 8 | Installing and Updating Software Packages

  Verifying        : perl-PathTools-3.74-1.el8.x86_64                      2/75
  Verifying        : perl-Data-Dumper-2.167-399.el8.x86_64                 3/75
...output omitted...
Installed:
  binutils-2.30-73.el8.x86_64
  bzip2-1.0.6-26.el8.x86_64
  dwz-0.12-9.el8.x86_64
...output omitted...
Complete!
[root@ip-192-0-2-1 ~]# 

 7. Explore the history options of yum.

7.1. Use the yum history command to display recent yum history.

[root@ip-192-0-2-1 ~]# yum history
ID     | Command line             | Date and time    | Action(s)      | Altered
-------------------------------------------------------------------------------
     6 | group install RPM Develo | 2020-07-28 07:59 | Install        |   75
     5 | install gnuplot          | 2020-07-28 07:55 | Install        |   59
     4 | -y install vim-enhanced  | 2020-07-28 07:06 | Install        |    4
...output omitted...
[root@ip-192-0-2-1 ~]# 

7.2. Use the yum history info command to confirm that the last transaction is the
group installation.

[root@ip-192-0-2-1 ~]# yum history info 6
Transaction ID : 6
Begin time     : Tue 28 Jul 2020 07:59:12 AM UTC
Begin rpmdb    : 467:81427725b5ac0fd4c0adc6f0b8f799f6fe1315b8
End time       : Tue 28 Jul 2020 07:59:20 AM UTC (8 seconds)
End rpmdb      : 541:da6e11d22bd61700281e7a237e0d18e412b9d9f9
User           : Cloud User <ec2-user>
Return-Code    : Success
Releasever     : 8
Command Line   : group install RPM Development Tools
Packages Altered:
    Install rust-srpm-macros-5-2.el8.noarch         @rhel-8-appstream-rhui-rpms
    Install perl-URI-1.73-3.el8.noarch              @rhel-8-appstream-rhui-rpms
    Install perl-Net-SSLeay-1.88-1.el8.x86_64       @rhel-8-appstream-rhui-rpms
...output omitted...
[root@ip-192-0-2-1 ~]# 

Important
Note that the transaction ID number (6 above) may be different for you on your
system. Use the most recent ID number that appears in the output of the yum
history command.

7.3. Use the yum history undo command to remove the set of packages that were
installed when the gnuplot package was installed.

194 RH066-RHEL8-en-1-cef4e50



Chapter 8 | Installing and Updating Software Packages

[root@ip-192-0-2-1 ~]# yum history undo 5
Last metadata expiration check: 1:01:57 ago on Tue 28 Jul 2020 07:00:56 AM UTC.
Undoing transaction 5, from Tue 28 Jul 2020 07:55:18 AM UTC
    Install libXxf86vm-1.1.4-9.el8.x86_64           @rhel-8-appstream-rhui-rpms
    Install libSM-1.2.3-1.el8.x86_64                @rhel-8-appstream-rhui-rpms
...output omitted...

Transaction Summary
================================================================================
Remove  59 Packages

Freed space: 88 M
Is this ok [y/N]: y
...output omitted...
Complete!
[root@ip-192-0-2-1 ~]# 

 8. Use the yum update command to make sure all packages on the system are up to date.

[root@ip-192-0-2-1 ~]# yum update
Last metadata expiration check: 1:03:51 ago on Tue 28 Jul 2020 07:00:56 AM UTC.
Dependencies resolved.
================================================================================
 Package              Arch   Version           Repository                  Size
================================================================================
Installing:
 kernel               x86_64 4.18.0-193.13.2.el8_2
                                               rhel-8-baseos-rhui-rpms    2.8 M
 kernel-core          x86_64 4.18.0-193.13.2.el8_2
                                               rhel-8-baseos-rhui-rpms     28 M
 kernel-modules       x86_64 4.18.0-193.13.2.el8_2
                                               rhel-8-baseos-rhui-rpms     24 M
Upgrading:
 NetworkManager       x86_64 1:1.22.8-5.el8_2  rhel-8-baseos-rhui-rpms    2.3 M
 NetworkManager-libnm x86_64 1:1.22.8-5.el8_2  rhel-8-baseos-rhui-rpms    1.7 M
...output omitted...

Transaction Summary
================================================================================
Install   5 Packages
Upgrade  53 Packages

Total download size: 183 M

RH066-RHEL8-en-1-cef4e50 195



Chapter 8 | Installing and Updating Software Packages

Is this ok [y/N]: y
...output omitted...
Complete!
[root@ip-192-0-2-1 ~]# 

Important
There may be a delay of a few minutes during the cleanup and verification phase of
the package update depending on how many packages are installed and what they
are. Be patient if this occurs.

Note that the list of packages may be larger or smaller and different than portrayed
in the preceding example, depending on the version of your instance's AMI and any
additional software updates that become available after this course is published.

 9. This concludes this exercise. Log out and stop your Amazon EC2 instance.

Important
This also concludes the final exercise of this course. Remember to terminate your
Amazon EC2 instance to remove it entirely from the Amazon EC2 cloud and cloud
storage once you are done using it.

Thank you for your participation in this course.

196 RH066-RHEL8-en-1-cef4e50


	Fundamentals of Red Hat Enterprise Linux
	Table of Contents
	Document Conventions
	Chapter 1. Getting Started with Red Hat Enterprise Linux
	What is Linux?
	Quiz: Getting Started with Red Hat Enterprise Linux

	Chapter 2. Accessing the Command Line
	Accessing the Command Line
	Quiz: Local Console Access Terms
	Executing Commands Using the Bash Shell
	Quiz: Bash Commands and Keyboard Shortcuts
	Guided Exercise: Accessing the Command Line

	Chapter 3. Managing Files From the Command Line
	The Linux File System Hierarchy
	Quiz: File System Hierarchy
	Locating Files by Name
	Quiz: Locating Files and Directories
	Managing Files Using Command-line Tools
	Guided Exercise: Command Line File Management
	Matching File Names Using Path Name Expansion
	Quiz: Path Name Expansion
	Lab: Managing Files with Shell Expansion

	Chapter 4. Creating, Viewing, and Editing Text Files
	Editing Text Files from the Shell Prompt
	Guided Exercise: Editing Files with Vim

	Chapter 5. Managing Local Linux Users and Groups
	Users and Groups
	Quiz: User and Group Concepts
	Gaining Superuser Access
	Guided Exercise: Running Commands as root
	Managing Local User Accounts
	Guided Exercise: Creating Users Using Command-line Tools
	Managing Local Group Accounts
	Guided Exercise: Managing Groups Using Command-line Tools
	Lab: Managing Local Linux Users and Groups

	Chapter 6. Controlling Access to Files with Linux File System Permissions
	Linux File System Permissions
	Quiz: Interpreting File and Directory Permissions
	Managing File System Permissions from the Command Line
	Guided Exercise: Managing File Security from the Command Line
	Managing Default Permissions and File Access
	Guided Exercise: Controlling New File Permissions and Ownership
	Lab: Controlling Access to Files with Linux File System Permissions

	Chapter 7. Monitoring and Managing Linux Processes
	Processes
	Quiz: Processes
	Controlling Jobs
	Guided Exercise: Background and Foreground Processes
	Killing Processes
	Guided Exercise: Killing Processes
	Monitoring Processes
	Guided Exercise: Monitoring Process Activity

	Chapter 8. Installing and Updating Software Packages
	RPM Software Packages and Yum
	Quiz: RPM Software Packages
	Managing Software Updates with Yum
	Guided Exercise: Installing and Updating Software with Yum


