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Algorithms are everywhere. You have 
probably executed a few already today. In 

this book, you will read about dozens of 
algorithms: some simple, some complex, some 

famous, some unknown, all interesting, and all worth 
learning. The first algorithm of the book is also the 
most delicious—it generates a berry granola parfait, 
and it’s shown in its entirety in Figure 1. You may 
be accustomed to calling this type of algorithm a 
“recipe,” but it fits Donald Knuth’s definition of an 
algorithm: a finite set of rules that gives a sequence of 
operations for solving a specific type of problem.

I N T R O D U C T I O N



xvi   Introduction

Figure 1: An algorithm: a finite set of rules that gives a sequence of operations  
for solving a specific type of problem 

Parfait-making is not the only domain of life governed by algorithms. 
Every year, the US government requires each adult citizen to execute an 
algorithm, and strives to imprison those who fail to do so correctly. In 
2017, millions of Americans fulfilled this duty by completing the algorithm 
shown in Figure 2, which is taken from a form called 1040-EZ.

Figure 2: The instructions for filing taxes fit the definition of an algorithm.

How is it that taxes and parfaits can have anything in common? Taxes 
are inevitable, numeric, difficult, and universally disliked. Parfaits are infre-
quent, artistic, effortless, and adored without exception. The only trait they 
share is that people prepare both by following algorithms. 

In addition to defining algorithm, the great computer scientist Donald 
Knuth noted that it is nearly synonymous with recipe, procedure, and rig-
marole. In the case of filing taxes via the pictured 1040-EZ form, we have 
12 steps (a finite list) that specify operations (like addition in step 4 and 
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subtraction in step 6) to solve a specific type of problem: wanting to avoid 
being imprisoned for tax evasion. In the case of making a parfait, we have 
six finite steps that specify operations (like placing in step 1 and covering in 
step 2) to solve a specific type of problem: wanting to have a parfait in your 
hand or mouth. 

As you learn more about algorithms, you will begin to see them every-
where and come to appreciate just how powerful they can be. In Chapter 1, 
we will discuss the remarkable human ability to catch a ball, and find out 
the details of the algorithm in the human subconscious that enables us to 
do so. Later, we will talk about algorithms for debugging code, deciding 
how much to eat at a buffet, maximizing revenue, sorting lists, scheduling 
tasks, proofreading text, delivering mail, and winning games like chess and 
sudoku. Along the way, we will learn to judge algorithms according to sev-
eral attributes that professionals believe are important for them to possess. 
And we will begin to get a sense of the craftsmanship or even, dare we say, 
the art of algorithms, which provides scope for creativity and personality in 
an otherwise precise and quantitative endeavor.

Who Is This Book For?
This book provides a friendly introduction to algorithms, with accompany-
ing Python code. To get the greatest possible benefit from it, you should 
have some experience with the following:

Programming/coding. Every major example in the book is illustrated 
with Python code. We strive to provide walkthroughs and explana-
tions of every code snippet to make the book digestible for someone 
with no Python experience and not much programming experience. 
Nevertheless, someone who has at least some basic understanding of 
the fundamentals of programming—such as variable assignment, for 
loops, if/then statements, and function calls—will be the most prepared 
to benefit.

High school math. Algorithms are often used to accomplish many of 
the same goals as math, like solving equations, optimizing, and calcu-
lating values. Algorithms also apply many of the same principles that 
are associated with mathematical thinking, like logic and the need for 
precise definitions. Some of our discussions veer into mathematical 
territory, including algebra, the Pythagorean theorem, pi, and the teen-
siest bit of very basic calculus. We strive to avoid abstruseness and we 
don’t venture beyond the math taught in American high schools.

Anyone who feels comfortable with these prerequisites should be able 
to master all the content in this book. It was written with the following 
groups in mind:

Students. This book is suitable for an introductory class on algo-
rithms, computer science, or programming at the high school or under-
graduate level.



xviii   Introduction

Professionals. Several types of professionals could gain valuable skills 
from this book, including developers or engineers who want to gain 
familiarity with Python, and developers who want to learn more about 
the foundations of computer science and how to improve code by think-
ing algorithmically.

Interested amateurs. The true target audience of this book is inter-
ested amateurs. Algorithms touch nearly every part of life, so everyone 
should be able to find at least something in this book that enhances 
their appreciation of the world around them.

About This Book
This book does not cover every aspect of every extant algorithm; it’s meant 
only as an introduction. After reading it, you will have a solid grasp of 
what an algorithm is, know how to write code to implement important 
algorithms, and understand how to judge and optimize algorithms’ perfor-
mance. You will also be familiar with many of the most popular algorithms 
professionals use today. The chapters are organized as follows:

Chapter 1: Problem-Solving with Algorithms, in which we tackle the 
problem of how to catch a ball, find evidence for a subconscious algo-
rithm governing human behavior, and discuss what that teaches us 
about the utility of algorithms and how to design them.

Chapter 2: Algorithms in History, in which we travel around the world 
and through history to find out how ancient Egyptians and Russian 
peasants multiplied numbers, how the ancient Greeks found greatest 
common divisors, and how medieval Japanese scholars created magic 
squares.

Chapter 3: Maximizing and Minimizing, in which we introduce gradi-
ent ascent and gradient descent. These simple methods for finding the 
maxima and minima of functions are used for optimization, an impor-
tant goal of many algorithms.

Chapter 4: Sorting and Searching, in which we present fundamental 
algorithms for sorting lists and searching for elements within them. We 
also introduce how to measure the efficiency and speed of algorithms.

Chapter 5: Pure Math, in which we concern ourselves with purely 
mathematical algorithms, including those for generating continued 
fractions, calculating square roots, and generating pseudorandom 
numbers.

Chapter 6: Advanced Optimization, in which we cover an advanced 
method for finding optimal solutions: simulated annealing. We also 
introduce the traveling salesman problem, a standard problem in 
advanced computer science.

Chapter 7: Geometry, in which we go over how to generate Voronoi dia-
grams, which can be useful in a variety of geometric applications.
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Chapter 8: Language, in which we discuss how to intelligently add 
spaces to a text that’s missing them, and how to intelligently suggest the 
next words in phrases.

Chapter 9: Machine Learning, in which we discuss decision trees, a 
fundamental machine learning method.

Chapter 10: Artificial Intelligence, in which we jump to an ambitious 
project: implementing an algorithm that can play games against us—
and maybe even win. We start with a simple game, dots and boxes, and 
discuss how we could improve performance.

Chapter 11: Forging Ahead, in which talk about how to progress to 
more advanced work related to algorithms. We discuss how to build 
a chatbot, and how to win a million dollars by creating a sudoku 
algorithm.

Setting Up the Environment
We’ll implement the algorithms described in this book by using the Python 
language. Python is free and open source, and it runs on every major 
platform. You can use the following steps to install Python on Windows, 
macOS, and Linux.

Install Python on Windows
To install Python on Windows, follow these steps:

1. Open the page dedicated to the latest version of Python for Windows 
(make sure you include the final slash): https://www.python.org/downloads/ 
windows/.

2. Click the link for the Python release you want to download. To down-
load the most recent release, click the link Latest Python 3 Release 
- 3.X.Y, where 3.X.Y is the latest version number, like 3.8.3. The code in 
this book was tested on both Python 3.6 and Python 3.8. If you’re inter-
ested in downloading an older version, scroll down on this page to the 
Stable Releases section to find a release you prefer. 

3. The link you clicked in step 2 takes you to a page dedicated to your 
chosen Python release. In the Files section, click the Windows x86-64 
executable installer link.

4. The link in step 3 downloads a .exe file to your computer. This is an 
installer file; double-click it to open it. It will execute the installation 
process automatically. Check the box Add Python 3.X to PATH where 
X is the release number of the installer you downloaded, like 8. After 
that, click Install Now and choose the default options. 

5. When you see the “Setup was successful” message, click Close to com-
plete the installation process.

https://www.python.org/downloads/windows
https://www.python.org/downloads/windows
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There is now a new application on your computer. Its name is Python 3.X, 
where X is the version of Python 3 that you installed. In the Windows search 
bar, type Python. When the application appears, click it to open a Python con-
sole. You can enter Python commands in this console, and they’ll run there.

Install Python on macOS
To install Python on macOS follow these steps: 

1. Open the page dedicated to the latest version of Python for macOS 
(make sure you include the final slash): https://www.python.org/downloads/ 
mac-osx/.

2. Click the link for the Python release you want to download. To down-
load the most recent release, click the link Latest Python 3 Release 
- 3.X.Y, where 3.X.Y is the latest version number, like 3.8.3. The code in 
this book was tested on both Python 3.6 and Python 3.8. If you’re inter-
ested in downloading an older version, scroll down on this page to the 
Stable Releases section to find a release you prefer. 

3. The link you clicked in step 2 takes you to a page dedicated to the latest 
Python release. In the Files section, click the macOS 64-bit installer link. 

4. The link in step 3 downloads a .pkg file to your computer. This is an 
installer file; double-click it to open it. It will execute the installation 
process automatically. Choose the default options.

5. The installer will create a folder on your computer called Python 3.X, 
where X is the number of the Python release you installed. In this folder, 
double-click the icon labeled IDLE. This will open the Python 3.X.Y 
Shell, where 3.X.Y is the latest version number. This is a Python console 
where you can run any Python commands.

Install Python on Linux
To install Python on Linux follow these steps: 

1. Determine which package manager your version of Linux uses. Two 
common examples of package managers are yum and apt-get. 

2. Open the Linux console (also called the terminal), and execute the fol-
lowing two commands:

> sudo apt-get update
> sudo apt-get install python3.8

If you are using yum or some other package manager, replace both 
instances of apt-get in these two lines with yum or the name of your 
package manager. Likewise, if you want to install an older version 
of Python, replace 3.8 (the latest version number at the time of this 

https://www.python.org/downloads/mac-osx
https://www.python.org/downloads/mac-osx
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writing) with any other release number, like 3.6, one of the versions 
used to test the code in this book. To see what the latest version of 
Python is, go to https://www.python.org/downloads/source/. There, you 
will see a Latest Python 3 Release - Python 3.X.Y link, where 3.X.Y is 
a release number; use the first two digits in the installation command 
just shown.

3. Run Python by executing the following command in the Linux console:

python3

The Python console opens in the Linux console window. You can enter 
Python commands here.

Installing Third-Party Modules
Some of the code we’ll introduce in this book will rely on Python modules 
that are not part of the core Python software that you downloaded from 
Python’s official website. To install third-party modules on your computer, 
follow the instructions at http://automatetheboringstuff.com/2e/appendixa/.

Summary
Our study of algorithms will take us around the world and many centuries 
back through history. We’ll explore innovations from ancient Egypt, Babylon, 
Periclean Athens, Baghdad, medieval Europe, Edo Japan, and the British Raj, 
all the way up to our remarkable present day and its breathtaking technology. 
We’ll be pushed to find new ways around problems and through constraints 
that initially seem impossible to confront. In doing so, we’ll connect not only 
to the pioneers of ancient science but also to anyone today who uses a com-
puter or catches a ball, to generations of algorithm users and creators yet 
unborn who will build on what we leave to them in faraway times. This book 
is the beginning of your adventure with algorithms.

https://www.python.org/downloads/source/
http://automatetheboringstuff.com/2e/appendixa/




The act of catching a ball is remarkable. A 
ball may start so far away that it seems only 

a speck on the horizon. It may be in the air 
for only a few short seconds or less. The ball will 

meet air resistance, wind, and of course, gravity, mov-
ing in something like a parabolic arc. And each time 
a ball is thrown, it is sent with a different force, at a  
different angle, and in a different environment with different conditions. 
So how is it that the moment a batter hits a baseball, an outfielder 300 feet 
away seems to immediately know where to run in order to catch it before it 
hits the ground?

This question is called the outfielder problem, and it’s still being dis-
cussed in scholarly journals today. We’re starting with the outfielder 
problem because it has two very different solutions: an analytic solution 
and an algorithmic solution. Comparing these solutions will provide a 
vivid illustration of what an algorithm is and how it’s different from other 
approaches to problem-solving. Additionally, the outfielder problem will 

1
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help us visualize a field that is occasionally abstract—you probably have 
some experience throwing and catching something, and this experience 
can help you understand the theory behind your practice.

Before we can really understand how a human knows exactly where a 
ball will land, it will help to understand how a machine does it. We’ll start 
by looking at an analytic solution to the outfielder problem. This solution is 
mathematically precise and easy for computers to execute instantaneously, 
and some version of it is usually taught in introductory physics classes. It 
would enable a sufficiently agile robot to play outfield for a baseball team.

However, humans can’t easily run analytic equations in their heads, and 
certainly not as quickly as computers can. A solution that’s better suited to 
human brains is an algorithmic solution, which we’ll use to explore what an 
algorithm is and what its strengths are compared to other problem-solving 
solutions. Moreover, the algorithmic solution will show us that algorithms 
are natural to human thought processes and don’t need to be intimidating. 
The outfielder problem is meant to introduce a new way to solve problems: 
the algorithmic approach.

The Analytic Approach
To solve this problem analytically, we have to go back a few centuries to an 
early model of motion.

The Galilean Model
The equations most commonly used to model a ball’s movement date back 
to Galileo, who centuries ago formulated polynomials that capture accelera-
tion, speed, and distance. If we ignore wind and air resistance and assume 
the ball starts at ground level, Galileo’s model says that the horizontal posi-
tion of a thrown ball at time t will be given by the formula

x = v1t

where v1 represents the starting speed of the ball in the x (horizontal) 
direction. Moreover, the height of a thrown ball (y), according to Galileo, 
can be calculated at time t as

y = v2t + 
2

at 2

where v2 represents the starting speed of the ball in the y (vertical) direc-
tion, and a represents the constant downward acceleration due to gravity 
(which will be about –9.81 if we are working in metric units). When we 
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substitute the first equation into the second equation, we find that the 
height of a thrown ball (y) relates to the horizontal position of the ball 
(x) as follows:

y = 
2v1

2

ax2

v1

v2 x +

We can use Galileo’s equations to model a hypothetical ball’s trajec-
tory in Python using the function in Listing 1-1. The specific polynomial in 
Listing 1-1 is appropriate for a ball whose initial horizontal speed is about 
0.99 meters per second, and whose initial vertical speed is about 9.9 meters 
per second. You can feel free to try other values for v1 and v2 to model any 
type of throw that interests you.

def ball_trajectory(x):
    location = 10*x - 5*(x**2)
    return(location)

Listing 1-1: A function for calculating the trajectory of a ball

We can plot the function in Listing 1-1 in Python to see what, approxi-
mately, a ball’s trajectory should look like (ignoring air resistance and other 
negligible factors). We’ll import some plotting capabilities from a module 
called matplotlib in the first line. The matplotlib module is one of many 
third-party modules we’ll import in code throughout this book. Before you 
use a third-party module, you’ll have to install it. You can install matplotlib 
and any other third-party modules by following the instructions at http:// 
automatetheboringstuff.com/2e/appendixa/.

import matplotlib.pyplot as plt
xs = [x/100 for x in list(range(201))]
ys = [ball_trajectory(x) for x in xs]
plt.plot(xs,ys)
plt.title('The Trajectory of a Thrown Ball')
plt.xlabel('Horizontal Position of Ball')
plt.ylabel('Vertical Position of Ball')
plt.axhline(y = 0)
plt.show()

Listing 1-2: Plotting a hypothetical ball trajectory between the moment it is thrown  
(at x = 0) and when it hits the ground again (at x = 2)

The output (Figure 1-1) is a nice plot that shows the path our hypo-
thetical ball is expected to follow through space. This pretty curved path is 
similar for every moving projectile that’s influenced by gravity and has been 
poetically called Gravity’s Rainbow by the novelist Thomas Pynchon.

Not all balls will follow this exact path, but this is one possible path 
that a ball could follow. The ball starts at 0, and it goes up and then down 
exactly like we are used to seeing balls go up and down, from the left of our 
field of view to the right.

http://automatetheboringstuff.com/2e/appendixa/
http://automatetheboringstuff.com/2e/appendixa/
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Figure 1-1: The trajectory of a hypothetical thrown ball

The Solve-for-x Strategy
Now that we have an equation for the ball’s position, we can solve that 
equation for anything that interests us: where the ball will reach its highest 
point, for example, or where it will get to ground level again, which is the 
one thing that an outfielder needs to know in order to catch it. Students 
in physics classes all over the world are taught how to find these solutions, 
and if we wanted to teach a robot to play outfield, it would be very natural 
to teach the robot these equations as well. The method for solving for the 
ball’s final location is as simple as taking the ball_trajectory() function we 
started with and setting it equal to 0:

0 = 10x – 5x 2

Then, we can solve this for x, using the quadratic formula taught to 
teenagers everywhere:

x =  
2a
b2 – 4ac–b ±

In this case, we find that x = 0 and x = 2 are the solutions. The first solu-
tion, x = 0, is where the ball started, where it was thrown by the pitcher or 
hit by the batter. The second solution, x = 2, is where the ball returns to the 
ground again after its flight.

The strategy we just used is a relatively simple one. Let’s call it the solve-for-x 
strategy. We write down an equation that describes a situation, and then solve 
that equation for the variable we’re interested in. The solve-for-x strategy is 
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extremely common in the hard sciences, at both the high school and college lev-
els. Students are asked to solve for: a ball’s expected destination, the ideal level 
of economic production, the proportion of a chemical that should be used in an 
experiment, or any number of other things.

The solve-for-x strategy is extremely powerful. If, for example, an army 
observed an enemy force fire a projectile weapon (say, a missile), they could 
quickly plug Galileo’s equation into their calculators and nearly instanta-
neously find where the missile was expected to land, and evade it or inter-
cept it accordingly. It could be done for free on a consumer-level laptop 
running Python. If a robot were playing outfield in a baseball game, it 
could do the same to catch a ball without breaking a sweat.

The solve-for-x strategy is easy in this case because we already know  
the equation that needs to be solved and the method to solve it. We owe the 
equation for a thrown ball to Galileo, as mentioned. We owe the quadratic 
formula to the great Muhammad ibn Musa al-Khwarizmi, who was the first 
to specify a fully general solution of the quadratic equation.

Al-Khwarizmi was a ninth-century polymath who contributed to astron-
omy, cartography, and trigonometry, besides giving us the word algebra and 
the method it refers to. He’s one of the important figures who has enabled 
us to take the journey of this book. Since we live after giants like Galileo and 
al-Khwarizmi, we don’t need to suffer through the difficult part of deriving 
their equations—we just have to memorize them and use them appropriately.

The Inner Physicist
Using Galileo’s and al-Khwarizmi’s equations and a solve-for-x strategy, a 
sophisticated machine can catch a ball or intercept a missile. But it seems 
reasonable to assume that most baseball players don’t start writing out 
equations as soon as they see a ball go into the air. Reliable observers have 
reported that professional baseball spring training programs consist of 
a great deal of time running around and playing, and considerably less 
time gathered around a whiteboard deriving the Navier-Stokes equations. 
Solving the mystery of where a ball will land doesn’t provide a clear-cut 
answer to the outfielder problem—that is, how a human can instinctively 
know where a ball will land without plugging it into a computer program.

Or maybe it does. The glibbest possible solution to the outfielder prob-
lem is to assert that if computers are solving Galilean quadratics to deter-
mine where balls will land, then so are humans. We’ll call this solution the 
inner physicist theory. According to this theory, the “wetware” of our brains is 
able to set up and solve quadratic equations, or else draw plots and extrapo-
late their lines, all far beneath the level of our consciousness. Each of us, in 
other words, has an “inner physicist” deep in our brains who can calculate 
exact solutions to difficult math problems in seconds and deliver the solu-
tions to our muscles, which can then find their way to the ball, bringing our 
bodies and mitts along. Our subconscious might be able to do this even if 
we’ve never taken a physics class or solved for x.

The inner physicist theory is not without its proponents. Notably, the 
well-known mathematician Keith Devlin published a book in 2006 called 
The Math Instinct: Why You’re a Mathematical Genius (Along with Lobsters, Birds, 
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Cats, and Dogs). The book’s cover shows a dog jumping to catch a Frisbee, 
with arrows tracing the respective trajectory vectors of the Frisbee and the 
dog, implying that the dog is able to perform the intricate calculations that 
would be required to make those vectors meet.

The manifest ability of dogs to catch Frisbees and humans to catch base-
balls seems to be a point in favor of the inner physicist theory. The subcon-
scious is a mysterious and powerful thing, whose depths we have yet to fully 
plumb. So why couldn’t it solve some high school–level equations now and 
then? More pressingly, the inner physicist theory is difficult to refute because 
it’s hard to think of alternatives to it: if dogs can’t solve partial differential 
equations to catch Frisbees, then how do they catch them anyway? They take 
great leaps into the air and catch erratically moving Frisbees in their jaws like 
it’s nothing. If they aren’t solving some physics problem in their brains, then 
how else could they (and we) possibly know how to precisely intercept a ball?

As recently as 1967, no one had a good answer. That year, the engineer 
Vannevar Bush wrote a book in which he described the scientific features of 
baseball as he understood them, and he was unable to provide any explana-
tion for how outfielders know where to run to catch fly balls. Luckily for us, 
the physicist Seville Chapman read Bush’s book and was inspired to pro-
pose a theory of his own the very next year.

The Algorithmic Approach
Chapman, true scientist that he was, was not satisfied with a mystical and 
unverified trust in the human subconscious, and he wanted a more con-
crete explanation for outfielders’ powers. This is what he discovered.

Thinking with Your Neck
Chapman began to tackle the outfielder problem by noting the information 
available to someone catching a ball. Though it’s difficult for humans to 
estimate an exact velocity or the trajectory of a parabolic arc, he thought we 
would have an easier time observing angles. If someone throws or hits a ball 
from the ground and the ground is flat and even, then the outfielder will 
see the ball start at close to eye level. Imagine an angle formed by two lines: 
the ground, and the line between the outfielder’s eyes and the ball. The 
moment the ball is hit by the batter, this angle will be (roughly) 0 degrees. 
After the ball has been in flight for a brief moment, it will be higher than 
the ground, so the angle between the ground and the outfielder’s line of 
sight with the ball will have increased. Even if the outfielder has not studied 
geometry, they will have a “feel” for this angle—for example, by feeling how 
far back they have to tilt their neck to see the ball.

If we suppose that the outfielder is standing where the ball will eventu-
ally land, at x = 2, we can get a sense of the way the angle of the outfielder’s 
line of sight with the ball increases by plotting a line of sight from early in 
the ball’s trajectory. The following line of code creates a line segment for the 
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plot we drew in Listing 1-2, and it is meant to be run in the same Python ses-
sion. This line segment represents the line between the outfielder’s eyes and 
the ball after the ball has traveled 0.1 meters horizontally.

xs2 = [0.1,2]
ys2 = [ball_trajectory(0.1),0]

We can plot this line of sight along with other lines of sight to see how 
the angle continues to increase over the course of the ball’s trajectory. The 
following lines of code add more line segments to the same plot we drew in 
Listing 1-2. These line segments represent the line between the outfielder’s 
eyes and the ball at two more points in the ball’s journey: the points when 
the ball has traveled 0.1, 0.2, and 0.3 meters horizontally. After creating all 
of these line segments, we will plot them all together.

xs3 = [0.2,2]
ys3 = [ball_trajectory(0.2),0]
xs4 = [0.3,2]
ys4 = [ball_trajectory(0.3),0]
plt.title('The Trajectory of a Thrown Ball - with Lines of Sight')
plt.xlabel('Horizontal Position of Ball')
plt.ylabel('Vertical Position of Ball')
plt.plot(xs,ys,xs2,ys2,xs3,ys3,xs4,ys4)
plt.show()

The resulting plot shows several lines of sight that form continuously 
increasing angles with the ground (Figure 1-2).

Figure 1-2: The trajectory of a hypothetical thrown ball, with line segments representing 
the outfielder looking at the ball as it travels
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As the ball progresses through its flight, the angle of the outfielder’s 
line of sight continues to increase, and the outfielder has to keep tipping 
their head back until they make the catch. Let’s call the angle between the 
ground and the outfielder’s line of sight with the ball theta. We assume that 
the outfielder is standing at the ball’s eventual destination (x = 2). Recall 
from high school geometry class that the tangent of an angle in a right tri-
angle is the ratio of the length of the side that’s opposite the angle and the 
length of the side that’s adjacent to the angle (and is not the hypotenuse). 
In this case, the tangent of theta is the ratio of the height of the ball to its 
horizontal distance from the outfielder. We can plot the sides whose ratio 
constitutes the tangent with the following Python code:

xs5 = [0.3,0.3]
ys5 = [0,ball_trajectory(0.3)]
xs6 = [0.3,2]
ys6 = [0,0]
plt.title('The Trajectory of a Thrown Ball - Tangent Calculation')
plt.xlabel('Horizontal Position of Ball')
plt.ylabel('Vertical Position of Ball')
plt.plot(xs,ys,xs4,ys4,xs5,ys5,xs6,ys6)
plt.text(0.31,ball_trajectory(0.3)/2,'A',fontsize = 16)
plt.text((0.3 + 2)/2,0.05,'B',fontsize = 16)
plt.show()

The resulting plot is shown in Figure 1-3.

Figure 1-3: The trajectory of a hypothetical thrown ball, with a line segment representing 
the outfielder looking at the ball as it travels, and line segments A and B showing the 
lengths whose ratio constitutes the tangent we are interested in
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We calculate the tangent by taking the ratio of the length of the side 
labeled A and the length of the side labeled B. The equation for the height 
A will be 10x – 5x2, while the equation for the length of B will be 2 – x. So 
the following equation implicitly describes the ball’s angle theta at each 
moment of its flight:

tan(θ) =  = 5x
2 – x

10x – 5x 2

The overall situation is complex: a ball is hit far away and quickly shoots 
through a parabolic curve whose end is hard to immediately estimate. But 
in this complex situation, Chapman has found this simple relationship: that 
when the outfielder is standing in the right location, the tangent of theta grows 
at a simple, constant rate. The kernel of Chapman’s breakthrough is that 
the tangent of theta, the ball’s angle with the ground, grows linearly over 
time. Since Chapman found that simple relationship in the weeds of the 
outfielder problem, he was able to develop an elegant algorithmic solution 
to it.

His solution depends on the fact that if something—in this case, the 
tangent of theta—grows at a constant rate, it has zero acceleration. So if you 
are standing exactly where a ball is headed, you’ll observe an angle whose 
tangent experiences zero acceleration. By contrast, if you are standing too 
close to the ball’s initial position, you’ll observe positive acceleration. If you 
are standing too far from the ball’s initial position, you’ll observe negative 
acceleration. (You are encouraged to verify the messy calculus behind these 
truths if you so desire.) This means that an outfielder can know where they 
need to go by feeling how steadily they have to tilt back their head as they 
look at the ball rising—thinking, so to speak, with their neck.

Applying Chapman’s Algorithm
Robots don’t necessarily have necks, and so a method for “thinking with 
one’s neck” may not be helpful for a robot outfielder. Remember that they 
can solve quadratic equations directly and instantaneously to find where 
to go to catch a ball, without worrying about the acceleration of the tan-
gent of theta. But for humans, Chapman’s neck-thinking method could be 
extremely useful. In order to get to the ball’s eventual destination, a human 
outfielder could follow this relatively simple process:

 1. Observe the acceleration of the tangent of the angle between the 
ground and your line of sight with the ball.

 2. If the acceleration is positive, step backward.

 3. If the acceleration is negative, step forward.

 4. Repeat steps 1–3 until the ball is directly in front of your face.

 5. Catch it.
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One serious objection to Chapman’s five-step method is that outfield-
ers following this process seem to have to calculate the tangents of angles 
on the fly, meaning we’re replacing an inner physicist theory with an “inner 
geometer theory” in which baseball players can instantaneously, and sub-
consciously, take tangents.

One potential resolution to this objection is that for many angles, 
tan(theta) is approximately equal to theta, so rather than observing the 
acceleration of a tangent, outfielders can merely observe the acceleration  
of an angle. If the acceleration of an angle can be estimated by the felt 
acceleration of the neck joints that crick as the neck moves back to observe 
the ball, and if an angle is a reasonable approximation for its tangent, then 
we don’t need to assume any great subconscious mathematical or geometri-
cal powers on the part of outfielders—only the physical skill of being accu-
rately attuned to subtle sensory inputs.

By making an acceleration estimate the only difficult part of the pro-
cess, we have obtained a potential solution to the outfielder problem that 
has much more psychological plausibility than the inner physicist’s theory 
of subconsciously extrapolated parabolas. Of course, the psychological 
appeal of the solution doesn’t mean that it can be used only by humans. 
A robot outfielder could also be programmed to follow Chapman’s five-
step process, and it might even perform better at catching the ball if it did 
so, because, for example, Chapman’s process enables those who use it to 
dynamically respond to changes due to wind or bounces.

Besides psychological plausibility, there’s one more crucial feature that 
the five-step process implied by Chapman’s insight possesses: it doesn’t rely 
on a solve-for-x strategy or any explicit equation at all. Instead, it proposes 
successive iterations of easy observations and small, gradual steps to reach 
a well-defined goal. In other words, the process that we have inferred from 
Chapman’s theory is an algorithm.

Solving Problems with Algorithms
The word algorithm came from the name of the great al-Khwarizmi, men-
tioned earlier. It’s not an easy word to define, not least because its accepted 
definition has changed over time. Stated simply, an algorithm is just a set 
of instructions that produce a well-defined outcome. This is a broad defini-
tion; as we saw in the Introduction, tax forms and recipes for parfaits could 
rightly be considered algorithms.

Chapman’s ball-catching process, or Chapman’s algorithm as we may 
want to call it, is arguably even more algorithm-like than a recipe for a par-
fait, because it contains a looping structure in which small steps are taken 
repeatedly until a definite condition is reached. This is a common algorith-
mic structure you’ll see throughout this book.

Chapman proposed an algorithmic solution to the outfielder problem 
because a solve-for-x solution was not plausible (outfielders often don’t 
know the relevant equations). In general, algorithms are most useful when 
the solve-for-x strategy fails. Sometimes we don’t know the right equations 
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to use, but more often there is no equation that could fully describe a 
situation, the equation is impossible to solve, or we face time or space con-
straints. Algorithms exist at the edge of what is possible, and every time an 
algorithm is created or improved, we push the frontier of efficiency and 
knowledge out a little further.

Today, there is a common perception that algorithms are difficult, esoteric, 
mysterious, and strictly mathematical and that they require years of study to 
understand. The way our education system is structured today, we begin teach-
ing children the solve-for-x strategy as early as possible, and we explicitly 
teach algorithms only at the college or graduate school levels, if at all. For 
many students, it takes years to master the solve-for-x strategy, and it always 
feels unnatural to them. People who have had this experience may assume 
that algorithms will feel just as unnatural, and will also be more difficult to 
understand because they are more “advanced.”

However, the lesson I take from Chapman’s algorithm is that we have 
gotten it all exactly backward. During recess, students learn and perfect 
their performance of dozens of algorithms, for catching, throwing, kick-
ing, running, and moving. There are probably also much more complex 
algorithms, which have not been fully delineated, that govern the operation 
of the social world of recess: the talking, status seeking, gossiping, alliance 
formation, and friendship cultivation. When we end recess time and start 
math class, we take students out of a world of algorithm exploration and 
push them to learn an unnatural and mechanistic process of solving for x, 
a process that is not a natural part of human development and is not even 
the most powerful method for solving analytical problems. Only if students 
progress to advanced math and computer science do they return to the nat-
ural world of algorithms and the powerful processes that they were uncon-
sciously and joyfully mastering at recess.

This book is meant to be an intellectual recess for the curious—a recess 
in the sense that a young student means it: the beginning of all important 
activity, the end of all drudgery, and the continuation of cheerful explora-
tion with friends. If you have any feeling of trepidation about algorithms, 
remind yourself that we humans are naturally algorithmic, and if you can 
catch a ball or bake a cake, you can master an algorithm.

In the remainder of this book, we explore many different algorithms. 
Some will sort lists or calculate numbers. Others will enable natural language 
processing and artificial intelligence. I encourage you to bear in mind that 
algorithms don’t grow on trees. Each algorithm, before it became mainstream 
and was packaged for general consumption in this book, was discovered or 
created by someone like Chapman, who woke up one day in a world in which 
his algorithm didn’t exist and went to sleep at the end of that day in a world in 
which it did. I encourage you to try to get in the mindset of these heroic dis-
coverers. That is, I encourage you to approach an algorithm not only as a tool 
to be used but also as a formidable problem that was solved. The world of algo-
rithms is not yet close to being fully mapped—many remain to be discovered 
and perfected, and I earnestly hope that you can be a part of that discovery 
process.
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Summary
In this chapter, you saw two approaches to solving a problem: the analytic 
one and the algorithmic one. By solving the outfield problem two ways, we 
explored the differences between these approaches, ultimately arriving 
at Chapman’s algorithm. Chapman found a simple pattern in a complex 
situation (the constant acceleration of the tangent of theta) and used it to 
develop the idea of an iterative, looping process that requires only one sim-
ple input (the feeling of acceleration in a craning neck) and leads to a defi-
nite goal (catching a ball). When you seek to develop and use algorithms in 
your own work, you can try to emulate Chapman’s example.

In the next chapter, we look at some examples of algorithms in history. 
These examples should deepen your appreciation of algorithms, including 
what they are and how they work. We’ll talk about algorithms from ancient 
Egypt, ancient Greece, and Imperial Japan. Every new algorithm you learn 
can be an addition to the “toolbox” of algorithms that you can rely on when 
you eventually advance to the point at which you can design and perfect 
your own.



Most people associate algorithms with com-
puters. This is not unreasonable; computer 

operating systems use many sophisticated 
algorithms, and programming is well suited to 

implementing all sorts of algorithms precisely. But 
algorithms are more fundamental than the computer 
architecture we implement them on. As mentioned 
in Chapter 1, the word algorithm dates back about a 
millennium, and algorithms have been described in 
ancient records going back much further than that.  
Even outside of written records, there is abundant evidence for the use of 
complex algorithms in the ancient world—in, for example, their construc-
tion methods.

This chapter presents several algorithms of antique provenance. They 
show great ingenuity and insight, especially considering that they had to be 
invented and verified without the aid of computers. We start by discussing 

2
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Russian peasant multiplication, a method for arithmetic that, despite the 
name, might be Egyptian and might not actually be associated with peas-
ants. We continue by covering Euclid’s algorithm, an important “classic” 
algorithm for finding greatest common divisors. Finally, we cover an algo-
rithm from Japan that generates magic squares.

Russian Peasant Multiplication
Many people remember learning the multiplication table as a particularly 
painful part of their education. Young children ask their parents why learn-
ing the multiplication table is necessary, and parents usually respond that 
they can’t multiply without knowing it. How wrong they are. Russian peasant 
multiplication (RPM) is a method that enables people to multiply large num-
bers without knowing most of the multiplication table.

RPM’s origins are unclear. An ancient Egyptian scroll called the Rhind 
papyrus contains a version of this algorithm, and some historians have pro-
posed (mostly unconvincing) conjectures about how the method could have 
spread from ancient Egyptian scholars to the peasants of the vast Russian 
hinterlands. Regardless of the details of its history, RPM is an interesting 
algorithm.

Doing RPM by Hand
Consider the task of multiplying 89 by 18. Russian peasant multiplication 
proceeds as follows. First, create two columns next to each other. The first 
column is called the halving column and starts with 89. The second column 
is the doubling column and starts with 18 (Table 2-1).

Table 2-1: Halving/Doubling Table, Part 1

Halving Doubling

89 18

We’ll fill out the halving column first. Each row of the halving column 
takes the previous entry and divides it by 2, ignoring the remainder. For 
example, 89 divided by 2 is 44 remainder 1, so we write 44 in the second 
row of the halving column (Table 2-2).

Table 2-2: Halving/Doubling Table, Part 2

Halving Doubling

89 18

44

We continue dividing by 2 until we reach 1, dropping the remainder 
every time and writing the result in the next row. As we continue, we find 
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that 44 divided by 2 is 22, then half of that is 11, then half of that (dropping 
the remainder) is 5, then 2, then 1. After writing these in the halving col-
umn, we have Table 2-3.

Table 2-3: Halving/Doubling Table, Part 3

Halving Doubling

89 18

44

22

11

5

2

1

We’ve completed the halving column. As the name suggests, each entry in 
the doubling column will be double the previous entry. So since 18 × 2 is 36, 
36 is the second entry in the doubling column (Table 2-4).

Table 2-4: Halving/Doubling Table, Part 4

Halving Doubling

89 18

44 36

22

11

5

2

1

We continue to add entries to the doubling column by following the 
same rule: just double the previous entry. We do this until the doubling col-
umn has as many entries as the halving column (Table 2-5).

Table 2-5: Halving/Doubling Table, Part 5

Halving Doubling

89 18

44 36

22 72

11 144

5 288

2 576

1 1,152
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The next step is to cross out or remove every row in which the halving 
column contains an even number. The result is shown in Table 2-6.

Table 2-6: Halving/Doubling Table, Part 6

Halving Doubling

89 18

11 144

5 288

1 1,152

The final step is to take the sum of the remaining entries in the dou-
bling column. The result is 18 + 144 + 288 + 1,152 = 1,602. You can check 
with a calculator that this is correct: 89 × 18 = 1,602. We have accomplished 
multiplication through halving, doubling, and addition, all without needing 
to memorize most of the tedious multiplication table that young children so 
despise.

To see why this method works, try rewriting the doubling column in 
terms of 18, the number we are trying to multiply (Table 2-7).

Table 2-7: Halving/Doubling Table, Part 7

Halving Doubling

89 18 × 1

44 18 × 2

22 18 × 4

11 18 × 8

5 18 × 16

2 18 × 32

1 18 × 64

The doubling column is now written in terms of 1, 2, 4, 8, and so on to 64. 
These are powers of 2, and we can also write them as 20, 21, 22, and so on. 
When we take our final sum (adding together the doubling rows with odd 
entries in the halving column), we’re really finding this sum:

18 × 20 + 18 × 23 + 18 × 24 + 18 × 26 = 18 × (20 + 23 + 24 + 26) = 18 × 89

The fact that RPM works hinges on the fact that

(20 + 23 + 24 + 26) = 89

If you look closely enough at the halving column, you can get a sense 
for why the preceding equation is true. We can also write this column in 
terms of powers of 2 (Table 2-8). When we do so, it’s easier to start at the 
lowest entry and work upward. Remember that 20 is 1 and 21 is 2. In every 
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row, we multiply by 21, and in the rows where the halving number is odd, we 
also add 20. You can see the expression start to resemble our equation more 
and more as you rise through the rows. By the time we reach the top of the 
table, we have an expression that simplifies to exactly 26 + 24 + 23 + 20.

Table 2-8: Halving/Doubling Table, Part 8

Halving Doubling

(25 + 23 + 22) × 21 + 20 = 26 + 24 + 23 + 20 18 × 20

(24 + 22 + 21) × 21 = 25 + 23 + 22 18 × 21

(23 + 21 + 20) × 21 = 24 + 22 + 21 18 × 22

(22 + 20) × 21 + 20 = 23 + 21 + 20 18 × 23

21 × 21 + 20 = 22 + 20 18 × 24

20 × 21 = 21 18 × 25

20 18 × 26

If you number the rows of the halving column starting with the top 
row as row 0, then 1, 2, and all the way to the bottom row as row 6, you can 
see that the rows with odd values in the halving column are rows 0, 3, 4, 
and 6. Now notice the crucial pattern: those row numbers are exactly the 
exponents in the expression for 89 that we found: 26 + 24 + 23 + 20. This is 
not a coincidence; the way we constructed the halving column means that 
the odd entries will always have row numbers that are the exponents in a 
sum of powers of 2 equaling our original number. When we take a sum of 
the doubling entries with those indices, we’re summing up 18 multiplied by 
powers of 2 that sum to exactly 89, so we’ll get 89 × 18 as our result.

The reason this works is that really, RPM is an algorithm within an 
algorithm. The halving column itself is an implementation of an algorithm 
that finds the sum of powers of 2 that equals the number at the top of the 
column. This sum of powers of 2 is also called the binary expansion of 89. 
Binary is an alternative way to write numbers using only 0s and 1s, and it 
has become extremely important in recent decades because computers 
store information in binary. We can write 89 in binary as 1011001, with 1s 
in the zeroth, third, fourth, and sixth places (counting from the right), the 
same as the odd rows of the halving column, and also the same as the expo-
nents in our equation. We can interpret the 1s and 0s in a binary represen-
tation as coefficients in a sum of powers of 2. For example, if we write 100, 
we interpret it in binary as

1 × 22 + 0 × 21 + 0 × 20

or what we would usually write as 4. If we write 1001, we interpret it in 
binary as

1 × 23 + 0 ×22 + 0 × 21 + 1 × 20
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or what we would usually write as 9. After running this mini-algorithm to 
get the binary expansion of 89, we are poised to easily run the full algo-
rithm and complete the multiplication process.

Implementing RPM in Python
It’s relatively simple to implement RPM in Python. Let’s say that we want to 
multiply two numbers that we will call n1 and n2. First, let’s open a Python 
script and define these variables:

n1 = 89
n2 = 18

Next, we’ll start our halving column. Just as described, the halving col-
umn begins with one of the numbers we want to multiply:

halving = [n1]

The next entry will be halving[0]/2, ignoring the remainder. In Python, 
we can use the math.floor() function to accomplish this. This function just 
takes the closest integer less than a given number. For example, the second 
row of the halving column can be calculated as follows:

import math
print(math.floor(halving[0]/2))

If you run this in Python, you’ll see that the answer is 44.
We can loop through each row of the halving column, and in each iter-

ation of our loop, we will find the next entry in the halving column in the 
same way, stopping when we reach 1:

while(min(halving) > 1):
    halving.append(math.floor(min(halving)/2))

This loop uses the append() method for concatenation. At each iteration 
of the while loop, it concatenates the halving vector with half of its last value, 
using the math.floor() function to ignore the remainder.

For the doubling column, we can do the same: start with 18, and then 
continue through a loop. In each iteration of the loop, we’ll add double the 
previous entry to the doubling column, and we’ll stop after this column is 
the same length as the halving column:

doubling = [n2]
while(len(doubling) < len(halving)):
    doubling.append(max(doubling) * 2)

Finally, let’s put these two columns together in a dataframe called 
half_double:

import pandas as pd
half_double = pd.DataFrame(zip(halving,doubling))
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We imported the Python module called pandas here. This module 
enables us to work with tables easily. In this case, we used the zip com-
mand, which, as suggested by its name, joins halving and doubling together 
like a zipper joins two sides of a garment together. The two sets of num-
bers, halving and doubling, start as independent lists, and after being zipped 
together and converted into a pandas dataframe, are stored in a table as two 
aligned columns, as shown in Table 2-5. Since they’re aligned and zipped 
together, we can refer to any row of Table 2-5, such as the third row, and 
get the full row, including the elements from both halving and doubling (22 
and 72). Being able to refer to and work with these rows will make it easy 
to remove the rows we don’t want, like we did to Table 2-5 to convert it to 
Table 2-6.

Now we need to remove the rows whose entries in the halving column 
are even. We can test for evenness using the % (modulo) operator in Python, 
which returns a remainder after division. If a number x is odd, then x%2 will 
be 1. The following line will keep only the rows of the table whose entry in 
the halving column is odd:

half_double = half_double.loc[half_double[0]%2 == 1,:]

In this case, we use the loc functionality in the pandas module to select 
only the rows we want. When we use loc, we specify which rows and columns 
we want to select in the square brackets ([]) that follow it. Inside the square 
brackets, we specify which rows and columns we want in order, separated by 
a comma: the format is [row, column]. For example, if we wanted the row with 
index 4 and the column with index 1, we could write half_double.loc[4,1]. In 
this case, we will do more than just specify indices. We will express a logical 
pattern for which rows we want: we want all rows where halving is odd. We 
specify the halving column in our logic with half_double[0], since it’s the col-
umn with index 0. We specify oddness with %2 == 1. Finally, we specify that 
we want all columns after the comma by writing a colon, which is a shortcut 
indicating that we want every column.

Finally, we simply take the sum of the remaining doubling entries:

answer = sum(half_double.loc[:,1])

Here, we are using loc again. We specify inside the square brackets 
that we want every row by using the colon shortcut. We specify that we want 
doubling, the column with index 1, after the comma. Note that the 89 × 18 
example we worked through could be done more quickly and easily if we 
instead calculated 18 × 89—that is, if we put 18 in the halving column and 
89 in the doubling column. I encourage you to try this to see the improve-
ment. In general, RPM is faster if the smaller multiplicand is placed in the 
halving column and the larger one in the doubling column.

To someone who has already memorized the multiplication table, RPM 
may seem pointless. But besides its historical charm, RPM is worth learn-
ing for a few reasons. First, it shows that even something as dry as multi-
plying numbers can be done in multiple ways and is amenable to creative 
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approaches. Just because you’ve learned one algorithm for something 
doesn’t mean that it’s the only, or the best, algorithm for the purpose—
keep your mind open to new and potentially better ways of doing things.

RPM may be slow, but it requires less memorization up front because it 
doesn’t require knowledge of most of the multiplication table. Sometimes 
it can be very useful to sacrifice a little speed for the sake of low memory 
requirements, and this speed/memory tradeoff is an important con-
sideration in many situations where we’re designing and implementing 
algorithms.

Like many of the best algorithms, RPM also brings into focus relation-
ships between apparently disparate ideas. Binary expansions may seem 
like just a curiosity, of interest to transistor engineers but not useful to a 
layperson or even a professional programmer. But RPM shows a deep con-
nection between the binary expansion of a number and a convenient way to 
multiply with only minimal knowledge of the multiplication table. This is 
another reason to always keep learning: you never know when some appar-
ently useless factoid may form the basis for a powerful algorithm.

Euclid’s Algorithm
The ancient Greeks gave many gifts to humanity. One of their greatest was 
theoretical geometry, which was rigorously compiled by the great Euclid in 
his 13 books called the Elements. Most of Euclid’s mathematical writing is 
in a theorem/proof style, in which a proposition is deduced logically from 
simpler assumptions. Some of his work is also constructive, meaning that it 
provides a method for using simple tools to draw or create a useful figure, 
like a square with a particular area or a tangent to a curve. Though the word 
had not been coined yet, Euclid’s constructive methods were algorithms, and 
some of the ideas behind his algorithms can still be useful today.

Doing Euclid’s Algorithm by Hand
Euclid’s most famous algorithm is commonly known as Euclid’s algorithm, 
though it is only one of many that he wrote about. Euclid’s algorithm is  
a method for finding the greatest common divisor of two numbers. It is 
simple and elegant and takes only a few lines to implement in Python.

We begin with two natural (whole) numbers: let’s call them a and b.  
Let’s say that a is larger than b (if it’s not, just rename a to b and rename b  
to a, and then a will be larger). If we divide a/b, we’ll get an integer quotient 
and an integer remainder. Let’s call the quotient q1, and the remainder c.  
We can write this as follows:

a = q1 × b + c

For example, if we say that a = 105 and b = 33, we find that 105/33 is 3, 
remainder 6. Notice that the remainder c will always be smaller than both  
a and b—that’s how remainders work. The next step of the process is to 
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forget about a, and focus on b and c. Just like before, we say that b is larger 
than c. We then find the quotient and remainder when dividing b/c. If we 
say that b/c is q2, with remainder d, we can write our result as follows:

b = q2 × c + d

Again, d will be smaller than both b and c, since it’s a remainder. If you 
look at our two equations here, you can start to see a pattern: we’re work-
ing our way through the alphabet, shifting terms to the left every time. We 
started with a, b, and c, and then we had b, c, and d. You can see this pattern 
continue in our next step, in which we divide c/d, and call the quotient q3 
and the remainder e.

c = q3 × d + e

We can continue this process, proceeding as far as we need through the 
alphabet, until the remainder is equal to zero. Remember that remainders 
are always smaller than the numbers that were divided to get them, so c is 
smaller than a and b, d is smaller than b and c, e is smaller than c and d, and 
so on. This means that at every step, we’re working with smaller and smaller 
integers, so we must eventually get to zero. When we get a zero remainder, 
we stop the process, and we know that the last nonzero remainder is the 
greatest common divisor. For example, if we find that e is zero, then d is  
the greatest common divisor of our original two numbers.

Implementing Euclid’s Algorithm in Python
We can implement this algorithm in Python quite easily, as shown in 
Listing 2-1.

def gcd(x,y):
    larger = max(x,y)
    smaller = min(x,y)
    
    remainder = larger % smaller
    
    if(remainder == 0):
        return(smaller)
        
    if(remainder != 0):

1         return(gcd(smaller,remainder))

Listing 2-1: Implementing Euclid’s algorithm using recursion

The first thing to notice is that we don’t need any of the q1, q2, q3 . . . 
quotients. We need only the remainders, the successive letters of the alpha-
bet. Remainders are easy to get in Python: we can use the % operator from 
the previous section. We can write a function that takes the remainder after 
division for any two numbers. If the remainder is zero, then the greatest 
common divisor is the smaller of the two inputs. If the remainder is not 
zero, we use the smaller of the two inputs and the remainder as inputs into 
the same function.
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Notice that this function calls itself if the remainder is nonzero 1. The 
act of a function calling itself is known as recursion. Recursion can seem 
intimidating or confusing at first; a function that calls itself may seem 
paradoxical, like a snake that can eat itself or a person trying to fly by pull-
ing on their own bootstraps. But don’t be scared. If you’re unfamiliar with 
recursion, one of the best things to do is start with a concrete example, like 
finding the greatest common divisor of 105 and 33, and follow each step of 
the code as if you are the computer. You will see that in this example, recur-
sion is just a concise way to express the steps we listed in “Doing Euclid’s 
Algorithm by Hand” on page 20. There is always a danger with recursion 
that you create an infinite recursion—that a function calls itself, and while 
calling itself, calls itself again, and nothing ever causes the function to end, 
so it attempts to call itself endlessly, which is a problem because we need the 
program to terminate in order to get the final answer. In this case, we can 
feel safe because at each step we are getting smaller and smaller remainders 
that will eventually go down to zero and enable us to exit the function.

Euclid’s algorithm is short and sweet and useful. I encourage you to cre-
ate an even more concise implementation of it in Python.

Japanese Magic Squares
The history of Japanese mathematics is particularly fascinating. In A History 
of Japanese Mathematics, originally published in 1914, the historians David 
Eugene Smith and Yoshio Mikami wrote that Japanese math had histori-
cally possessed a “genius for taking infinite pains” and “ingenuity in untan-
gling minute knots and thousands of them.” On the one hand, mathematics 
uncovers absolute truths that should not vary between times and cultures. 
On the other hand, the types of problems that distinct groups tend to focus 
on and their idiosyncratic approaches to them, not to mention differences 
in notation and communication, provide great scope for noteworthy cul-
tural differences, even in a field as austere as math.

Creating the Luo Shu Square in Python
Japanese mathematicians had a fondness for geometry, and many of their 
ancient manuscripts pose and solve problems related to finding the areas of 
exotic shapes like circles inscribed within ellipses and Japanese hand fans. 
Another steady area of focus for Japanese mathematicians throughout sev-
eral centuries was the study of magic squares.

A magic square is an array of unique, consecutive natural numbers such 
that all rows, all columns, and both of the main diagonals have the same 
sum. Magic squares can be any size. Table 2-9 shows an example of a 3×3 
magic square.
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Table 2-9: The Luo Shu Square

4 9 2

3 5 7

8 1 6

In this square, each row, each column, and both main diagonals sum 
to 15. This is more than just a random example—it’s the famous Luo Shu 
square. According to an ancient Chinese legend, this magic square was first 
seen inscribed on the back of a magical turtle who came out of a river in 
response to the prayers and sacrifices of a suffering people. In addition 
to the definitional pattern that each row, column, and diagonal sums to 
15, there are a few other patterns. For example, the outer ring of numbers 
alternates between even and odd numbers, and the consecutive numbers 4, 
5, and 6 appear in the main diagonal.

The legend of the sudden appearance of this simple but fascinat-
ing square as a gift from the gods is fitting for the study of algorithms. 
Algorithms are often easy to verify and use, but they can be difficult to 
design from scratch. Especially elegant algorithms, when we have the good 
luck to invent one, seem revelatory, as if they have come out of nowhere as 
a gift from the gods inscribed on the back of a magical turtle. If you doubt 
this, try to create an 11×11 magic square from scratch, or try to discover a 
general-purpose algorithm for generating new magic squares.

Knowledge of this and other magic squares apparently passed from 
China to Japan at least as early as 1673, when a mathematician named 
Sanenobu published a 20×20 magic square in Japan. We can create the Luo 
Shu square in Python with the following command:

luoshu = [[4,9,2],[3,5,7],[8,1,6]]

It will come in handy to have a function that verifies whether a given 
matrix is a magic square. The following function does this by verifying the 
sums across all rows, columns, and diagonals and then checking whether 
they are all the same:

def verifysquare(square):
    sums = []
    rowsums = [sum(square[i]) for i in range(0,len(square))]
    sums.append(rowsums)
    colsums = [sum([row[i] for row in square]) for i in range(0,len(square))]
    sums.append(colsums)
    maindiag = sum([square[i][i] for i in range(0,len(square))])
    sums.append([maindiag])
    antidiag = sum([square[i][len(square) - 1 - i] for i in \ 
range(0,len(square))])
    sums.append([antidiag])
    flattened = [j for i in sums for j in i]
    return(len(list(set(flattened))) == 1)
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Implementing Kurushima's Algorithm in Python
In the previous sections, we discussed how to perform our algorithms of inter-
est “by hand” before providing details of the implementation of the code. In 
the case of Kurushima’s algorithm, we’ll outline the steps and introduce the 
code simultaneously. The reason for this change is the relative complexity of 
the algorithm, and especially the length of the code required to implement it.

One of the most elegant algorithms for generating magic squares, 
Kurushima’s algorithm is named for Kurushima Yoshita, who lived during the 
Edo period. Kurushima’s algorithm works only for magic squares of odd 
dimension, meaning that it works for any n×n square if n is an odd number. It 
begins by filling out the center of the square in a way that matches the Luo 
Shu square. In particular, the central five squares are given by the following 
expressions, with n here referring to the dimension of the square (Table 2-10).

Table 2-10: The Center of Kurushima’s Square

n2

n (n2 + 1)/2 n2 + 1 – n

1

Kurushima’s algorithm for generating an n×n magic square for odd n 
can be described simply as follows:

 1. Fill in the five central squares according to Table 2-10.

 2. Beginning with any entry whose value is known, determine the value 
of an unknown neighboring entry by following one of the three rules 
(described next).

 3. Repeat step 2 until every entry in the full magic square is filled in.

Filling in the Central Squares

We can begin the process of creating a magic square by creating an empty 
square matrix that we’ll fill up. For example, if we want to create a 7×7 matrix, 
we can define n=7 and then create a matrix with n rows and n columns:

n = 7
square = [[float('nan') for i in range(0,n)] for j in range(0,n)]

In this case, we don’t know what numbers to put in the square, so we 
fill it entirely with entries equal to float('nan'). Here, nan stands for not a 
number, which we can use as a placeholder in Python when we want to fill up 
a list before we know what numbers to use. If we run print(square), we find 
that this matrix by default is filled with nan entries:

[[nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan], 
[nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan], 
[nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan], 
[nan, nan, nan, nan, nan, nan, nan]]
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This square is not too pretty as it is output in the Python console, so we 
can write a function that will print it in a more readable way:

def printsquare(square):
    labels = ['['+str(x)+']' for x in range(0,len(square))]
    format_row = "{:>6}" * (len(labels) + 1)
    print(format_row.format("", *labels))
    for label, row in zip(labels, square):
        print(format_row.format(label, *row))

Don’t worry about the details of the printsquare() function, since it’s 
only for pretty printing and not part of our algorithm. We can fill in the 
central five squares with simple commands. First, we can get the indices of 
the central entry as follows:

import math
center_i = math.floor(n/2)
center_j = math.floor(n/2)

The central five squares can be populated according to the expressions 
in Table 2-10 as follows:

square[center_i][center_j] = int((n**2 +1)/2)
square[center_i + 1][center_j] = 1
square[center_i - 1][center_j] = n**2
square[center_i][center_j + 1] = n**2 + 1 - n
square[center_i][center_j - 1] = n

Specifying the Three Rules

The purpose of Kurushima’s algorithm is to fill in the rest of the nan entries 
according to simple rules. We can specify three simple rules that enable us 
to fill out every other entry, no matter how big the magic square is. The first 
rule is expressed in Figure 2-1.

x+n (mod n2)

x

Figure 2-1: Rule 1 of Kurushima’s algorithm

So for any x in the magic square, we can determine the entry that is 
situated in this diagonal relationship to x by simply adding n and taking the 
result mod n2 (mod refers to the modulo operation). Of course, we can also 
go in the opposite direction by reversing the operation: subtracting n and 
taking the result mod n2.
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The second rule is even simpler, and is expressed in Figure 2-2.

x+1 (mod n2)

x

Figure 2-2: Rule 2 of Kurushima’s algorithm

For any x in the magic square, the entry below and to the right of x is 1 
greater than x, mod n2. This is a simple rule, but it has one important excep-
tion: this rule is not followed when we cross from the upper-left half of the 
magic square to the lower-right half of the square. Another way to say this is 
that we do not follow the second rule if we are crossing the magic square’s 
antidiagonal, the bottom-left-to-top-right line shown in Figure 2-3.

Figure 2-3: The antidiagonal of a square matrix

You can see the cells that are on the antidiagonal. The antidiagonal 
line passes fully through them. We can follow our normal two rules when 
we are dealing with these cells. We need the exceptional third rule only 
when starting in a cell that is fully above the antidiagonal and crossing 
to a cell that is fully below it, or vice versa. That final rule is expressed in 
Figure 2-4, which shows an antidiagonal and two cells that would need to 
follow this rule when crossing it.
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x–n+1 (mod n2)

x

Figure 2-4: Rule 3 of Kurushima’s algorithm

This rule is followed when we are crossing the antidiagonal. If we cross 
from the bottom right to the top left, we can follow the inverse of this rule, 
in which x is transformed to x + n – 1, mod n2.

We can write a simple implementation of Rule 1 in Python by defining 
a function that takes x and n as its arguments and returns (x+n)%n**2:

def rule1(x,n):
    return((x + n)%n**2)

We can try this out with the central entry in the Luo Shu square. 
Remember, the Luo Shu square is a 3×3 square matrix, so n = 3. The cen-
tral entry of the Luo Shu square is 5. The entry below and to the left of this 
entry is 8, and if we have implemented our rule1() function correctly we’ll 
get an 8 when we run the following line:

print(rule1(5,3))

You should see an 8 in the Python console. Our rule1() function seems 
to work as intended. However, we could improve it by enabling it to go “in 
reverse,” determining not only the entry on the bottom left of a given entry, 
but also the entry to the top right (that is, being able to go from 8 to 5 in 
addition to going from 5 to 8). We can make this improvement by adding 
one more argument to the function. We’ll call our new argument upright, 
and it will be a True/False indicator of whether we’re looking for the entry 
up and to the right of x. If not, we will by default look for the entry to the 
bottom left of x:

def rule1(x,n,upright):
    return((x + ((-1)**upright) * n)%n**2)

In a mathematical expression, Python will interpret True as 1 and False as 
0. If upright is False, our function will return the same value as before, since 
(–1)0 = 1. If upright is True, then it will subtract n instead of adding n, which will 
enable us to go in the other direction. Let’s check whether it can determine 
the entry above and to the right of 1 in the Luo Shu square:

print(rule1(1,3,True))

It should print 7, the correct value in the Luo Shu square.
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For Rule 2, we can create an analogous function. Our Rule 2 function 
will take x and n as arguments, just like Rule 1. But Rule 2 is by default find-
ing the entry below and to the right of x. So we will add an upleft argument 
that will be True if we want to reverse the rule. The final rule is as follows:

def rule2(x,n,upleft):
    return((x + ((-1)**upleft))%n**2)

You can test this on the Luo Shu square, though there are only two 
pairs of entries for which this doesn’t run into the exception to Rule 2. For 
this exception, we can write the following function:

def rule3(x,n,upleft):
    return((x + ((-1)**upleft * (-n + 1)))%n**2)

This rule needs to be followed only when we’re crossing the magic 
square’s antidiagonal. We’ll see later how to determine whether or not we 
are crossing the antidiagonal.

Now that we know how to fill the five central squares, and we have a 
rule to fill out the remaining squares based on knowledge of those central 
squares, we can fill out the rest of the square.

Filling in the Rest of the Square

One way to fill in the rest of the square is to “walk” randomly through it, 
using known entries to fill in unknown entries. First, we’ll determine the 
indices of our central entry as follows:

center_i = math.floor(n/2)
center_j = math.floor(n/2)

Then, we can randomly select a direction to “walk,” as follows:

import random
entry_i = center_i
entry_j = center_j
where_we_can_go = ['up_left','up_right','down_left','down_right']
where_to_go = random.choice(where_we_can_go)

Here, we’ve used Python’s random.choice() function, which does random 
selection from lists. It takes an element from the set we specified (where_we_
can_go), but it chooses at random (or as close to random as it can get).

After we’ve decided a direction to travel, we can follow whichever rule 
corresponds to our direction of travel. If we have chosen to go down_left or 
up_right, we’ll follow Rule 1, choosing the right arguments and indices as 
follows:

if(where_to_go == 'up_right'):
    new_entry_i = entry_i - 1
    new_entry_j = entry_j + 1
    square[new_entry_i][new_entry_j] = rule1(square[entry_i][entry_j],n,True)
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if(where_to_go == 'down_left'):
    new_entry_i = entry_i + 1
    new_entry_j = entry_j - 1
    square[new_entry_i][new_entry_j] = rule1(square[entry_i][entry_j],n,False)

Similarly, we’ll follow Rule 2 if we have chosen to travel up_left or 
down_right:

if(where_to_go == 'up_left'):
    new_entry_i = entry_i - 1
    new_entry_j = entry_j - 1
    square[new_entry_i][new_entry_j] = rule2(square[entry_i][entry_j],n,True)

if(where_to_go == 'down_right'):
    new_entry_i = entry_i + 1
    new_entry_j = entry_j + 1
    square[new_entry_i][new_entry_j] = rule2(square[entry_i][entry_j],n,False)

This code is for going up-left and down-right, but we should follow it only 
if we’re not crossing the antidiagonal. We’ll have to make sure that we follow 
Rule 3 in the case where we are crossing the antidiagonal. There is a simple 
way to know if we are in an entry that is near the antidiagonal: the entries  
just above the antidiagonal will have indices that sum to n-2, and the entries just 
below the antidiagonal will have indices that sum to n. We’ll want to implement 
Rule 3 in these exceptional cases:

if(where_to_go == 'up_left' and (entry_i + entry_j) == (n)):
    new_entry_i = entry_i - 1
    new_entry_j = entry_j - 1
    square[new_entry_i][new_entry_j] = rule3(square[entry_i][entry_j],n,True)

if(where_to_go == 'down_right' and (entry_i + entry_j) == (n-2)):
    new_entry_i = entry_i + 1
    new_entry_j = entry_j + 1
    square[new_entry_i][new_entry_j] = rule3(square[entry_i][entry_j],n,False)

Keep in mind that our magic square is finite, so we cannot, for exam-
ple, travel up/left from the top row or leftmost column. By creating our list 
of where it’s possible to travel based on our current location, we can add 
some simple logic to ensure that we travel only in allowed directions:

where_we_can_go = []

if(entry_i < (n - 1) and entry_j < (n - 1)):
    where_we_can_go.append('down_right')

if(entry_i < (n - 1) and entry_j > 0):
    where_we_can_go.append('down_left')
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if(entry_i > 0 and entry_j < (n - 1)):
    where_we_can_go.append('up_right')

if(entry_i > 0 and entry_j > 0):
    where_we_can_go.append('up_left')

We have all the elements we need to write Python code that implements 
Kurushima’s algorithm.

Putting It All Together

We can put everything together in a function that takes a starting square 
with some nan entries and travels through it using our three rules to fill 
them in. Listing 2-2 contains the whole function.

import random
def fillsquare(square,entry_i,entry_j,howfull):
     while(sum(math.isnan(i) for row in square for i in row) > howfull):
        where_we_can_go = []

        if(entry_i < (n - 1) and entry_j < (n - 1)):
            where_we_can_go.append('down_right')
        if(entry_i < (n - 1) and entry_j > 0):
            where_we_can_go.append('down_left')
        if(entry_i > 0 and entry_j < (n - 1)):
            where_we_can_go.append('up_right')
        if(entry_i > 0 and entry_j > 0):
            where_we_can_go.append('up_left')

        where_to_go = random.choice(where_we_can_go)
        if(where_to_go == 'up_right'):
            new_entry_i = entry_i - 1
            new_entry_j = entry_j + 1
            square[new_entry_i][new_entry_j] = rule1(square[entry_i][entry_j],n,True)

        if(where_to_go == 'down_left'):
            new_entry_i = entry_i + 1
            new_entry_j = entry_j - 1
            square[new_entry_i][new_entry_j] = rule1(square[entry_i][entry_j],n,False)

        if(where_to_go == 'up_left' and (entry_i + entry_j) != (n)):
            new_entry_i = entry_i - 1
            new_entry_j = entry_j - 1
            square[new_entry_i][new_entry_j] = rule2(square[entry_i][entry_j],n,True)

        if(where_to_go == 'down_right' and (entry_i + entry_j) != (n-2)):
            new_entry_i = entry_i + 1
            new_entry_j = entry_j + 1
            square[new_entry_i][new_entry_j] = rule2(square[entry_i][entry_j],n,False)

        if(where_to_go == 'up_left' and (entry_i + entry_j) == (n)):
            new_entry_i = entry_i - 1
            new_entry_j = entry_j - 1
            square[new_entry_i][new_entry_j] = rule3(square[entry_i][entry_j],n,True)
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        if(where_to_go == 'down_right' and (entry_i + entry_j) == (n-2)):
            new_entry_i = entry_i + 1
            new_entry_j = entry_j + 1
            square[new_entry_i][new_entry_j] = rule3(square[entry_i][entry_j],n,False)

     1 entry_i = new_entry_i
        entry_j = new_entry_j

    return(square)

Listing 2-2: A function that enables an implementation of Kurushima’s algorithm

This function will take four arguments: first, a starting square that has 
some nan entries; second and third, the indices of the entry that we want to 
start with; and fourth, how much we want to fill up the square (measured by 
the number of nan entries we are willing to tolerate). The function consists 
of a while loop that writes a number to an entry in the square at every itera-
tion by following one of our three rules. It continues until it has as many nan 
entries as we have specified in the function’s fourth argument. After it writes 
to a particular entry, it “travels” to that entry by changing its indices 1, and 
then it repeats again.

Now that we have this function, all that remains is to call it in the right way.

Using the Right Arguments

Let’s start with the central entry and fill up the magic square from there. 
For our howfull argument, we’ll specify (n**2)/2-4. The reason for using this 
value for howfull will become clear after we see our results:

entry_i = math.floor(n/2)
entry_j = math.floor(n/2)

square = fillsquare(square,entry_i,entry_j,(n**2)/2 - 4)

In this case, we call the fillsquare() function using the existing square 
variable that we defined previously. Remember we defined it to be full of nan 
entries except for five central elements that we specified. After we run the 
fillsquare() function with that square as its input, the fillsquare() function 
fills in many of the remaining entries. Let’s print out the resulting square 
and see what it looks like afterward:

printsquare(square)

The result is as follows:

         [0]   [1]   [2]   [3]   [4]   [5]   [6]
   [0]    22   nan    16   nan    10   nan     4
   [1]   nan    23   nan    17   nan    11   nan
   [2]    30   nan    24    49    18   nan    12
   [3]   nan    31     7    25    43    19   nan
   [4]    38   nan    32     1    26   nan    20
   [5]   nan    39   nan    33   nan    27   nan
   [6]    46   nan    40   nan    34   nan    28



32   Chapter 2

You’ll notice that the nans occupy alternating entries, like a checker-
board. The reason for this is that the rules we have for moving diagonally 
give us access to only about half of the total entries, depending on which 
entry we started with. The valid moves are the same as in checkers: a piece 
that starts on a dark square can move diagonally to other dark squares, but 
its diagonal moving pattern will never allow it to move to any of the light 
squares. The nan entries we see are inaccessible if we start on the central 
entry. We specified (n**2)/2 - 4 for our howfull argument instead of zero 
because we know that we wouldn’t be able to fill the matrix completely by 
calling our function only once. But if we start again on one of the central 
entry’s neighbors, we will be able to access the rest of the nan entries in our 
“checkerboard.” Let’s call the fillsquare() function again, this time starting 
on a different entry and specifying our fourth argument as zero, indicating 
that we want to completely fill our square:

entry_i = math.floor(n/2) + 1
entry_j = math.floor(n/2)

square = fillsquare(square,entry_i,entry_j,0)

If we print our square now, we can see that it is completely full:

>>> printsquare(square)
         [0]   [1]   [2]   [3]   [4]   [5]   [6]
   [0]    22    47    16    41    10    35     4
   [1]     5    23    48    17    42    11    29
   [2]    30     6    24     0    18    36    12
   [3]    13    31     7    25    43    19    37
   [4]    38    14    32     1    26    44    20
   [5]    21    39     8    33     2    27    45
   [6]    46    15    40     9    34     3    28

There is just one final change we need to make. Because of the rules 
of the % operator, our square contains consecutive integers between 0 and 
48, but Kurushima’s algorithm is meant to fill our square with the integers 
from 1 to 49. We can add one line that replaces 0 with 49 in our square:

square=[[n**2 if x == 0 else x for x in row] for row in square]

Now our square is complete. We can verify that it is indeed a magic 
square by using the verifysquare() function we created earlier:

verifysquare(square)

This should return True, indicating that we’ve succeeded.
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We just created a 7×7 magic square by following Kurushima’s algorithm. 
Let’s test our code and see if it can create a larger magic square. If we 
change n to 11 or any other odd number, we can run exactly the same code 
and get a magic square of any size:

n = 11
square=[[float('nan') for i in range(0,n)] for j in range(0,n)]

center_i = math.floor(n/2)
center_j = math.floor(n/2)

square[center_i][center_j] = int((n**2 + 1)/2)
square[center_i + 1][center_j] = 1
square[center_i - 1][center_j] = n**2
square[center_i][center_j + 1] = n**2 + 1 - n
square[center_i][center_j - 1] = n

entry_i = center_i
entry_j = center_j

square = fillsquare(square,entry_i,entry_j,(n**2)/2 - 4)

entry_i = math.floor(n/2) + 1
entry_j = math.floor(n/2)

square = fillsquare(square,entry_i,entry_j,0)

square = [[n**2 if x == 0 else x for x in row] for row in square]

Our 11×11 square looks as follows:

>>> printsquare(square)
         [0]   [1]   [2]   [3]   [4]   [5]   [6]   [7]   [8]   [9]  [10]
   [0]    56   117    46   107    36    97    26    87    16    77     6
   [1]     7    57   118    47   108    37    98    27    88    17    67
   [2]    68     8    58   119    48   109    38    99    28    78    18
   [3]    19    69     9    59   120    49   110    39    89    29    79
   [4]    80    20    70    10    60   121    50   100    40    90    30
   [5]    31    81    21    71    11    61   111    51   101    41    91
   [6]    92    32    82    22    72     1    62   112    52   102    42
   [7]    43    93    33    83    12    73     2    63   113    53   103
   [8]   104    44    94    23    84    13    74     3    64   114    54
   [9]    55   105    34    95    24    85    14    75     4    65   115
  [10]   116    45   106    35    96    25    86    15    76     5    66

We can verify, either manually or with our verifysquare() function, that 
this is indeed a magic square. You can do the same with any odd n and mar-
vel at the results.
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Magic squares don’t have much practical significance, but it’s fun to 
observe their patterns anyway. If you’re interested, you might spend some 
time thinking about the following questions:

•	 Do the larger magic squares we created follow the odd/even alternat-
ing pattern seen in the outer edge of the Luo Shu square? Do you think 
every possible magic square follows this pattern? What reason, if any, 
would there be for this pattern?

•	 Do you see any other patterns in the magic squares we’ve created that 
haven’t been mentioned yet?

•	 Can you find another set of rules that create Kurushima’s squares? For 
example, are there rules that enable one to travel up and down through 
Kurushima’s square instead of diagonally?

•	 Are there other types of magic squares that satisfy the definition of a 
magic square but don’t follow Kurushima’s rules at all?

•	 Is there a more efficient way to write code to implement Kurushima’s 
algorithm?

Magic squares occupied the attention of great Japanese mathemati-
cians for several centuries, and they’ve found a significant place in cultures 
around the world. We can count ourselves lucky that the great mathemati-
cians of the past gave us algorithms for generating and analyzing magic 
squares that we can easily implement on today’s powerful computers. At the 
same time, we can admire the patience and insight that was required for 
them to investigate magic squares with only pen, paper, and their wits (and 
the occasional magical turtle) to guide them.

Summary
In this chapter, we discussed some historical algorithms that range from a 
few centuries to a few millenia old. Readers who are interested in histori-
cal algorithms can find many more to study. These algorithms may not be 
of great practical utility today, but it can be worthwhile to study them—
first because they give us a sense of history, and second because they help 
broaden our horizons and may provide the inspiration for writing our own 
innovative algorithms.

The algorithms in the next chapter enable us to do some commonly 
needed and useful tasks with mathematical functions: maximize and 
minimize them. Now that we have discussed algorithms in general and 
algorithms in history, you should be comfortable with what an algorithm is 
and how one works, and you should be ready to dive into serious algorithms 
used in the most cutting-edge software being developed today.



Goldilocks preferred the middle, but in the 
world of algorithms we’re usually more inter-

ested in the extreme highs and lows. Some 
powerful algorithms enable us to reach maxima 

(for example, maximum revenue, maximum profits, 
maximum efficiency, maximum productivity) and 
minima (for example, minimum cost, minimum error, 
minimum discomfort, and minimum loss). This chap-
ter covers gradient ascent and gradient descent, two  
simple but effective methods to efficiently find maxima and minima of func-
tions. We also discuss some of the issues that come with maximization and 
minimization problems, and how to deal with them. Finally, we discuss how 
to know whether a particular algorithm is appropriate to use in a given situa-
tion. We’ll start with a hypothetical scenario—trying to set optimal tax rates 
to maximize a government’s revenues—and we’ll see how to use an algo-
rithm to find the right solution.

3
M A X I M I Z I N G  A N D  M I N I M I Z I N G
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Setting Tax Rates
Imagine that you’re elected prime minister of a small country. You have 
ambitious goals, but you don’t feel like you have the budget to achieve 
them. So your first order of business after taking office is to maximize the 
tax revenues your government brings in.

It’s not obvious what taxation rate you should choose to maximize rev-
enues. If your tax rate is 0 percent, you will get zero revenue. At 100 percent, 
it seems likely that taxpayers would avoid productive activity and assidu-
ously seek tax shelters to the point that revenue would be quite close to zero. 
Optimizing your revenue will require finding the right balance between rates 
that are so high that they discourage productive activity and rates that are 
so low that they undercollect. To achieve that balance is, you’ll need to know 
more about the way tax rates relate to revenue.

Steps in the Right Direction
Suppose that you discuss this with your team of economists. They see your 
point and retire to their research office, where they consult the apparatuses 
used by top-level research economists everywhere—mostly test tubes, ham-
sters running on wheels, astrolabes, and dowsing rods—to determine the 
precise relationship between tax rates and revenues.

After some time thus sequestered, the team tells you that they’ve deter-
mined a function that relates the taxation rate to the revenue collected, and 
they’ve been kind enough to write it in Python for you. Maybe the function 
looks like the following:

import math
def revenue(tax):
    return(100 * (math.log(tax+1) - (tax - 0.2)**2 + 0.04))

This is a Python function that takes tax as its argument and returns a 
numeric output. The function itself is stored in a variable called revenue. 
You fire up Python to generate a simple graph of this curve, entering the 
following in the console. Just as in Chapter 1, we’ll use the matplotlib mod-
ule for its plotting capabilities.

import matplotlib.pyplot as plt
xs = [x/1000 for x in range(1001)]    
ys = [revenue(x) for x in xs]
plt.plot(xs,ys)
plt.title('Tax Rates and Revenue')
plt.xlabel('Tax Rate')
plt.ylabel('Revenue')
plt.show()

This plot shows the revenues (in billions of your country’s currency) 
that your team of economists expects for each tax rate between 0 and 1 
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(where 1 represents a 100 percent tax rate). If your country currently has a 
flat 70 percent tax on all income, we can add two lines to our code to plot 
that point on the curve as follows:

import matplotlib.pyplot as plt
xs = [x/1000 for x in range(1001)]    
ys = [revenue(x) for x in xs]
plt.plot(xs,ys)
current_rate = 0.7
plt.plot(current_rate,revenue(current_rate),'ro')
plt.title('Tax Rates and Revenue')
plt.xlabel('Tax Rate')
plt.ylabel('Revenue')
plt.show()

The final output is the simple plot in Figure 3-1.

Figure 3-1: The relationship between tax rates and revenue, with a dot representing your 
country’s current situation

Your country’s current tax rate, according to the economists’ formula, 
is not quite maximizing the government’s revenue. Although a simple visual 
inspection of the plot will indicate approximately what level corresponds to 
the maximum revenue, you are not satisfied with loose approximations and 
you want to find a more precise figure for the optimal tax rate. It’s apparent 
from the plot of the curve that any increase from the current 70 percent 
rate should decrease total revenues, and some amount of decrease from the 
current 70 percent rate should increase total revenues, so in this situation, 
revenue maximization will require a decrease in the overall tax rate.
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We can verify whether this is true more formally by taking the deriva-
tive of the economists’ revenue formula. A derivative is a measurement of 
the slope of a tangent line, with large values denoting steepness and nega-
tive values denoting downward motion. You can see an illustration of a 
derivative in Figure 3-2: it’s just a way to measure how quickly a function is 
growing or shrinking.

x

tangent line

slope = f'(x)

Figure 3-2: To calculate a derivative, we take a  
tangent line to a curve at a point and find its slope.

We can create a function in Python that specifies this derivative as follows:

def revenue_derivative(tax):
    return(100 * (1/(tax + 1) - 2 * (tax - 0.2)))

We used four rules of calculus to derive that function. First, we used the 
rule that the derivative of log(x) is 1/x. That’s why the derivative of log(tax + 1) 
is 1/(tax + 1). Another rule is that the derivative of x2 is 2x. That’s why the 
derivative of (tax – 0.2)2 is 2(tax – 0.2). Two more rules are that the deriva-
tive of a constant number is always 0, and the derivative of 100f(x) is 100 
times the derivative of f(x). If you combine all these rules, you’ll find that 
our tax-revenue function, 100(log(tax + 1) – (tax – 0.2)2 + 0.04), has a deriva-
tive equal to the following, as described in the Python function:

tax + 1
1

100(( ) – 2(tax – 0.2))

We can check that the derivative is indeed negative at the country’s cur-
rent taxation rate:

print(revenue_derivative(0.7))

This gives us the output -41.17647.
A negative derivative means that an increase in tax rate leads to a 

decrease in revenue. By the same token, a decrease in tax rate should lead 
to an increase in revenue. While we are not yet sure of the precise tax rate 
corresponding to the maximum of the curve, we can at least be sure that if 
we take a small step from where are in the direction of decreased taxation, 
revenue should increase.
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To take a step toward the revenue maximum, we should first specify a step 
size. We can store a prudently small step size in a variable in Python as follows:

step_size = 0.001

Next, we can take a step in the direction of the maximum by finding a 
new rate that is proportional to one step size away from our current rate, in 
the direction of the maximum:

current_rate = current_rate + step_size * revenue_derivative(current_rate)

Our process so far is that we start at our current tax rate and take a step 
toward the maximum whose size is proportional to the step_size we chose 
and whose direction is determined by the derivative of the tax-revenue 
function at the current rate.

We can verify that after this step, the new current_rate is 0.6588235 (about 
a 66 percent tax rate), and the revenue corresponding to this new rate is 
33.55896. But while we have taken a step toward the maximum and increased 
the revenue, but we find ourselves in essentially the same situation as before: 
we are not yet at the maximum, but we know the derivative of the function 
and the general direction in which we should travel to get there. So we sim-
ply need to take another step, exactly as before but with the values represent-
ing the new rate. Yet again we set:

current_rate = current_rate + step_size * revenue_derivative(current_rate)

After running this again, we find that the new current_rate is 0.6273425, 
and the revenue corresponding to this new rate is 34.43267. We have taken 
another step in the right direction. But we are still not at the maximum rev-
enue rate, and we will have to take another step to get closer.

Turning the Steps into an Algorithm
You can see the pattern that is emerging. We’re following these steps 
repeatedly:

 1. Start with a current_rate and a step_size.

 2. Calculate the derivative of the function you are trying to maximize at 
the current_rate.

 3. Add step_size * revenue_derivative(current_rate) to the current rate, to 
get a new current_rate.

 4. Repeat steps 2 and 3.

The only thing that’s missing is a rule for when to stop, a rule that trig-
gers when we have reached the maximum. In practice, it’s quite likely that 
we’ll be asymptotically approaching the maximum: getting closer and closer 
to it but always remaining microscopically distant. So although we may 
never reach the maximum, we can get close enough that we match it up  
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to 3 or 4 or 20 decimal places. We will know when we are sufficiently close 
to the asymptote when the amount by which we change our rate is very 
small. We can specify a threshold for this in Python:

threshold = 0.0001

Our plan is to stop our process when we are changing the rate by less 
than this amount at each iteration of our process. It’s possible that our step-
taking process will never converge to the maximum we are seeking, so if we 
set up a loop, we’ll get stuck in an infinite loop. To prepare for this possibil-
ity, we’ll specify a number of “maximum iterations,” and if we take a num-
ber of steps equal to this maximum, we’ll simply give up and stop.

Now, we can put all these steps together (Listing 3-1).

threshold = 0.0001
maximum_iterations = 100000

keep_going = True
iterations = 0
while(keep_going):
    rate_change = step_size * revenue_derivative(current_rate)
    current_rate = current_rate + rate_change

    if(abs(rate_change) < threshold):
        keep_going = False

    if(iterations >= maximum_iterations):
        keep_going = False

    iterations = iterations+1

Listing 3-1: Implementing gradient ascent

After running this code, you’ll find that the revenue-maximizing tax 
rate is about 0.528. What we’ve done in Listing 3-1 is something called gradi-
ent ascent. It’s called that because it’s used to ascend to a maximum, and it 
determines the direction of movement by taking the gradient. (In a two-
dimensional case like ours, a gradient is simply called a derivative.) We can 
write out a full list of the steps we followed here, including a description of 
our stopping criteria:

 1. Start with a current_rate and a step_size.

 2. Calculate the derivative of the function you are trying to maximize at 
the current_rate.

 3. Add step_size * revenue_derivative(current_rate) to the current rate, to 
get a new current_rate.

 4. Repeat steps 2 and 3 until you are so close to the maximum that your 
current tax rate is changing less than a very small threshold at each step, 
or until you have reached a number of iterations that is sufficiently high.

Our process can be written out simply, with only four steps. Though 
humble in appearance and simple in concept, gradient ascent is an 
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algorithm, just like the algorithms described in previous chapters. Unlike 
most of those algorithms, though, gradient ascent is in common use today 
and is a key part of many of the advanced machine learning methods that 
professionals use daily.

Objections to Gradient Ascent
We’ve just performed gradient ascent to maximize the revenues of a hypo-
thetical government. Many people who learn gradient ascent have practical 
if not moral objections to it. Here are some of the arguments that people 
raise about gradient ascent:

•	 It’s unnecessary because we can do a visual inspection to find the 
maximum.

•	 It’s unnecessary because we can do repeated guesses, a guess-and-check 
strategy, to find the maximum.

•	 It’s unnecessary because we can solve the first-order conditions.

Let’s consider each of these objections in turn. We discussed visual 
inspection previously. For our taxation/revenue curve, it’s easy to get an 
approximate idea of the location of a maximum through visual inspection. 
But visual inspection of a plot does not enable high precision. More impor-
tantly, our curve is extremely simple: it can be plotted in two dimensions 
and obviously has only one maximum on the range that interests us. If you 
imagine more complex functions, you can start to see why visual inspection 
is not a satisfactory way to find the maximum value of a function.

For example, consider a multidimensional case. If our economists had 
concluded that revenue depended not only on tax rates but also on tariff 
rates, then our curve would have to be drawn in three dimensions, and if 
it were a complex function, it could be harder to see where the maximum 
lies. If our economists had created a function that related 10 or 20 or a 100 
predictors to expected revenue, it would not be possible to draw a plot of all 
of them simultaneously given the limitations of our universe, our eyes, and 
our brains. If we couldn’t even draw the tax/revenue curve, then there’s no 
way visual inspection could enable us to find its maximum. Visual inspec-
tion works for simple toy examples like the tax/revenue curve, but not for 
highly complex multidimensional problems. Besides all of that, plotting a 
curve itself requires calculating the function’s value at every single point of 
interest, so it always takes longer than a well-written algorithm.

It may seem that gradient ascent is overcomplicating the issue, and that 
a guess-and-check strategy is sufficient for finding the maximum. A guess-
and-check strategy would consist of guessing a potential maximum and 
checking whether it is higher than all previously guessed candidate maxima 
until we are confident that we have found the maximum. One potential 
reply to this is to point out that, just as with visual inspections, with high-
complexity multidimensional functions, guess-and-check could be prohibi-
tively difficult to successfully implement in practice. But the best reply to 
the idea of guessing and checking to find maxima is that this is exactly what 
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gradient ascent is already doing. Gradient ascent already is a guess-and-check 
strategy, but one that is “guided” by moving guesses in the direction of the 
gradient rather than by guessing randomly. Gradient ascent is just a more 
efficient version of guess-and-check.

Finally, consider the idea of solving the first-order conditions to find a 
maximum. This is a method that is taught in calculus classes all around the 
world. It could be called an algorithm, and its steps are:

 1. Find the derivative of the function you are trying to maximize.

 2. Set that derivative equal to zero.

 3. Solve for the point at which the derivative is equal to zero.

 4. Make sure that point is a maximum rather than a minimum.

(In multiple dimensions, we can work with a gradient instead of a deriva-
tive and perform an analogous process.) This optimization algorithm is fine 
as far as it goes, but it could be difficult or impossible to find a closed-form 
solution for which a derivative is equal to zero (step 2), and it could be harder 
to find that solution than it would be to simply perform gradient ascent. 
Besides that, it could take huge computing resources, including space, pro-
cessing power, or time, and not all software has symbolic algebra capabilities. 
In that sense, gradient ascent is more robust than this algorithm.

The Problem of Local Extrema
Every algorithm that tries to find a maximum or minimum faces a very seri-
ous potential problem with local extrema (local maximums and minimums). 
We may perform gradient ascent perfectly, but realize that the peak we have 
reached at the end is only a “local” peak—it’s higher than every point around 
it, but not higher than some faraway global maximum. This could happen 
in real life as well: you try to climb a mountain, you reach a summit where 
you are higher than all of your immediate surroundings, but you realize that 
you’re only on the foothill and the real summit is far away and much higher. 
Paradoxically, you may have to walk down a little to eventually get to that 
higher summit, so the “naive” strategy that gradient ascent follows, always 
stepping to a slightly higher point in one’s immediate neighborhood, fails to 
get to the global maximum.

Education and Lifetime Income
Local extrema are a very serious problem in gradient ascent. As an example, 
consider trying to maximize lifelong income by choosing the optimal level 
of education. In this case, we might suppose that lifelong earnings relate to 
years of education according to the following formula:

import math
def income(edu_yrs):
    return(math.sin((edu_yrs - 10.6) * (2 * math.pi/4)) + (edu_yrs - 11)/2)
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Here, edu_yrs is a variable expressing how many years of education one 
has received, and income is a measurement of one’s lifetime income. We 
can plot this curve as follows, including a point for a person who has 12.5 
years of formal education—that is, someone who has graduated from high 
school (12 years of formal education) and is half a year into a bachelor’s 
degree program:

import matplotlib.pyplot as plt
xs = [11 + x/100 for x in list(range(901))]    
ys = [income(x) for x in xs]
plt.plot(xs,ys)
current_edu = 12.5
plt.plot(current_edu,income(current_edu),'ro')
plt.title('Education and Income')
plt.xlabel('Years of Education')
plt.ylabel('Lifetime Income')
plt.show()

We get the graph in Figure 3-3.

Figure 3-3: The relationship between formal education and lifetime income

This graph, and the income function used to generate it, is not based 
on empirical research but is used only as an illustrative, purely hypothetical 
example. It shows what might be intuitive relationships between education 
and income. Lifetime income is likely to be low for someone who does not 
graduate from high school (has fewer than 12 years of formal education). 
Graduation from high school—12 years—is an important milestone and 
should correspond to higher earnings than dropping out. In other words, it’s 
a maximum, but importantly it’s only a local maximum. Getting more than 
12 years of education is helpful, but not at first. Someone who has completed 
only a few months of college education is not likely to get jobs that differ from 
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those available to a high school graduate, but by going to school for extra 
months, they’ve missed an opportunity to earn in those months, so their life-
time earnings are actually lower than the earnings of people who enter the 
workforce directly after high school graduation and remain there.

Only after several years of college education does someone acquire 
skills that enable them to earn more over a lifetime than a high school 
graduate after we take into account the lost earning potential of the years 
spent at school. Then, college graduates (at 16 years of education) are at 
another earnings peak higher than the local high school peak. Once again, 
it’s only a local one. Getting a little more education after earning a bach-
elor’s degree leads to the same situation as getting a little more education 
after a high school diploma: you don’t immediately acquire enough skills 
to compensate for the time not spent earning. Eventually, that’s reversed, 
and you reach what looks like another peak after obtaining a postgraduate 
degree. It’s hard to speculate much further beyond that, but this simplistic 
view of education and earnings will suffice for our purposes.

Climbing the Education Hill—the Right Way
For the individual we’ve imagined, drawn at 12.5 years of education on 
our graph, we can perform gradient ascent exactly as outlined previously. 
Listing 3-2 has a slightly altered version of the gradient ascent code we 
introduced in Listing 3-1.

def income_derivative(edu_yrs):
    return(math.cos((edu_yrs - 10.6) * (2 * math.pi/4)) + 1/2)

threshold = 0.0001
maximum_iterations = 100000

current_education = 12.5
step_size = 0.001

keep_going = True
iterations = 0
while(keep_going):
    education_change = step_size * income_derivative(current_education)
    current_education = current_education + education_change
    if(abs(education_change) < threshold):
        keep_going = False
    if(iterations >= maximum_iterations):
        keep_going=False
    iterations = iterations + 1

Listing 3-2: An implementation of gradient ascent that climbs an income hill instead of a 
revenue hill

The code in Listing 3-2 follows exactly the same gradient ascent algo-
rithm as the revenue-maximization process we implemented previously. The 
only difference is the curve we are working with. Our taxation/revenue curve 
had one global maximum value that was also the only local maximum. Our 
education/income curve, by contrast, is more complicated: it has a global 
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maximum, but also several local maximum values (local peaks or maxima) 
that are lower than the global maximum. We have to specify the derivative 
of this education/income curve (in the first lines of Listing 3-2), we have a 
different initial value (12.5 years of education instead of 70 percent taxa-
tion), and we have different names for the variables (current_education instead 
of current_rate). But these differences are superficial; fundamentally we are 
doing the same thing: taking small steps in the direction of the gradient 
toward a maximum until we reach an appropriate stopping point.

The outcome of this gradient ascent process is that we conclude that this 
person is overeducated, and actually about 12 years is the income-maximizing 
number of years of education. If we are naive and trust the gradient ascent 
algorithm too much, we might recommend that college freshmen drop out 
and join the workforce immediately to maximize earnings at this local maxi-
mum. This is a conclusion that some college students have come to in the 
past, as they see their high school–graduate friends making more money than 
them as they work toward an uncertain future. Obviously, this is not right: our 
gradient ascent process has found the top of a local hill, but not the global 
maximum. The gradient ascent process is depressingly local: it climbs only 
the hill it’s on, and it isn’t capable of taking temporary steps downward for the 
sake of eventually getting to another hill with a higher peak. There are some 
analogues to this in real life, as with people who fail to complete a university 
degree because it will prevent them from earning in the near term. They don’t 
consider that their long-term earnings will be improved if they push through a 
local minimum to another hill to climb (their next, more valuable degree).

The local extrema problem is a serious one, and there’s no silver bullet 
for resolving it. One way to attack the problem is to attempt multiple initial 
guesses and perform gradient ascent for each of them. For example, if we 
performed gradient ascent for 12.5, 15.5, and 18.5 years of education, we 
would get different results each time, and we could compare these results to 
see that in fact the global maximum comes from maximizing years of edu-
cation (at least on this scale).

This is a reasonable way to deal with the local extremum problem, but 
it can take too long to perform gradient ascent enough times to get the 
right maximum, and we’re never guaranteed to get the right answer even 
after hundreds of attempts. An apparently better way to avoid the problem 
is to introduce some degree of randomness into the process, so that we can 
sometimes step in a way that leads to a locally worse solution, but which in 
the long term can lead us to better maxima. An advanced version of gradi-
ent ascent, called stochastic gradient ascent, incorporates randomness for this 
reason, and other algorithms, like simulated annealing, do the same. We’ll 
discuss simulated annealing and the issues related to advanced optimization 
in Chapter 6. For now, just keep in mind that as powerful as gradient ascent 
is, it will always face difficulties with the local extrema problem.

From Maximization to Minimization
So far we’ve sought to maximize revenue: to climb a hill and to ascend. 
It’s reasonable to wonder whether we would ever want to go down a hill, to 
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descend and to minimize something (like cost or error). You might think 
that a whole new set of techniques is required for minimization or that our 
existing techniques need to be flipped upside down, turned inside out, or 
run in reverse.

In fact, moving from maximization to minimization is quite simple. 
One way to do it is to “flip” our function or, more precisely, to take its nega-
tive. Going back to our tax/revenue curve example, it is as simple as defin-
ing a new flipped function like so:

def revenue_flipped(tax):
    return(0 - revenue(tax))

We can then plot the flipped curve as follows:

import matplotlib.pyplot as plt
xs = [x/1000 for x in range(1001)]    
ys = [revenue_flipped(x) for x in xs]
plt.plot(xs,ys)
plt.title('The Tax/Revenue Curve - Flipped')
plt.xlabel('Current Tax Rate')
plt.ylabel('Revenue - Flipped')
plt.show()

Figure 3-4 shows the flipped curve.

Figure 3-4: The negative or “flipped” version of the tax/revenue curve

So if we want to maximize the tax/revenue curve, one option is to 
minimize the flipped tax/revenue curve. If we want to minimize the 
flipped tax/revenue curve, one option is to maximize the flipped flipped 
curve—in other words, the original curve. Every minimization problem 
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is a maximization problem of a flipped function, and every maximization 
problem is a minimization of a flipped function. If you can do one, you can 
do the other (after flipping). Instead of learning to minimize functions, you 
can just learn to maximize them, and every time you are asked to minimize, 
maximize the flipped function instead and you’ll get the right answer.

Flipping is not the only solution. The actual process of minimization is 
very similar to the process of maximization: we can use gradient descent instead 
of gradient ascent. The only difference is the direction of movement at each 
step; in gradient descent, we go down instead of up. Remember that to find 
the maximum of the tax/revenue curve, we move in the direction of the gradi-
ent. In order to minimize, we move in the opposite direction of the gradient. 
This means we can alter our original gradient ascent code as in Listing 3-3.

threshold = 0.0001
maximum_iterations = 10000

def revenue_derivative_flipped(tax):
    return(0-revenue_derivative(tax))

current_rate = 0.7

keep_going = True
iterations = 0
while(keep_going):
    rate_change = step_size * revenue_derivative_flipped(current_rate)
    current_rate = current_rate - rate_change
    if(abs(rate_change) < threshold):
        keep_going = False
    if(iterations >= maximum_iterations):
        keep_going = False
    iterations = iterations + 1

Listing 3-3: Implementating gradient descent

Here everything is the same except we have changed a + to a - when we 
change the current_rate. By making this very small change, we’ve converted 
gradient ascent code to gradient descent code. In a way, they’re essentially 
the same thing; they use a gradient to determine a direction, and then they 
move in that direction toward a definite goal. In fact, the most common 
convention today is to speak of gradient descent, and to refer to gradient 
ascent as a slightly altered version of gradient descent, the opposite of how 
this chapter has introduced it.

Hill Climbing in General
Being elected prime minister is a rare occurrence, and setting taxation 
rates to maximize government revenue is not an everyday activity even 
for prime ministers. (For the real-life version of the taxation/revenue dis-
cussion at the beginning of the chapter, I encourage you to look up the 
Laffer curve.) However, the idea of maximizing or minimizing something 
is extremely common. Businesses attempt to choose prices to maximize 
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profits. Manufacturers attempt to choose practices that maximize efficiency 
and minimize defects. Engineers attempt to choose design features that 
maximize performance or minimize drag or cost. Economics is largely struc-
tured around maximization and minimization problems: maximizing utility 
especially, and also maximizing dollar amounts like GDP and revenue, and 
minimizing estimation error. Machine learning and statistics rely on minimi-
zation for the bulk of their methods; they minimize a “loss function” or an 
error metric. For each of these, there is the potential to use a hill-climbing 
solution like gradient ascent or descent to get to an optimal solution.

Even in everyday life, we choose how much money to spend to maxi-
mize achievement of our financial goals. We strive to maximize happiness 
and joy and peace and love and minimize pain and discomfort and sadness.

For a vivid and relatable example, think of being at a buffet and seek-
ing, as all of us do, to eat the right amount to maximize satisfaction. If 
you eat too little, you will walk out hungry and you may feel that by paying 
the full buffet price for only a little food, you haven’t gotten your money’s 
worth. If you eat too much, you will feel uncomfortable and maybe even 
sick, and maybe you will violate your self-imposed diet. There is a sweet 
spot, like the peak of the tax/revenue curve, that is the exact amount of 
buffet consumption that maximizes satisfaction.

We humans can feel and interpret sensory input from our stomachs 
that tells us whether we’re hungry or full, and this is something like a physi-
cal equivalent of taking a gradient of a curve. If we’re too hungry, we take 
some step with a predecided size, like one bite, toward reaching the sweet 
spot of satisfaction. If we’re too full, we stop eating; we can’t “un-eat” some-
thing we have already eaten. If our step size is small enough, we can be 
confident that we will not overstep the sweet spot by much. The process we 
go through when we are deciding how much to eat at a buffet is an iterative 
process involving repeated direction checks and small steps in adjustable 
directions—in other words, it’s essentially the same as the gradient ascent 
algorithm we studied in this chapter.

Just as with the example of catching balls, we see in this buffet example 
that algorithms like gradient ascent are natural to human life and decision-
making. They are natural to us even if we have never taken a math class or 
written a line of code. The tools in this chapter are merely meant to formal-
ize and make precise the intuitions you already have.

When Not to Use an Algorithm
Often, learning an algorithm fills us with a feeling of power. We feel that if 
we are ever in a situation that requires maximization or minimization, we 
should immediately apply gradient ascent or descent and implicitly trust 
whatever results we find. However, sometimes more important than know-
ing an algorithm is knowing when not to use it, when it’s inappropriate or 
insufficient for the task at hand, or when there is something better that we 
should try instead.
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When should we use gradient ascent (and descent), and when should we 
not? Gradient ascent works well if we start with the right ingredients:

•	 A mathematical function to maximize

•	 Knowledge of where we currently are

•	 An unequivocal goal to maximize the function

•	 Ability to alter where we are

There are many situations in which one or more of these ingredients is 
missing. In the case of setting taxation rates, we used a hypothetical func-
tion relating tax rates to revenue. However, there’s no consensus among 
economists about what that relationship is and what functional form it 
takes. So we can perform gradient ascent and descent all we like, but until 
we can all agree on what function we need to maximize, we cannot rely on 
the results we find.

In other situations, we may find that gradient ascent isn’t very useful 
because we don’t have the ability to take action to optimize our situation. 
For example, suppose that we derived an equation relating a person’s height 
to their happiness. Maybe this function expresses how people who are too 
tall suffer because they cannot get comfortable on airplanes, and people 
who are too short suffer because they cannot excel at pickup basketball 
games, but some sweet spot in the middle of too tall and too short tends 
to maximize happiness. Even if we can express this function perfectly and 
apply gradient ascent to find the maximum, it will not be useful to us, 
because we do not have control over our height.

If we zoom out even further, we may have all the ingredients required 
for gradient ascent (or any other algorithm) and still wish to refrain for 
deeper philosophical reasons. For example, suppose you can precisely 
determine a tax-revenue function and you’re elected prime minister with 
full control over the taxation rate in your country. Before you apply gradi-
ent ascent and climb to the revenue-maximizing peak, you may want to ask 
yourself if maximizing your tax revenue is the right goal to pursue in the 
first place. It could be that you are more concerned with freedom or eco-
nomic dynamism or redistributive justice or even opinion polls than you 
are with state revenues. Even if you have decided that you want to maxi-
mize revenues, it’s not clear that maximizing revenues in the short term 
(that is, this year) will lead to maximization of revenues in the long term.

Algorithms are powerful for practical purposes, enabling us to achieve 
goals like catching baseballs and finding revenue-maximizing taxation 
rates. But though algorithms can achieve goals effectively, they’re not as 
suited to the more philosophical task of deciding which goals are worth 
pursuing in the first place. Algorithms can make us clever, but they cannot 
make us wise. It’s important to remember that the great power of algo-
rithms is useless or even harmful if it is used for the wrong ends.
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Summary
This chapter introduced gradient ascent and gradient descent as simple  
and powerful algorithms used to find the maxima and minima of func-
tions, respectively. We also talked about the serious potential problem of 
local extrema, and some philosophical considerations about when to use 
algorithms and when to gracefully refrain.

Hang on tight, because in the next chapter we discuss a variety of 
searching and sorting algorithms. Searching and sorting are fundamental 
and important in the world of algorithms. We’ll also talk about “big O” 
notation and the standard ways to evaluate algorithm performance.



There are a few workhorse algorithms 
we use in nearly every kind of program. 

Sometimes these algorithms are so funda-
mental that we take them for granted or don’t 

even realize our code is relying on them.
Several methods for sorting and searching are among these fundamen-

tal algorithms. They’re worth knowing because they’re commonly used and 
beloved by algorithm enthusiasts (and the sadists who give coding interviews). 
The implementation of these algorithms can be short and simple, but every 
character matters, and since they are so commonly needed, computer scien-
tists have striven to enable them to sort and search with mind-melting speed. 
So we’ll also use this chapter to discuss algorithm speed and the special nota-
tion we use to compare algorithms’ efficiencies.

We start by introducing insertion sort, a simple and intuitive sorting 
algorithm. We discuss the speed and efficiency of insertion sort and how 
to measure algorithm efficiency in general. Next, we look at merge sort, a 
faster algorithm that is the current state of the art for searching. We also 
explore sleep sort, a strange algorithm that isn’t used much in practice but 

4
S O R T I N G  A N D  S E A R C H I N G
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is interesting as a curiosity. Finally, we discuss binary search and show some 
interesting applications of searching, including inverting mathematical 
functions.

Insertion Sort
Imagine that you’ve been asked to sort all the files in a filing cabinet. Each 
file has a number assigned to it, and you need to rearrange the files so that 
the file with the lowest number is first in the cabinet, the file with the high-
est number is last, and the files’ numbers proceed in order in between.

Whatever method you follow as you sort the filing cabinet, we can 
describe it as a “sorting algorithm.” But before you even think of opening 
Python to code an algorithm for this, take a moment to pause and consider 
how you would sort such a filing cabinet in real life. This may seem like a 
mundane task, but allow the adventurer within you to creatively consider a 
broad range of possibilities.

In this section, we present a very simple sorting algorithm called inser-
tion sort. This method relies on looking at each item in a list one at a time 
and inserting it into a new list that ends up being correctly sorted. Our algo-
rithm’s code will have two sections: an insertion section, which performs 
the humble task of inserting a file into a list, and a sorting section, which 
performs insertion repeatedly until we have completed our sorting task.

Putting the Insertion in Insertion Sort
First, consider the task of insertion itself. Imagine that you have a filing cabi-
net whose files are already perfectly sorted. If someone hands you one new 
file and asks you to insert it into the right (sorted) position in the filing cabi-
net, how do you accomplish that? The task may seem so simple that it doesn’t 
warrant an explanation, or even the possibility of one (just do it! you might 
think). But in the world of algorithms, every task, however humble, must be 
explained completely.

The following method describes a reasonable algorithm for inserting 
one file into a sorted filing cabinet. We’ll call the file we need to insert the 
“file to insert.” We’ll say that we can compare two files and call one file 
“higher than” the other one. This could mean that one file’s assigned num-
ber is higher than the other’s assigned number, or it could mean that it’s 
higher in an alphabetical or other ordering.

 1. Select the highest file in the filing cabinet. (We’ll start at the back of 
the cabinet and work our way to the front.)

 2. Compare the file you have selected with the file to insert.

 3. If the file you have selected is lower than the file to insert, place the file 
to insert one position behind that file.

 4. If the file you have selected is higher than the file to insert, select the 
next highest file in the filing cabinet.
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 5. Repeat steps 2 to 4 until you have inserted your file or compared it with 
every existing file. If you have not yet inserted your file after comparing 
it with every existing file, insert it at the beginning of the filing cabinet.

That method should more or less match the intuition you have for how 
to insert a record into a sorted list. If you prefer, you could also start at the 
beginning of the list, instead of the end, and follow an analogous process 
with the same results. Notice that we haven’t just inserted a record; we’ve 
inserted a record in the correct position, so after insertion, we’ll still have a 
sorted list. We can write a script in Python that executes this insertion algo-
rithm. First, we can define our sorted filing cabinet. In this case, our filing 
cabinet will be a Python list, and our files will simply be numbers.

cabinet = [1,2,3,3,4,6,8,12]

Then, we can define the “file” (in this case, just a number) that we want 
to insert into our cabinet.

to_insert = 5

We proceed one at a time through every number in the list (every file 
in the cabinet). We’ll define a variable called check_location. As advertised, 
it will store the location in the cabinet that we want to check. We start at the 
back of the cabinet:

check_location = len(cabinet) - 1

We’ll also define a variable called insert_location. The goal of our algo-
rithm is to determine the proper value of insert_location, and then it’s a 
simple matter of inserting the file at the insert_location. We’ll start out by 
assuming the insert_location is 0:

insert_location = 0

Then we can use a simple if statement to check whether the file to 
insert is higher than the file at the check_location. As soon as we encounter a 
number that’s lower than the number to insert, we use its location to decide 
where to insert our new number. We add 1 because our insertion takes 
place just behind the lower number we found:

if to_insert > cabinet[check_location]:
    insert_location = check_location + 1

After we know the right insert_location, we can use a built-in Python 
method for list manipulation called insert to put the file into the cabinet:

cabinet.insert(insert_location,to_insert)
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Running this code will not work to insert our file properly yet, however. 
We need to put these steps together in one coherent insertion function. This 
function combines all of the previous code and also adds a while loop. The 
while loop is used to iterate over the files in the cabinet, starting with the last 
file and proceeding until either we find the right insert_location or we have 
examined every file. The final code for our cabinet insertion is in Listing 4-1.

def insert_cabinet(cabinet,to_insert):
  check_location = len(cabinet) - 1
  insert_location = 0
  while(check_location >= 0):
    if to_insert > cabinet[check_location]:
        insert_location = check_location + 1
        check_location = - 1
    check_location = check_location - 1
  cabinet.insert(insert_location,to_insert)
  return(cabinet)

cabinet = [1,2,3,3,4,6,8,12]
newcabinet = insert_cabinet(cabinet,5)
print(newcabinet)

Listing 4-1: Inserting a numbered file into our cabinet

When you run the code in Listing 4-1, it will print out newcabinet, which 
you can see includes our new “file,” 5, inserted into our cabinet at the cor-
rect location (between 4 and 6).

It’s worthwhile to think for a moment about one edge case of insertion: 
inserting into an empty list. Our insertion algorithm mentioned “proceed-
ing sequentially through every file in the filing cabinet.” If there are no files 
in the filing cabinet, then there is nothing to proceed through sequentially. 
In this case, we need to heed only the last sentence, which tells us to insert 
our new file at the beginning of the cabinet. Of course, this is easier done 
than said, because the beginning of an empty cabinet is also the end and 
the middle of the cabinet. So all we need to do in this case is insert the file 
into the cabinet without regard to position. We can do this by using the 
insert() function in Python and inserting at location 0.

Sorting via Insertion
Now that we’ve rigorously defined insertion and know how to perform it, 
we’re almost at the point where we can perform an insertion sort. Insertion 
sort is simple: it takes each element of an unsorted list one at a time and 
uses our insertion algorithm to insert it correctly into a new, sorted list. In 
filing cabinet terms, we start with an unsorted filing cabinet, which we’ll 
call “old cabinet,” and an empty cabinet, which we’ll call “new cabinet.” 
We remove the first element of our old unsorted cabinet and add it to our 
new empty cabinet, using the insertion algorithm. We do the same with 
the second element of the old cabinet, then the third, and so on until we 
have inserted every element of the old cabinet into the new cabinet. Then, 
we forget about the old cabinet and use only our new, sorted cabinet. Since 
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we’ve been inserting using our insertion algorithm, and it always returns 
a sorted list, we know that our new cabinet will be sorted at the end of the 
process.

In Python, we start with an unsorted cabinet and an empty newcabinet:

cabinet = [8,4,6,1,2,5,3,7]
newcabinet = []

We implement insertion sort by repeatedly calling our insert_cabinet() 
function from Listing 4-1. In order to call it, we’ll need to have a file in our 
“hand,” which we accomplish by popping it out of the unsorted cabinet:

to_insert = cabinet.pop(0)
newcabinet = insert_cabinet(newcabinet, to_insert)

In this snippet, we used a method called pop(). This method removes 
a list element at a specified index. In this case, we removed the element of 
cabinet at index 0. After we use pop(), cabinet no longer contains that ele-
ment, and we store it in the variable to_insert so that we can put it into the 
newcabinet.

We’ll put all of this together in Listing 4-2, where we define an 
insertion_sort() function that loops through every element of our 
unsorted cabinet, inserting the elements one by one into newcabinet. 
Finally, at the end, we print out the result, a sorted cabinet called 
sortedcabinet.

cabinet = [8,4,6,1,2,5,3,7]
def insertion_sort(cabinet):
  newcabinet = []
  while len(cabinet) > 0:
    to_insert = cabinet.pop(0)
    newcabinet = insert_cabinet(newcabinet, to_insert)
  return(newcabinet)

sortedcabinet = insertion_sort(cabinet)
print(sortedcabinet)

Listing 4-2: An implementation of insertion sort

Now that we can do insertion sort, we can sort any list we encounter. We 
may be tempted to think that this means we have all the sorting knowledge 
we’ll ever need. However, sorting is so fundamental and important that we 
want to be able to do it in the best possible way. Before we discuss alterna-
tives to insertion sort, let’s look at what it means for one algorithm to be 
better than another and, on an even more basic level, what it means for an 
algorithm to be good.

Measuring Algorithm Efficiency
Is insertion sort a good algorithm? This question is hard to answer unless 
we’re sure about what we mean by “good.” Insertion sort works—it sorts 
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lists—so it’s good in the sense that it accomplishes its purpose. Another 
point in its favor is that it’s easy to understand and explain with reference to 
physical tasks that many people are familiar with. Yet another feather in its 
cap is that it doesn’t take too many lines of code to express. So far, insertion 
sort seems like a good algorithm.

However, insertion sort has one crucial failing: it takes a long time to 
perform. The code in Listing 4-2 almost certainly ran in less than one sec-
ond on your computer, so the “long time” that insertion sort takes is not the 
long time that it takes for a tiny seed to become a mighty redwood or even 
the long time that it takes to wait in line at the DMV. It’s more like a long 
time in comparison to how long it takes a gnat to flap its wings once.

To fret about a gnat’s wing flap as a “long time” may seem a little 
extreme. But there are several good reasons to push algorithms as close as 
possible to zero-second running times.

Why Aim for Efficiency?
The first reason to relentlessly pursue algorithm efficiency is that it can 
increase our raw capabilities. If your inefficient algorithm takes one minute 
to sort an eight-item list, that may not seem like a problem. But consider 
that such an inefficient algorithm might take an hour to sort a thousand-
item list, and a week to sort a million-item list. It may take a year or a cen-
tury to sort a billion-item list, or it may not be able to sort it at all. If we 
make the algorithm better able to sort an eight-item list (something that 
seems trivial since it saves us only a minute), it may make the difference 
between being able to sort a billion-item list in an hour rather than a cen-
tury, which can open up many possibilities. Advanced machine-learning 
methods like k-means clustering and k-NN supervised learning rely on 
ordering long lists, and improving the performance of a fundamental algo-
rithm like sorting can enable us to perform these methods on big datasets 
that would otherwise be beyond our grasp.

Even sorting short lists is important to do quickly if it’s something that 
we have to do many times. The world’s search engines, for example, col-
lectively receive a trillion searches every few months and have to order each 
set of results from most to least relevant before delivering them to users. If 
they can cut the time required for one simple sort from one second to half 
a second, they cut their required processing time from a trillion seconds to 
half a trillion seconds. This saves time for users (saving a thousand seconds 
for half a billion people really adds up!) and reduces data processing costs, 
and by consuming less energy, efficient algorithms are even environmen-
tally friendly.

The final reason to create faster algorithms is the same reason that 
people try to do better in any pursuit. Even though there is no obvious 
need for it, people try to run the 100-meter dash faster, play chess bet-
ter, and cook a tastier pizza than anyone ever has before. They do these 
things for the same reason George Mallory said he wanted to climb Mount 
Everest: “because it’s there.” It’s human nature to push the boundaries of 
the possible and strive to be better, faster, stronger, and more intelligent 



Sorting and Searching   57

than anyone else. Algorithm researchers are trying to do better because, 
among other reasons, they wish to do something remarkable, whether or 
not it is practically useful.

Measuring Time Precisely
Since the time required for an algorithm to run is so important, we should 
be more precise than saying that insertion sort takes a “long time” or “less 
than a second.” How long, exactly, does it take? For a literal answer, we can 
use the timeit module in Python. With timeit, we can create a timer that we 
start just before running our sorting code and end just afterward. When 
we check the difference between the starting time and the ending time, we 
find how long it took to run our code.

from timeit import default_timer as timer

start = timer()
cabinet = [8,4,6,1,2,5,3,7]
sortedcabinet = insertion_sort(cabinet)
end = timer()
print(end - start)

When I ran this code on my consumer-grade laptop, it ran in about 
0.0017 seconds. This is a reasonable way to express how good insertion sort 
is—it can fully sort a list with eight items in 0.0017 seconds. If we want to 
compare insertion sort with any other sorting algorithm, we can compare 
the results of this timeit timing to see which is faster, and say the faster one 
is better.

However, using these timings to compare algorithm performance has 
some problems. For example, when I ran the timing code a second time 
on my laptop, I found that it ran in 0.0008 seconds. A third time, I found 
that it ran on another computer in 0.03 seconds. The precise timing you 
get depends on the speed and architecture of your hardware, the current 
load on your operating system (OS), the version of Python you’re running, 
the OS’s internal task schedulers, the efficiency of your code, and prob-
ably other chaotic vagaries of randomness and electron motion and the 
phases of the moon. Since we can get very different results in each timing 
attempt, it’s hard to rely on timings to communicate about algorithms’ 
comparative efficiency. One programmer may brag that they can sort a 
list in Y seconds, while another programmer laughs and says that their 
algorithm gets better performance in Z seconds. We might find out they 
are running exactly the same code, but on different hardware at differ-
ent times, so their comparison is not of algorithm efficiency but rather of 
hardware speed and luck.

Counting Steps
Instead of using timings in seconds, a more reliable measure of algorithm 
performance is the number of steps required to execute the algorithm. The 
number of steps an algorithm takes is a feature of the algorithm itself and 
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isn’t dependent on the hardware architecture or even necessarily on the pro-
gramming language. Listing 4-3 is our insertion sort code from Listings 4-1 
and 4-2 with several lines added where we have specified stepcounter+=1. We 
increase our step counter every time we pick up a new file to insert from the 
old cabinet, every time we compare that file to another file in the new cabi-
net, and every time we insert the file into the new cabinet.

def insert_cabinet(cabinet,to_insert):
  check_location = len(cabinet) - 1
  insert_location = 0
  global stepcounter
  while(check_location >= 0):
    stepcounter += 1
    if to_insert > cabinet[check_location]:
        insert_location = check_location + 1
        check_location = - 1
    check_location = check_location - 1
  stepcounter += 1
  cabinet.insert(insert_location,to_insert)
  return(cabinet)

def insertion_sort(cabinet):
  newcabinet = []
  global stepcounter
  while len(cabinet) > 0:
    stepcounter += 1
    to_insert = cabinet.pop(0)
    newcabinet = insert_cabinet(newcabinet,to_insert)
  return(newcabinet)

cabinet = [8,4,6,1,2,5,3,7]
stepcounter = 0
sortedcabinet = insertion_sort(cabinet)
print(stepcounter)

Listing 4-3: Our insertion sort code with a step counter

In this case, we can run this code and see that it performs 36 steps in 
order to accomplish the insertion sort for a list of length 8. Let’s try to per-
form insertion sort for lists of other lengths and see how many steps we take.

To do so, let’s write a function that can check the number of steps 
required for insertion sort for unsorted lists of different lengths. Instead 
of manually writing out each unsorted list, we can use a simple list compre-
hension in Python to generate a random list of any specified length. We can 
import Python’s random module to make the random creation of lists easier. 
Here’s how we can create a random unsorted cabinet of length 10:

import random
size_of_cabinet = 10
cabinet = [int(1000 * random.random()) for i in range(size_of_cabinet)]
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Our function will simply generate a list of some given length, run our 
insertion sort code, and return the final value it finds for stepcounter.

def check_steps(size_of_cabinet):
  cabinet = [int(1000 * random.random()) for i in range(size_of_cabinet)]
  global stepcounter
  stepcounter = 0
  sortedcabinet = insertion_sort(cabinet)
  return(stepcounter)

Let’s create a list of all numbers between 1 and 100 and check the num-
ber of steps required to sort lists of each length.

random.seed(5040)
xs = list(range(1,100))
ys = [check_steps(x) for x in xs]
print(ys)

In this code, we start by calling the random.seed() function. This is not 
necessary but will ensure that you see the same results as those printed 
here if you run the same code. You can see that we define sets of values for 
x, stored in xs, and a set of values for y, stored in ys. The x values are simply 
the numbers between 1 and 100, and the y values are the number of steps 
required to sort randomly generated lists of each size corresponding to 
each x. If you look at the output, you can see how many steps insertion sort 
took to sort randomly generated lists of lengths 1, 2, 3 . . . , all the way to 99. 
We can plot the relationship between list length and sorting steps as follows. 
We’ll import matplotlib.pyplot in order to accomplish the plotting.

import matplotlib.pyplot as plt
plt.plot(xs,ys)
plt.title('Steps Required for Insertion Sort for Random Cabinets')
plt.xlabel('Number of Files in Random Cabinet')
plt.ylabel('Steps Required to Sort Cabinet by Insertion Sort')
plt.show()

Figure 4-1 shows the output. You can see that the output curve is a little 
jagged—sometimes a longer list will be sorted in fewer steps than will a 
shorter list. The reason for this is that we generated every list randomly. 
Occasionally our random list generation code will create a list that’s easy 
for insertion sort to deal with quickly (because it’s already partially sorted), 
and occasionally it will create a list that is harder to deal with quickly, 
strictly through random chance. For this same reason, you may find that 
the output on your screen doesn’t look exactly like the output printed here 
if you don’t use the same random seed, but the general shape should be 
the same.
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Figure 4-1: Insertion sort steps

Comparing to Well-Known Functions
Looking beyond the superficial jaggedness of Figure 4-1, we can examine the 
general shape of the curve and try to reason about its growth rate. The num-
ber of steps required appears to grow quite slowly between x = 1 and about 
x = 10. After that, it seems to slowly get steeper (and more jagged). Between 
about x = 90 and x = 100, the growth rate appears very steep indeed.

Saying that the plot gets gradually steeper as the list length increases 
is still not as precise as we want to be. Sometimes we talk colloquially about 
this kind of accelerating growth as “exponential.” Are we dealing with expo-
nential growth here? Strictly speaking, there is a function called the expo-
nential function defined by ex, where e is Euler’s number, or about 2.71828. So 
does the number of steps required for insertion sort follow this exponential 
function that we could say fits the narrowest possible definition of exponen-
tial growth? We can get a clue about the answer by plotting our step curve 
together with an exponential growth curve, as follows. We will also import 
the numpy module in order to take the maximum and minimum of our step 
values.

import math
import numpy as np
random.seed(5040)
xs = list(range(1,100))
ys = [check_steps(x) for x in xs]
ys_exp = [math.exp(x) for x in xs]
plt.plot(xs,ys)
axes = plt.gca()
axes.set_ylim([np.min(ys),np.max(ys) + 140])
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plt.plot(xs,ys_exp)
plt.title('Comparing Insertion Sort to the Exponential Function')
plt.xlabel('Number of Files in Random Cabinet')
plt.ylabel('Steps Required to Sort Cabinet')
plt.show()

Just like before, we define xs to be all the numbers between 1 and 100, 
and ys to be the number of steps required to sort randomly generated lists 
of each size corresponding to each x. We also define a variable called ys_exp, 
which is ex for each of the values stored in xs. We then plot both ys and ys_exp 
on the same plot. The result enables us to see how the growth of the number 
of steps required to sort a list relates to true exponential growth.

Running this code creates the plot shown in Figure 4-2.

Figure 4-2: Insertion sort steps compared to the exponential function

We can see the true exponential growth curve shooting up toward 
infinity on the left side of the plot. Though the insertion sort step curve 
grows at an accelerating rate, its acceleration does not seem to get close to 
matching true exponential growth. If you plot other curves whose growth 
rate could also be called exponential, 2× or 10×, you’ll see that all of these 
types of curves also grow much faster than our insertion sort step counter 
curve does. So if the insertion sort step curve doesn’t match exponential 
growth, what kind of growth might it match? Let’s try to plot a few more 
functions on the same plot. Here, we’ll plot y = x, y = x1.5, y = x2, and  
y = x3 along with the insertion sort step curve.

random.seed(5040)
xs = list(range(1,100))
ys = [check_steps(x) for x in xs]
xs_exp = [math.exp(x) for x in xs]
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xs_squared = [x**2 for x in xs]
xs_threehalves = [x**1.5 for x in xs]
xs_cubed = [x**3 for x in xs]
plt.plot(xs,ys)
axes = plt.gca()
axes.set_ylim([np.min(ys),np.max(ys) + 140])
plt.plot(xs,xs_exp)
plt.plot(xs,xs)
plt.plot(xs,xs_squared)
plt.plot(xs,xs_cubed)
plt.plot(xs,xs_threehalves)
plt.title('Comparing Insertion Sort to Other Growth Rates')
plt.xlabel('Number of Files in Random Cabinet')
plt.ylabel('Steps Required to Sort Cabinet')
plt.show()

This results in Figure 4-3.

Figure 4-3: Insertion sort steps compared to other growth rates

There are five growth rates plotted in Figure 4-3, in addition to the 
jagged curve counting the steps required for insertion sort. You can see 
that the exponential curve grows the fastest, and next to it the cubic curve 
scarcely even makes an appearance on the plot because it also grows so fast. 
The y = x curve grows extremely slowly compared to the other curves; you 
can see it at the very bottom of the plot.

The curves that are the closest to the insertion sort curve are y = x2 and 
y = x1.5. It isn’t obvious which curve is most comparable to the insertion  
sort curve, so we cannot speak with certainty about the exact growth rate  
of insertion sort. But after plotting, we’re able to make a statement like  
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“if we are sorting a list with n elements, insertion sort will take somewhere 
between n1.5 and n2 steps.” This is a more precise and robust statement than 
“as long as a gnat’s wing flap” or “.002-ish seconds on my unique laptop this 
morning.”

Adding Even More Theoretical Precision
To get even more precise, we should try to reason carefully about the steps 
required for insertion sort. Let’s imagine, once again, that we have a new 
unsorted list with n elements. In Table 4-2, we proceed through each step of 
insertion sort individually and count the steps.

Table 4-2: Counting the Steps in Insertion Sort

Description of actions

Number of steps 
required for pulling the 
file from the old cabinet

Maximum number 
of steps required for 
comparing to other files

Number of steps 
required for  
inserting the file into 
the new cabinet

Take the first file from the 
old cabinet and insert 
it into the (empty) new 
cabinet.

1 0. (There are no files to 
compare to.)

1

Take the second file 
from the old cabinet and 
insert it into the new cab-
inet (that now contains 
one file).

1 1. (There’s one file to 
compare to and we have 
to compare it.)

1

Take the third file from 
the old cabinet and 
insert it into the new cab-
inet (that now contains 
two files).

1 2 or fewer. (There are 
two files and we have to 
compare between 1 of 
them and all of them.)

1

Take the fourth file from 
the old cabinet and 
insert it into the new cab-
inet (that now contains 
three files).

1 3 or fewer. (There are 
three files and we have 
to compare between 1 
of them and all of them.)

1

. . . . . . . . . . . .

Take the nth file from the 
old cabinet and insert 
it into the new cabinet 
(that contains n   – 1 files).

1 n   – 1 or fewer. (There are 
n   – 1 files and we have to 
compare between one 
of them and all of them.)

1

If we add up all the steps described in this table, we get the following 
maximum total steps:

•	 Steps required for pulling files: n (1 step for pulling each of n files)

•	 Steps required for comparison: up to 1 + 2 + . . . + (n – 1) 

•	 Steps required for inserting files: n (1 step for inserting each of n files)
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If we add these up, we get an expression like the following:

maximum_total_steps = n + (1 + 2 + . . . + n)

We can simplify this expression using a handy identity:

2
n × (n + 1) 

1 + 2 + . . . + n =

If we use this identity and then add everything together and simplify, 
we find that the total number of steps required is

2
n2

2
3n

maximum_total_steps = +

We finally have a very precise expression for the maximum total steps 
that could be required to perform insertion sort. But believe it or not, this 
expression may even be too precise, for several reasons. One is that it’s the 
maximum number of steps required, but the minimum and the average 
could be much lower, and almost every conceivable list that we might want 
to sort would require fewer steps. Remember the jaggedness in the curve we 
plotted in Figure 4-1—there’s always variation in how long it takes to per-
form an algorithm, depending on our choice of input.

Another reason that our expression for the maximum steps could be 
called too precise is that knowing the number of steps for an algorithm is 
most important for large values of n, but as n gets very large, a small part 
of the expression starts to dominate the rest in importance because of the 
sharply diverging growth rates of different functions.

Consider the expression n2 + n. It is a sum of two terms: an n2 term, and 
an n term. When n = 10, n2 + n is 110, which is 10% higher than n2. When  
n = 100, n2 + n is 10,100, which is only 1% higher than n2. As n grows, the n2 
term in the expression becomes more important than the n term because 
quadratic functions grow so much faster than linear ones. So if we have 
one algorithm that takes n2+ n steps to perform and another algorithm 
that takes n2 steps to perform, as n grows very large, the difference between 
them will matter less and less. Both of them run in more or less n2 steps.

Using Big O Notation
To say that an algorithm runs in more or less n2 steps is a reasonable balance 
between the precision we want and the conciseness we want (and the ran-
domness we have). The way we express this type of “more or less” relation-
ship formally is by using big O notation(the O is short for order). We might  
say that a particular algorithm is “big O of n2,” or O(n2), if, in the worst case,  
it runs in more or less n2 steps for large n. The technical definition states 
that the function f(x) is big- O of the function g(x) if there’s some constant 
number M such that the absolute value of f(x) is always less than M times 
g(x) for all sufficiently large values of x.
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In the case of insertion sort, when we look at our expression for the 
maximum number of steps required to perform the algorithm, we find that 
it’s a sum of two terms: one is a multiple of n2, and the other is a multiple of 
n. As we just discussed, the term that is a multiple of n will matter less and 
less as n grows, and the n2 term will come to be the only one that we are 
concerned with. So the worst case of insertion sort is that it is a O(n2) (“big 
O of n2”) algorithm.

The quest for algorithm efficiency consists of seeking algorithms whose 
runtimes are big O of smaller and smaller functions. If we could find a way 
to alter insertion sort so that it is O(n1.5) instead of O(n2), that would be a 
major breakthrough that would make a huge difference in runtimes for 
large values of n. We can use big O notation to talk not only about time but 
also about space. Some algorithms can gain speed by storing big datasets 
in memory. They might be big O of a small function for runtime but big O 
of a larger function for memory requirements. Depending on the circum-
stances, it may be wise to gain speed by eating up memory, or to free up 
memory by sacrificing speed. In this chapter, we’ll focus on gaining speed 
and designing algorithms to have runtimes that are big O of the smallest 
possible functions, without regard to memory requirements.

After learning insertion sort and seeing that its runtime performance 
is O(n2), it’s natural to wonder what level of improvement we can reasonably 
hope for. Could we find some holy grail algorithm that could sort any pos-
sible list in fewer than 10 steps? No. Every sorting algorithm will require at 
least n steps, because it will be necessary to consider each element of the list 
in turn, for each of the n elements. So any sorting algorithm will be at least 
O(n). We cannot do better than O(n), but can we do better than insertion 
sort’s O(n2)? We can. Next, we’ll consider an algorithm that’s known to be 
O(nlog(n)), a significant improvement over insertion sort.

Merge Sort
Merge sort is an algorithm that’s much quicker than insertion sort. Just like 
insertion sort, merge sort contains two parts: a part that merges two lists 
and a part that repeatedly uses merging to accomplish the actual sorting. 
Let’s consider the merging itself before we consider the sorting.

Suppose we have two filing cabinets that are both sorted individually 
but have never been compared to each other. We want to combine their 
contents into one final filing cabinet that is also completely sorted. We 
will call this task a merge of the two sorted filing cabinets. How should we 
approach this problem?

Once again, it’s worthwhile to consider how we would do this with real 
filing cabinets before we open Python and start writing code. In this case, we 
can imagine having three filing cabinets in front of us: the two full, sorted 
filing cabinets whose files we want to merge, and a third, empty filing cabinet 
that we will insert files into and that will eventually contain all of the files from 
the original two cabinets. We can call our two original cabinets the “left” and 
“right” cabinets, imagining that they are placed on our left and right.
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Merging
To merge, we can take the first file in both of the original cabinets simul-
taneously: the first left file with our left hand and the first right file with 
our right hand. Whichever file is lower is inserted into the new cabinet as 
its first file. To find the second file for the new cabinet, once again take 
the first file in the left and right cabinets, compare them, and insert which-
ever is lower into the last position in the new cabinet. When either the left 
cabinet or the right cabinet is empty, take the remaining files in the non-
empty cabinet and place them all together at the end of the new cabinet. 
After this, your new cabinet will contain all the files from the left and 
right cabinets, sorted in order. We have successfully merged our original 
two cabinets.

In Python, we’ll use the variables left and right to refer to our original 
sorted cabinets, and we’ll define a newcabinet list, which will start empty and 
eventually contain all elements of both left and right, in order.

newcabinet = []

We’ll define example cabinets that we’ll call left and right:

left = [1,3,4,4,5,7,8,9]
right = [2,4,6,7,8,8,10,12,13,14]

To compare the respective first elements of our left and right cabinets, 
we’ll use the following if statements (which won’t be ready to run until we 
fill in the --snip-- sections):

   if left[0] > right[0]:
    --snip--
   elif left[0] <= right[0]:
    --snip--

Remember that if the first element of the left cabinet is lower than the 
first element of the right cabinet, we want to pop that element out of the left 
cabinet and insert it into the newcabinet, and vice versa. We can accomplish 
that by using Python’s built-in pop() function, inserting it into our if state-
ments as follows:

if left[0] > right[0]:
    to_insert = right.pop(0)
    newcabinet.append(to_insert)
elif left[0] <= right[0]:
    to_insert = left.pop(0)
    newcabinet.append(to_insert)

This process—checking the first elements of the left and right cabinets 
and popping the appropriate one into the new cabinet—needs to continue 
as long as both of the cabinets still have at least one file. That’s why we will 
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nest these if statements inside a while loop that checks the minimum length 
of left and right. As long as both left and right contain at least one file, it 
will continue its process:

while(min(len(left),len(right)) > 0):
    if left[0] > right[0]:
        to_insert = right.pop(0)
        newcabinet.append(to_insert)
    elif left[0] <= right[0]:
        to_insert = left.pop(0)
        newcabinet.append(to_insert)

Our while loop will stop executing as soon as either left or right runs 
out of files to insert. At that point, if left is empty, we’ll insert all the files in 
right at the end of the new cabinet in their current order, and vice versa. We 
can accomplish that final insertion as follows:

if(len(left) > 0):
    for i in left:
        newcabinet.append(i)

if(len(right) > 0):
    for i in right:
        newcabinet.append(i)

Finally, we combine all of those snippets into our final merging algo-
rithm in Python as shown in Listing 4-4.

def merging(left,right):
    newcabinet = []
    while(min(len(left),len(right)) > 0):
        if left[0] > right[0]:
            to_insert = right.pop(0)
            newcabinet.append(to_insert)
        elif left[0] <= right[0]:
            to_insert = left.pop(0)
            newcabinet.append(to_insert)
    if(len(left) > 0):
        for i in left:
            newcabinet.append(i)
    if(len(right)>0):
        for i in right:
            newcabinet.append(i)
    return(newcabinet)

left = [1,3,4,4,5,7,8,9]
right = [2,4,6,7,8,8,10,12,13,14]

newcab=merging(left,right)

Listing 4-4: An algorithm to merge two sorted lists
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The code in Listing 4-4 creates newcab, a single list that contains all ele-
ments of left and right, merged and in order. You can run print(newcab) to 
see that our merging function worked.

From Merging to Sorting
Once we know how to merge, merge sort is within our grasp. Let’s start by 
creating a simple merge sort function that works only on lists that have two 
or fewer elements. A one-element list is already sorted, so if we pass that as 
the input to our merge sort function, we should just return it unaltered. If we 
pass a two-element list to our merge sort function, we can split that list into 
two one-element lists (that are therefore already sorted) and call our merging 
function on those one-element lists to get a final, sorted two-element list. The 
following Python function accomplishes what we need:

import math

def mergesort_two_elements(cabinet):
    newcabinet = []
    if(len(cabinet) == 1):
        newcabinet = cabinet
    else:
        left = cabinet[:math.floor(len(cabinet)/2)]
        right = cabinet[math.floor(len(cabinet)/2):]
        newcabinet = merging(left,right)
    return(newcabinet)

This code relies on Python’s list indexing syntax to split whatever cabinet 
we want to sort into a left cabinet and a right cabinet. You can see in the lines 
that define left and right that we’re using :math.floor(len(cabinet)/2) and 
math.floor(len(cabinet)/2): to refer to the entire first half or the entire second 
half of the original cabinet, respectively. You can call this function with any 
one- or two-element cabinet—for example, mergesort_two_elements([3,1])—
and see that it successfully returns a sorted cabinet.

Next, let’s write a function that can sort a list that has four elements. 
If we split a four-element list into two sublists, each sublist will have two 
elements. We could follow our merging algorithm to combine these lists. 
However, recall that our merging algorithm is designed to combine two 
already sorted lists. These two lists may not be sorted, so using our merging 
algorithm will not successfully sort them. However, each of our sublists has 
only two elements, and we just wrote a function that can perform merge 
sort on lists with two elements. So we can split our four-element list into 
two sublists, call our merge sort function that works on two-element lists on 
each of those sublists, and then merge the two sorted lists together to get a 
sorted result with four elements. This Python function accomplishes that:

def mergesort_four_elements(cabinet):
    newcabinet = []
    if(len(cabinet) == 1):
        newcabinet = cabinet
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    else:
        left = mergesort_two_elements(cabinet[:math.floor(len(cabinet)/2)])
        right = mergesort_two_elements(cabinet[math.floor(len(cabinet)/2):])
        newcabinet = merging(left,right)
    return(newcabinet)

cabinet = [2,6,4,1]
newcabinet = mergesort_four_elements(cabinet)

We could continue writing these functions to work on successively larger 
lists. But the breakthrough comes when we realize that we can collapse that 
whole process by using recursion. Consider the function in Listing 4-5, and 
compare it to the preceding mergesort_four_elements() function.

def mergesort(cabinet):
    newcabinet = []
    if(len(cabinet) == 1):
        newcabinet = cabinet
    else:

      1 left = mergesort(cabinet[:math.floor(len(cabinet)/2)])
      2 right = mergesort(cabinet[math.floor(len(cabinet)/2):])

        newcabinet = merging(left,right)
    return(newcabinet)

Listing 4-5: Implementing merge sort with recursion

You can see that this function is nearly identical to our mergesort_four_
elements() to function. The crucial difference is that to create the sorted left 
and right cabinets, it doesn’t call another function that works on smaller 
lists. Rather, it calls itself on the smaller list 12. Merge sort is a divide and 
conquer algorithm. We start with a large, unsorted list. Then we split that list 
repeatedly into smaller and smaller chunks (the dividing) until we end up 
with sorted (conquered) one-item lists, and then we simply merge them back 
together successively until we have built back up to one big sorted list. We 
can call this merge sort function on a list of any size and check that it works:

cabinet = [4,1,3,2,6,3,18,2,9,7,3,1,2.5,-9]
newcabinet = mergesort(cabinet)
print(newcabinet)

When we put all of our merge sort code together, we get Listing 4-6.

def merging(left,right):
    newcabinet = []
    while(min(len(left),len(right)) > 0):
        if left[0] > right[0]:
            to_insert = right.pop(0)
            newcabinet.append(to_insert)
        elif left[0] <= right[0]:
            to_insert = left.pop(0)
            newcabinet.append(to_insert)
    if(len(left) > 0):
        for i in left:
            newcabinet.append(i)
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    if(len(right) > 0):
        for i in right:
            newcabinet.append(i)
    return(newcabinet)

import math

def mergesort(cabinet):
    newcabinet = []
    if(len(cabinet) == 1):
        newcabinet=cabinet
    else:
        left = mergesort(cabinet[:math.floor(len(cabinet)/2)])
        right = mergesort(cabinet[math.floor(len(cabinet)/2):])
        newcabinet = merging(left,right)
    return(newcabinet)

cabinet = [4,1,3,2,6,3,18,2,9,7,3,1,2.5,-9]
newcabinet=mergesort(cabinet)

Listing 4-6: Our complete merge sort code

You could add a step counter to your merge sort code to check how 
many steps it takes to run and how it compares to insertion sort. The merge 
sort process consists of successively splitting the initial cabinet into sublists 
and then merging those sublists back together, preserving the sorting order. 
Every time we split a list, we’re cutting it in half. The number of times a list 
of length n can be split in half before each sublist has only one element is 
about log(n) (where the log is to base 2), and the number of comparisons we 
have to make at each merge is at most n. So n or fewer comparisons for each 
of log(n) comparisons means that merge sort is O(n×log(n)), which may not 
seem impressive but actually makes it the state of the art for sorting. In fact, 
when we call Python’s built-in sorting function sorted as follows:

print(sorted(cabinet))

Python is using a hybrid version of merge sort and insertion sort 
behind the scenes to accomplish this sorting task. By learning merge sort 
and insertion sort, you’ve gotten up to speed with the quickest sorting algo-
rithm computer scientists have been able to create, something that is used 
millions of times every day in every imaginable kind of application.

Sleep Sort
The enormous negative influence that the internet has had on humanity is 
occasionally counterbalanced by a small, shining treasure that it provides. 
Occasionally, the bowels of the internet even produce a scientific discovery 
that creeps into the world outside the purview of scientific journals or the 
“establishment.” In 2011, an anonymous poster on the online image board 
4chan proposed and provided code for a sorting algorithm that had never 
been published before and has since come to be called sleep sort.
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Sleep sort wasn’t designed to resemble any real-world situation, like 
inserting files into a filing cabinet. If we’re seeking an analogy, we might 
consider the task of allocating lifeboat spots on the Titanic as it began to 
sink. We might want to allow children and younger people the first chance 
to get on the lifeboats, and then allow older people to try to get one of the 
remaining spots. If we make an announcement like “younger people get on 
the boats before older people,” we’d face chaos as everyone would have to 
compare their ages—they would face a difficult sorting problem amidst the 
chaos of the sinking ship.

A sleep-sort approach to the Titanic lifeboats would be the following. 
We would announce, “Everyone please stand still and count to your age:  
1, 2, 3, . . . . As soon as you have counted up to your current age, step for-
ward to get on a lifeboat.” We can imagine that 8-year-olds would finish 
their counting about one second before the 9-year-olds, and so would have 
a one-second head start and be able to get a spot on the boats before those 
who were 9. The 8- and 9-year-olds would similarly be able to get on the 
boats before the 10-year-olds, and so on. Without doing any comparisons 
at all, we’d rely on individuals’ ability to pause for a length of time propor-
tional to the metric we want to sort on and then insert themselves, and the 
sorting would happen effortlessly after that—with no direct inter-person 
comparisons.

This Titanic lifeboat process shows the idea of sleep sort: allow each 
element to insert itself directly, but only after a pause in proportion to the 
metric it’s being sorted on. From a programming perspective, these pauses 
are called sleeps and can be implemented in most languages.

In Python, we can implement sleep sort as follows. We will import the 
threading module, which will enable us to create different computer pro-
cesses for each element of our list to sleep and then insert itself. We’ll also 
import the time.sleep module, which will enable us to put our different 
“threads” to sleep for the appropriate length of time.

import threading
from time import sleep

def sleep_sort(i):
    sleep(i)
    global sortedlist
    sortedlist.append(i)
    return(i)

items = [2, 4, 5, 2, 1, 7]
sortedlist = []
ignore_result = [threading.Thread(target = sleep_sort, args = (i,)).start() \ 
for i in items]

The sorted list will be stored in the sortedlist variable, and you can 
ignore the list we create called ignore_result. You can see that one advan-
tage of sleep sort is that it can be written concisely in Python. It’s also fun 
to print the sortedlist variable before the sorting is done (in this case, 
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within about 7 seconds) because depending on exactly when you execute 
the print command, you’ll see a different list. However, sleep sort also has 
some major disadvantages. One of these is that because it’s not possible to 
sleep for a negative length of time, sleep sort cannot sort lists with nega-
tive numbers. Another disadvantage is that sleep sort’s execution is highly 
dependent on outliers—if you append 1,000 to the list, you’ll have to wait at 
least 1,000 seconds for the algorithm to finish executing. Yet another disad-
vantage is that numbers that are close to each other may be inserted in the 
wrong order if the threads are not executed perfectly concurrently. Finally, 
since sleep sort uses threading, it will not be able to execute (well) on hard-
ware or software that does not enable threading (well).

If we had to express sleep sort’s runtime in big O notation, we might say 
that it is O(max(list)). Unlike the runtime of every other well-known sorting 
algorithm, its runtime depends not on the size of the list but on the size of 
the elements of the list. This makes sleep sort hard to rely on, because we 
can only be confident about its performance with certain lists—even a short 
list may take far too long to sort if any of its elements are too large.

There may never be a practical use for sleep sort, even on a sinking 
ship. I include it here for a few reasons. First, because it is so different from 
all other extant sorting algorithms, it reminds us that even the most stale 
and static fields of research have room for creativity and innovation, and 
it provides a refreshingly new perspective on what may seem like a narrow 
field. Second, because it was designed and published anonymously and 
probably by someone outside the mainstream of research and practice, it 
reminds us that great thoughts and geniuses are found not only in fancy 
universities, established journals, and top firms, but also among the uncre-
dentialed and unrecognized. Third, it represents a fascinating new genera-
tion of algorithms that are “native to computers,” meaning that they are not 
a translation of something that can be done with a cabinet and two hands 
like many old algorithms, but are fundamentally based on capabilities that 
are unique to computers (in this case, sleeping and threading). Fourth, the 
computer-native ideas it relies on (sleeping and threading) are very useful 
and worth putting in any algorithmicist’s toolbox for use in designing other 
algorithms. And fifth, I have an idiosyncratic affection for it, maybe just 
because it is a strange, creative misfit or maybe because I like its method of 
self-organizing order and the fact that I can use it if I’m ever in charge of 
saving a sinking ship.

From Sorting to Searching
Searching, like sorting, is fundamental to a variety of tasks in computer sci-
ence (and in the rest of life). We may want to search for a name in a phone 
book, or (since we’re living after the year 2000) we may need to access a 
database and find a relevant record.

Searching is often merely a corollary of sorting. In other words, once 
we have sorted a list, searching is very straightforward—the sorting is often 
the hard part.
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Binary Search
Binary search is a quick and effective method for searching for an element 
in a sorted list. It works a little like a guessing game. Suppose that someone 
is thinking of a number from 1 to 100 and you are trying to guess it. You 
may guess 50 as your first guess. Your friend says that 50 is incorrect but 
allows you to guess again and gives you a hint: 50 is too high. Since 50 is too 
high, you guess 49. Again, you are incorrect, and your friend tells you that 
49 is too high and gives you another chance to guess. You could guess 48, 
then 47, and so on until you get the right answer. But that could take a long 
time—if the correct number is 1, it will take you 50 guesses to get it, which 
seems like too many guesses considering there were only 100 total possibili-
ties to begin with.

A better approach is to take larger jumps after you find out whether 
your guess is too high or too low. If 50 is too high, consider what we could 
learn from guessing 40 next instead of 49. If 40 is too low, we have elimi-
nated 39 possibilities (1–39) and we’ll definitely be able to guess in at most 
9 more guesses (41–49). If 40 is too high, we’ve at least eliminated 9 pos-
sibilities (41–49) and we’ll definitely be able to guess in at most 39 more 
guesses (1–39). So in the worst case, guessing 40 narrows down the possi-
bilities from 49 (1–49) to 39 (1–39). By contrast, guessing 49 narrows down 
the possibilities from 49 (1–49) to 48 (1–48) in the worst case. Clearly, 
guessing 40 is a better searching strategy than guessing 49.

It turns out that the best searching strategy is to guess exactly the 
midpoint of the remaining possibilities. If you do that and then check 
whether your guess was too high or too low, you can always eliminate half 
of the remaining possibilities. If you eliminate half of the possibilities in 
each round of guessing, you can actually find the right value quite quickly 
(O(log(n)) for those keeping score at home). For example, a list with 1,000 
items will require only 10 guesses to find any element with a binary search 
strategy. If we’re allowed to have only 20 guesses, we can correctly find the 
position of an element in a list with more than a million items. Incidentally, 
this is why we can write guessing-game apps that can correctly “read your 
mind” by asking only about 20 questions.

To implement this in Python, we will start by defining upper and lower 
bounds for what location a file can occupy in a filing cabinet. The lower 
bound will be 0, and the upper bound will be the length of the cabinet:

sorted_cabinet = [1,2,3,4,5]
upperbound = len(sorted_cabinet)
lowerbound = 0

To start, we will guess that the file is in the middle of the cabinet. We’ll 
import Python’s math library to use the floor() function, which can convert 
decimals to integers. Remember that guessing the halfway point gives us 
the maximum possible amount of information:

import math
guess = math.floor(len(sorted_cabinet)/2)
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Next, we will check whether our guess is too low or too high. We’ll take 
a different action depending on what we find. We use the looking_for vari-
able for the value we are searching for:

if(sorted_cabinet[guess] > looking_for):
    --snip--
if(sorted_cabinet[guess] < looking_for):
    --snip--

If the file in the cabinet is too high, then we’ll make our guess the new 
upper bound, since there is no use looking any higher in the cabinet. Then 
our new guess will be lower—to be precise, it will be halfway between the 
current guess and the lower bound:

looking_for = 3
if(sorted_cabinet[guess] > looking_for):
    upperbound = guess
    guess = math.floor((guess + lowerbound)/2)

We follow an analogous process if the file in the cabinet is too low:

if(sorted_cabinet[guess] < looking_for):
    lowerbound = guess
    guess = math.floor((guess + upperbound)/2)

Finally, we can put all of these pieces together into a binarysearch() 
function. The function contains a while loop that will run for as long 
as it takes until we find the part of the cabinet we’ve been looking for 
(Listing 4-7).

import math
sortedcabinet = [1,2,3,4,5,6,7,8,9,10]

def binarysearch(sorted_cabinet,looking_for):
    guess = math.floor(len(sorted_cabinet)/2)
    upperbound = len(sorted_cabinet)
    lowerbound = 0
    while(abs(sorted_cabinet[guess] - looking_for) > 0.0001):
        if(sorted_cabinet[guess] > looking_for):
            upperbound = guess
            guess = math.floor((guess + lowerbound)/2)
        if(sorted_cabinet[guess] < looking_for):
            lowerbound = guess
            guess = math.floor((guess + upperbound)/2)
    return(guess)

print(binarysearch(sortedcabinet,8))

Listing 4-7: An implementation of binary search
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The final output of this code tells us that the number 8 is at position 7 
in our sorted_cabinet. This is correct (remember that the index of Python 
lists starts at 0). This strategy of guessing in a way that eliminates half of 
the remaining possibilities is useful in many domains. For example, it’s 
the basis for the most efficient strategy on average in the formerly popular 
board game Guess Who. It’s also the best way (in theory) to look words up in 
a large, unfamiliar dictionary.

Applications of Binary Search
Besides guessing games and word lookups, binary search is used in a few 
other domains. For example, we can use the idea of binary search when 
debugging code. Suppose that we have written some code that doesn’t work, 
but we aren’t sure which part is faulty. We can use a binary search strategy 
to find the problem. We split the code in half and run both halves sepa-
rately. Whichever half doesn’t run properly is the half where the problem 
lies. Again, we split the problematic part in half, and test each half to fur-
ther narrow down the possibilities until we find the offending line of code. 
A similar idea is implemented in the popular code version-control software 
Git as git bisect (although git bisect iterates through temporally separated 
versions of the code rather than through lines in one version).

Another application of binary search is inverting a mathematical func-
tion. For example, imagine that we have to write a function that can cal-
culate the arcsin, or inverse sine, of a given number. In only a few lines, we 
can write a function that will call our binarysearch() function to get the right 
answer. To start, we need to define a domain; these are the values that we 
will search through to find a particular arcsin value. The sine function is 
periodic and takes on all of its possible values between –pi/2 and pi/2, so 
numbers in between those extremes will constitute our domain. Next, we 
calculate sine values for each value in the domain. We call  binarysearch() to 
find the position of the number whose sine is the number we’re looking for, 
and return the domain value with the corresponding index, like so:

def inverse_sin(number):
    domain = [x * math.pi/10000 - math.pi/2 for x in list(range(0,10000))]
    the_range = [math.sin(x) for x in domain]
    result = domain[binarysearch(the_range,number)]
    return(result)

You can run inverse_sin(0.9) and see that this function returns the cor-
rect answer: about 1.12.

This is not the only way to invert a function. Some functions can be 
inverted through algebraic manipulation. However, algebraic function 
inversion can be difficult or even impossible for many functions. The 
binary search method presented here, by contrast, can work for any func-
tion, and with its O(log(n)) runtime, it’s also lightning fast.
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Summary
Sorting and searching may feel mundane to you, as if you’ve taken a break 
from an adventure around the world to attend a seminar on folding laun-
dry. Maybe so, but remember that if you can fold clothes efficiently, you 
can pack more gear for your trek up Kilimanjaro. Sorting and searching 
algorithms can be enablers, helping you build newer and greater things 
on their shoulders. Besides that, it’s worth studying sorting and searching 
algorithms closely because they are fundamental and common, and the 
ideas you see in them can be useful for the rest of your intellectual life. In 
this chapter, we discussed some fundamental and interesting sorting algo-
rithms, plus binary search. We also discussed how to compare algorithms 
and use big O notation.

In the next chapter, we’ll turn to a few applications of pure math. We’ll 
see how we can use algorithms to explore the mathematical world, and how 
the mathematical world can help us understand our own.



The quantitative precision of algorithms 
makes them naturally suited to applications 

in mathematics. In this chapter, we explore 
algorithms that are useful in pure mathematics 

and look at how mathematical ideas can improve any 
of our algorithms. We’ll start by discussing continued 
fractions, an austere topic that will take us to the dizzy
ing heights of the infinite and give us the power to find  
order in chaos. We’ll continue by discussing square roots, a more prosaic 
but arguably more useful topic. Finally, we’ll discuss randomness, includ
ing the mathematics of randomness and some important algorithms that 
generate random numbers.

5
P U R E  M A T H
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Continued Fractions
In 1597, the great Johannes Kepler wrote about what he considered geom
etry’s “two great treasures”: the Pythagorean theorem and a number that 
has since come to be called the golden ratio. Often denoted by the Greek let
ter phi, the golden ratio is equal to about 1.618, and Kepler was only one of 
dozens of great thinkers who have been entranced by it. Like pi and a few 
other famous constants, such as the exponential base e, phi has a tendency 
to show up in unexpected places. People have found phi in many places in 
nature, and have painstakingly documented where it occurs in fine art, as 
in the annotated version of the Rokeby Venus shown in Figure 51.

In Figure 51, a phi enthusiast has added overlays that indicate that the 
ratios of some of these lengths, like b/a and d/c, seem to be equal to phi. 
Many great paintings have a composition that’s amenable to this kind of 
phihunting.

Figure 5-1: Phi/Venus (from https://commons.wikimedia.org/wiki/File:DV_The_Toilet_of_Venus_Gr.jpg)

https://commons.wikimedia.org/wiki/File:DV_The_Toilet_of_Venus_Gr.jpg
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Compressing and Communicating Phi
Phi’s exact value is surprisingly hard to express. I could say that it’s equal  
to 1.61803399 . . . . The ellipsis here is a way of cheating; it means that more 
numbers follow (an infinite number of numbers, in fact), but I haven’t told 
you what those numbers are, so you still don’t know the exact value of phi.

For some numbers with infinite decimal expansions, a fraction can 
represent them exactly. For example, the number 0.11111 . . . is equal to 
1/9—here, the fraction provides an easy way to express the exact value 
of an infinitely continued decimal. Even if you didn’t know the fractional 
representation, you could see the pattern of repeating 1s in 0.1111 . . . and 
thereby understand its exact value. Unfortunately, the golden ratio is what’s 
called an irrational number, meaning that there are no two integers x and y 
that enable us to say that phi is equal to x/y. Moreover, no one has yet been 
able to discern any pattern in its digits.

We have an infinite decimal expansion with no clear pattern and no 
fractional representation. It may seem impossible to ever clearly express 
phi’s exact value. But if we learn more about phi, we can find a way to 
express it both exactly and concisely. One of the things we know about phi 
is that it’s the solution to this equation:

phi 2 – phi  – 1 = 0

One way we might imagine expressing the exact value of phi would be 
to write “the solution to the equation written above this paragraph.” This 
has the benefit of being concise and technically exact, but it means that we 
have to solve the equation somehow. That description also doesn’t tell us 
the 200th or 500th digit in phi’s expansion.

If we divide our equation by phi, we get the following:

phi – 1 – = 0
phi
1

And if we rearrange that equation, we get this:

phi = 1 + 
phi
1

Now imagine if we attempted a strange substitution of this equation 
into itself:

phi = 1 + 
phi
1

phi
1

= 1 + 
1 + 

1
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Here, we rewrote the phi on the righthand side as 1 + 1/phi. We could 
do that same substitution again; why not?

phi = 1 + 
phi
1 = 1 + 

phi
11 + 

1
1

= 1 + 
1 + 

phi
11 + 

1

We can perform this substitution as many times as we like, with no end. 
As we continue, phi gets pushed more and more levels “in” to the corner of 
a growing fraction. Listing 51 shows  an expression for phi with phi seven 
levels in.

phi = 1 + 
11 + 

11 + 
11 + 

1 + 

1

11 + 

phi
11 + 

1

Listing 5-1: A continued fraction with seven levels expressing the value of phi

If we imagine continuing this process, we can push phi infinity levels in. 
Then what we have left is shown in Listing 52.

phi = 1 + 
11 + 

11 + 
11 + 

1 + 

1

11 + 

1 + . . .
11 + 

1

Listing 5-2: An infinite continued fraction expressing the value of phi

In theory, after the infinity of 1s and plus signs and fraction bars rep
resented by the ellipsis, we should insert a phi into Listing 52, just like it 
appears in the bottom right of Listing 51. But we will never get through all 
of those 1s (because there are an infinite number of them), so we are justi
fied in forgetting entirely about the phi that’s supposed to be nested in the 
righthand side.

More about Continued Fractions
The expressions just shown are called continued fractions. A continued frac-
tion consists of sums and reciprocals nested in multiple layers. Continued 
fractions can be finite, like the one in Listing 51 that terminated after 
seven layers, or infinite, continuing forever without end like the one in 
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Listing 52. Continued fractions are especially useful for our purposes 
because they enable us to express the exact value of phi without needing 
to chop down an infinite forest to manufacture enough paper. In fact, 
mathematicians sometimes use an even more concise notation method 
that enables us to express a continued fraction in one simple line. Instead 
of writing all the fraction bars in a continued fraction, we can use square 
brackets ([ ]) to denote that we’re working with a continued fraction, and 
use a semicolon to separate the digit that’s “alone” from the digits that are 
together in a fraction. With this method, we can write the continued frac
tion for phi as the following:

phi  = [1; 1,1,1,1 . . .]

In this case, the ellipses are no longer losing information, since the 
continued fraction for phi has a clear pattern: it’s all 1s, so we know its exact 
100th or 1,000th element. This is one of those times when mathematics 
seems to deliver something miraculous to us: a way to concisely write down 
a number that we had thought was infinite, without pattern, and ineffable. 
But phi isn’t the only possible continued fraction. We could write another 
continued fraction as follows:

mysterynumber = [2; 1,2,1,1,4,1,1,6,1,1,8, . . .]

In this case, after the first few digits, we find a simple pattern: pairs of 
1s alternate with increasing even numbers. The next values will be 1, 1, 10, 
1, 1, 12, and so on. We can write the beginning of this continued fraction in 
a more conventional style as

mysterynumber = 2 + 
11 + 

12 + 
11 + 

1 + 

1

14 + 

. . .
11 + 

1

In fact, this mystery number is none other than our old friend e, the 
base of the natural logarithm! The constant e, just like phi and other 
irrational numbers, has an infinite decimal expansion with no apparent 
pattern and cannot be represented by a finite fraction, and it seems like 
it’s impossible to express its exact numeric value concisely. But by using 
the new concept of continued fractions and a new concise notation, we 
can write these apparently intractable numbers in one line. There are 
also several remarkable ways to use continued fractions to represent pi. 
This is a victory for data compression. It’s also a victory in the perennial 
battle between order and chaos: where we thought there was nothing but 
encroaching chaos dominating the numbers we love, we find that there  
was always a deep order beneath the surface.
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Our continued fraction for phi came from a special equation that works 
only for phi. But in fact, it is possible to generate a continued fraction rep
resentation of any number.

An Algorithm for Generating Continued Fractions
To find a continued fraction expansion for any number, we’ll use an 
algorithm.

It’s easiest to find continued fraction expansions for numbers that are 
integer fractions already. For example, consider the task of finding a contin
ued fraction representation of 105/33. Our goal is to express this number 
in a form that looks like the following:

= a + 
1b + 

1c + 
1d + 

e + 

1

1f + 

. . .
1

33
105

g + 

1

where the ellipses could be referring to a finite rather than an infinite con
tinuation. Our algorithm will generate a first, then b, then c, and proceed 
through terms of the alphabet sequentially until it reaches the final term or 
until we require it to stop.

If we interpret our example 105/33 as a division problem instead of a 
fraction, we find that 105/33 is 3, remainder 6. We can rewrite 105/33 as  
3 + 6/33:

= a + 3 + 
1b + 

1c + 
1d + 

e + 

1

1f + 

. . .
1

33
6

g + 

1

The left and the right sides of this equation both consist of an integer 
(3 and a) and a fraction (6/33 and the rest of the right side). We conclude 
that the integer parts are equal, so a = 3. After this, we have to find a suit
able b, c, and so on such that the whole fractional part of the expression will 
evaluate to 6/33.
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To find the right b, c, and the rest, look at what we have to solve after 
concluding that a = 3:

=
1b + 

1c + 
1d + 

e + 

1

1f + 

. . .
1

33
6

g + 

1

If we take the reciprocal of both sides of this equation, we get the fol
lowing equation:

= b + 
1c + 

1d + 
1e + 

f + 

1

1g + 

. . .
1

6
33

h + 

1

Our task is now to find b and c. We can do a division again; 33 divided 
by 6 is 5, with remainder 3, so we can rewrite 33/6 as 5 + 3/6:

= b + 5 + 
1c + 

1d + 
1e + 

f + 

1

1g + 

. . .
1

6
3

h + 

1

We can see that both sides of the equation have an integer (5 and b) 
and a fraction (3/6 and the rest of the right side). We can conclude that the 
integer parts are equal, so b = 5. We have gotten another letter of the alpha
bet, and now we need to simplify 3/6 to progress further. If you can’t tell 
immediately that 3/6 is equal to 1/2, you could follow the same process we 
did for 6/33: say that 3/6 expressed as a reciprocal is 1/(6/3), and we find 
that 6/3 is 2 remainder 0. The algorithm we’re following is meant to com
plete when we have a remainder of 0, so we will realize that we’ve finished 
the process, and we can write our full continued fraction as in Listing 53.

= 3 + 
15 + 
2

1
33
105

Listing 5-3: A continued fraction for 105/33
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If this process of repeatedly dividing two integers to get a quotient and 
a remainder felt familiar to you, it should have. In fact, it’s the same process 
we followed in Euclid’s algorithm in Chapter 2! We follow the same steps 
but record different answers: for Euclid’s algorithm, we recorded the final 
nonzero remainder as the final answer, and in the continued fraction gen
eration algorithm, we recorded every quotient (every letter of the alphabet) 
along the way. As happens so often in math, we have found an unexpected 
connection—in this case, between the generation of a continued fraction 
and the discovery of a greatest common divisor.

We can implement this continued fraction generation algorithm in 
Python as follows.

We’ll assume that we’re starting with a fraction of the form x/y. First, we 
decide which of x and y is bigger and which is smaller:

x = 105
y = 33
big = max(x,y)
small = min(x,y)

Next, we’ll take the quotient of the bigger divided by the smaller of 
the two, just as we did with 105/33. When we found that the result was 3, 
remainder 6, we concluded that 3 was the first term (a) in the continued 
fraction. We can take this quotient and store the result as follows:

import math
output = []
quotient = math.floor(big/small)
output.append(quotient)

In this case, we are ready to obtain a full alphabet of results (a, b, c, and so 
on), so we create an empty list called output and append our first result to it.

Finally, we have to repeat the process, just as we did for 33/6. Remember 
that 33 was previously the small variable, but now it’s the big one, and the 
remainder of our division process is the new small variable. Since the remain
der is always smaller than the divisor, big and small will always be correctly 
labeled. We accomplish this switcheroo in Python as follows:

new_small = big % small
big = small
small = new_small

At this point, we have completed one round of the algorithm, and we 
need to repeat it for our next set of numbers (33 and 6). In order to accom
plish the process concisely, we can put it all in a loop, as in Listing 54.

import math
def continued_fraction(x,y,length_tolerance):
    output = []
    big = max(x,y)
    small = min(x,y)
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    while small > 0 and len(output) < length_tolerance:
        quotient = math.floor(big/small)
        output.append(quotient)
        new_small = big % small
        big = small
        small = new_small
    return(output)

Listing 5-4: An algorithm for expressing fractions as continued fractions

Here, we took x and y as inputs, and we defined a length_tolerance vari
able. Remember that some continued fractions are infinite in length, and 
others are extremely long. By including a length_tolerance variable in the 
function, we can stop our process early if the output is getting unwieldy, 
and thereby avoid getting caught in an infinite loop.

Remember that when we performed Euclid’s algorithm, we used a recur
sive solution. In this case, we used a while loop instead. Recursion is well 
suited to Euclid’s algorithm because it required only one final output num
ber at the very end. Here, however, we want to collect a sequence of numbers 
in a list. A loop is better suited to that kind of sequential collection.

We can run our new continued_fraction generation function as follows:

print(continued_fraction(105,33,10))

We’ll get the following simple output:

[3,5,2]

We can see that the numbers here are the same as the key integers on 
the right side of Listing 53. 

We may want to check that a particular continued fraction correctly 
expresses a number we’re interested in. In order to do this, we should 
define a get_number() function that converts a continued fraction to a deci
mal number, as in Listing 55.

def get_number(continued_fraction):
    index = -1
    number = continued_fraction[index]
    
    while abs(index) < len(continued_fraction):
        next = continued_fraction[index - 1]
        number = 1/number + next
        index -= 1
    return(number)  

Listing 5-5: Converting a continued fraction to a decimal representation of a number

We don’t need to worry about the details of this function since we’re 
just using it to check our continued fractions. We can check that the func
tion works by running get_number([3,5,2]) and seeing that we get 3.181818 . . . 
as the output, which is another way to write 105/33 (the number we  
started with).
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From Decimals to Continued Fractions
What if, instead of starting with some x/y as an input to our continued frac
tion algorithm, we start with a decimal number, like 1.4142135623730951? 
We’ll need to make a few adjustments, but we can more or less follow the 
same process we followed for fractions. Remember that our goal is to find  
a, b, c, and the rest of the alphabet in the following type of expression:

= a + 
1b + 

1c + 
1d + 

e + 

1

1f + 

. . .
1

1.4142135623730951

g + 

1

Finding a is as simple as it gets—it’s just the part of the decimal num
ber to the left of the decimal point. We can define this first_term (a in our 
equation) and the leftover as follows:

x = 1.4142135623730951
output = []
first_term = int(x)
leftover = x - int(x)
output.append(first_term)

Just like before, we’re storing our successive answers in a list called output.
After solving for a, we have a leftover, and we need to find a continued 

fraction representation for it:

= 
1b + 

1c + 
1d + 

e + 

1

1f + 

. . .
1

0.4142135623730951

g + 

1

Again, we can take a reciprocal of this:

= b + = 2.4142135623730945
1c + 

1d + 
e + 

11

1f + 

. . .
1

0.4142135623730951

g + 

1
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Our next term, b, will be the integer part to the left of the decimal point 
in this new term—in this case, 2. And then we will repeat the process: tak
ing a reciprocal of a decimal part, finding the integer part to the left of the 
decimal, and so on.

In Python, we accomplish each round of this as follows:

next_term = math.floor(1/leftover)
leftover = 1/leftover - next_term
output.append(next_term)

We can put the whole process together into one function as in 
Listing 56.

def continued_fraction_decimal(x,error_tolerance,length_tolerance):
    output = []
    first_term = int(x)
    leftover = x - int(x)
    output.append(first_term)
    error = leftover
    while error > error_tolerance and len(output) <length_tolerance:
        next_term = math.floor(1/leftover)
        leftover = 1/leftover - next_term
        output.append(next_term)
        error = abs(get_number(output) - x)
    return(output)

Listing 5-6: Finding continued fractions from decimal numbers

In this case, we include a length_tolerance term just like before. We also 
add an error_tolerance term, which allows us to exit the algorithm if we get 
an approximation that’s “close enough” to the exact answer. To find out 
whether we are close enough, we take the difference between x, the number 
we are trying to approximate, and the decimal value of the continued frac
tion terms we have calculated so far. To get that decimal value, we can use 
the same get_number() function we wrote in Listing 55.

We can try our new function easily as follows:

print(continued_fraction_decimal(1.4142135623730951,0.00001,100))

We get the following output:

[1, 2, 2, 2, 2, 2, 2, 2]

We can write this continued fraction as follows (using an approximate 
equal sign because our continued fraction is an approximation to within a 
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tiny error and we don’t have the time to calculate every element of an infi
nite sequence of terms):

≈ 1 + 
12 + 

12 + 
12 + 

2 + 

1

12 + 

2
1

1.4142135623730951

2 + 

1

Notice that there are 2s all along the diagonal in the fraction on the 
right. We’ve found the first seven terms of another infinite continued frac
tion whose infinite expansion consists of all 2s. We could write its continued 
fraction expansion as [1,2,2,2,2, . . .]. This is the continued fraction expan
sion of √2, another irrational number that can’t be represented as an inte
ger fraction, has no pattern in its decimal digit, and yet has a convenient 
and easily memorable representation as a continued fraction.

From Fractions to Radicals
If you’re interested in continued fractions, I recommend that you read 
about Srinivasa Ramanujan, who during his short life traveled mentally 
to the edges of infinity and brought some gems back for us to treasure. In 
addition to continued fractions, Ramanujan was interested in continued 
square roots (also known as nested radicals)—for example, the following three 
infinitely nested radicals:

x = 2 +  2 +  2 + . . .  

and

y = 1 + 2 ×  1 + 3 ×  1 + 4 ×   1 + . . .  

and

z = 1 +  1 +  1 + . . .  

It turns out that x = 2 (an old anonymous result), y = 3 (as proved by 
Ramanujan), and z is none other than phi, the golden ratio! I encourage 
you to try to think of a method for generating nested radical representa
tions in Python. Square roots are obviously interesting if we take them to 
infinite lengths, but it turns out that they’re interesting even if we just con
sider them alone.
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Square Roots
We take handheld calculators for granted, but when we think about what 
they can do, they’re actually quite impressive. For example, you may remem
ber learning in geometry class that the sine is defined in terms of triangle 
lengths: the length of the angle’s opposite side divided by the length of 
the hypotenuse. But if that is the definition of a sine, how can a calculator 
have a sin button that performs this calculation instantaneously? Does the 
calculator draw a right triangle in its innards, get out a ruler and measure 
the lengths of the sides, and then divide them? We might ask a similar ques
tion for square roots: the square root is the inverse of a square, and there’s 
no straightforward, closedform arithmetic formula for it that a calculator 
could use. I imagine that you can already guess the answer: there is an algo
rithm for quick calculations of square roots.

The Babylonian Algorithm
Suppose that we need to find the square root of a number x. As with any 
math problem, we can try a guessandcheck strategy. Let’s say that our best 
guess for the square root of x is some number y. We can calculate y2, and if 
it’s equal to x, we’re done (having achieved a rare completion of the one
step “lucky guess algorithm”).

If our guess y is not exactly the square root of x, then we’ll want to 
guess again, and we’ll want our next guess to take us closer to the true 
value of the square root of x. The Babylonian algorithm provides a way to 
systematically improve our guesses until we converge on the right answer. 
It’s a simple algorithm and requires only division and averaging:

 1. Make a guess, y, for the value of the square root of x.

 2. Calculate z = x/y.

 3. Find the average of z and y. This average is your new value of y, or your 
new guess for the value of the square root of x.

 4. Repeat steps 2 and 3 until y2 – x is sufficiently small.

We described the Babylonian algorithm in four steps. A pure mathema
tician, by contrast, might express the entire thing in one equation:

yn+1 = 
2

yn

x
yn + 

In this case, the mathematician would be relying on the common math
ematical practice of describing infinite sequences by continued subscripts, 
as in: (y1, y2, . . . yn, . . .). If you know the nth term of this infinite sequence, 
you can get the n + 1th term from the equation above. This sequence will 
converge to x , or in other words y∞= x . Whether you prefer the clarity of 
the fourstep description, the elegant concision of an equation, or the prac
ticality of the code we will write is a matter of taste, but it helps to be famil
iar with all the possible ways to describe an algorithm.
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You can understand why the Babylonian algorithm works if you con
sider these two simple cases:

•	 If y < , then y2 < x. x  So > 1 
y2

x
 so > xx ×

y2

x
. 

But notice that = = ( )2 = z2x ×
y2

x
y2

x2

y
x

. So z2 > x. This means that z > x .

•	 If y > , then y2 > x. x  So < 1 
y2

x
, so < xx ×

y2

x
. 

But notice that = = ( )2 = z2x ×
y2

x
y2

x2

y
x

. So z2 < x. This means that z < x .

We can write these cases more succintly by removing some text:

•	 If y < , then z >   x. x

•	 If y > , then z <   x. x

If y is an underestimate for the correct value of x , then z is an over
estimate. If y is an overestimate for the correct value of x , then z is an 
underestimate. Step 3 of the Babylonian algorithm asks us to average an 
overestimate and an underestimate of the truth. The average of the under
estimate and the overestimate will be higher than the underestimate and 
lower than the overestimate, so it will be closer to the truth than which
ever of y or z was a worse guess. Eventually, after many rounds of gradual 
improvement of our guesses, we arrive at the true value of x .

Square Roots in Python
The Babylonian algorithm is not hard to implement in Python. We can 
define a function that takes x, y, and an error_tolerance variable as its argu
ments. We create a while loop that runs repeatedly until our error is suf
ficiently small. At each iteration of the while loop, we calculate z, we update 
the value of y to be the average of y and z (just like steps 2 and 3 in the  
algorithm describe), and we update our error, which is y2 – x. Listing 57  
shows this function.

def square_root(x,y,error_tolerance):
    our_error = error_tolerance * 2
    while(our_error > error_tolerance):
        z = x/y
        y = (y + z)/2
        our_error = y**2 - x
    return y

Listing 5-7: A function to calculate square roots using the Babylonian algorithm

You may notice that the Babylonian algorithm shares some traits with 
gradient ascent and the outfielder algorithm. All consist of taking small, 
iterative steps until getting close enough to a final goal. This is a common 
structure for algorithms.

We can check our square root function as follows:

print(square_root(5,1,.000000000000001))
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We can see that the number 2.23606797749979 is printed in the console. 
You can check whether this is the same number we get from the math.sqrt() 
method that’s standard in Python:

print(math.sqrt(5))

We get exactly the same output: 2.23606797749979. We’ve success
fully written our own function that calculates square roots. If you’re ever 
stranded on a desert island with no ability to download Python modules 
like the math module, you can rest assured that you can write functions like 
math.sqrt() on your own, and you can thank the Babylonians for their help 
in giving us the algorithm for it.

Random Number Generators
So far we’ve taken chaos and found order within it. Mathematics is good at 
that, but in this section, we’ll consider a quite opposite goal: finding chaos 
in order. In other words, we’re going to look at how to algorithmically cre
ate randomness.

There’s a constant need for random numbers. Video games depend on 
randomly selected numbers to keep gamers surprised by game characters’ 
positions and movements. Several of the most powerful machine learn
ing methods (including random forests and neural networks) rely heavily 
on random selections to function properly. The same goes for powerful 
statistical methods, like bootstrapping, that use randomness to make a 
static dataset better resemble the chaotic world. Corporations and research 
scientists perform A/B tests that rely on randomly assigning subjects to 
conditions so that the conditions’ effects can be properly compared. The 
list goes on; there’s a huge, constant demand for randomness in most tech
nological fields.

The Possibility of Randomness
The only problem with the huge demand for random numbers is that 
we’re not quite certain that they actually exist. Some people believe that 
the universe is deterministic: that like colliding billiard balls, if something 
moves, its movement was caused by some other completely traceable move
ment, which was in turn caused by some other movement, and so on. If the 
universe behaved like billiard balls on a table, then by knowing the cur
rent state of every particle in the universe, we would be able to determine 
the complete past and future of the universe with certainty. If so, then any 
event—winning the lottery, running into a longlost friend on the other 
side of the world, being hit by a meteor—is not actually random, as we 
might be tempted to think of it, but merely the fully predetermined conse
quence of the way the universe was set up around a dozen billion years ago. 
This would mean that there is no randomness, that we are stuck in a player 
piano’s melody and things appear random only because we don’t know 
enough about them.
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The mathematical rules of physics as we understand them are consis
tent with a deterministic universe, but they are also consistent with a non
deterministic universe in which randomness really does exist and, as some 
have put it, God “plays dice.” They are also consistent with a “many worlds” 
scenario in which every possible version of an event occurs, but in different 
universes that are inaccessible from each other. All these interpretations 
of the laws of physics are further complicated if we try to find a place for 
free will in the cosmos. The interpretation of mathematical physics that we 
accept depends not on our mathematical understanding but rather on our 
philosophical inclinations—any position is acceptable mathematically.

Whether or not the universe itself contains randomness, your laptop 
doesn’t—or at least it isn’t supposed to. Computers are meant to be our 
perfectly obedient servants and do only what we explicitly command them 
to do, exactly when and how we command them to do it. To ask a computer 
to run a video game, perform machine learning via a random forest, or 
administer a randomized experiment is to ask a supposedly deterministic 
machine to generate something nondeterministic: a random number. This 
is an impossible request.

Since a computer cannot deliver true randomness, we’ve designed 
algorithms that can deliver the nextbest thing: pseudorandomness. Pseudo
random number generation algorithms are important for all the reasons 
that random numbers are important. Since true randomness is impos
sible on a computer (and may be impossible in the universe at large), 
pseudorandom number generation algorithms must be designed with 
great care so that their outputs resemble true randomness as closely as 
possible. The way we judge whether a pseudorandom number generation 
algorithm truly resembles randomness depends on mathematical defini
tions and theory that we’ll explore soon.

Let’s start by looking at a simple pseudorandom number generation algo
rithm and examine how much its outputs appear to resemble randomness.

Linear Congruential Generators
One of the simplest examples of a pseudorandom number generator (PRNG) is 
the linear congruential generator (LCG). To implement this algorithm, you’ll 
have to choose three numbers, which we’ll call n1, n2, and n3. The LCG 
starts with some natural number (like 1) and then simply applies the follow
ing equation to get the next number:

next = (previous × n1 + n2) mod n3

This is the whole algorithm, which you could say takes only one step. In 
Python, we’ll write % instead of mod, and we can write a full LCG function as 
in Listing 58.

def next_random(previous,n1,n2,n3):
    the_next = (previous * n1 + n2) % n3
    return(the_next)

Listing 5-8: A linear congruential generator
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Note that the next_random() function is deterministic, meaning that if 
we put the same input in, we’ll always get the same output. Once again, our 
PRNG has to be this way because computers are always deterministic. LCGs 
do not generate truly random numbers, but rather numbers that look ran
dom, or are pseudorandom.

In order to judge this algorithm for its ability to generate pseudorandom 
numbers, it might help to look at many of its outputs together. Instead of 
getting one random number at a time, we could compile an entire list with 
a function that repeatedly calls the next_random() function we just created, as 
follows:

def list_random(n1,n2,n3):
    output = [1]
    while len(output) <=n3:
        output.append(next_random(output[len(output) - 1],n1,n2,n3))
    return(output)

Consider the list we get by running list_random(29,23,32):

[1, 20, 27, 6, 5, 8, 31, 26, 9, 28, 3, 14, 13, 16, 7, 2, 17, 4, 11, 22, 21, 
24, 15, 10, 25, 12, 19, 30, 29, 0, 23, 18, 1]

It’s not easy to detect a simple pattern in this list, which is exactly 
what we wanted. One thing we can notice is that it contains only numbers 
between 0 and 32. We may also notice that this list’s last element is 1, the 
same as its first element. If we wanted more random numbers, we could 
extend this list by calling the next_random() function on its last element, 1. 
However, remember that the next_random() function is deterministic. If we 
extend our list, all we would get is repetition of the beginning of the list, 
since the next “random” number after 1 will always be 20, the next random 
number after 20 will always be 27, and so on. If we continued, we would 
eventually get to the number 1 again and repeat the whole list forever. The 
number of unique values that we obtain before they repeat is called the 
period of our PRNG. In this case, the period of our LCG is 32.

Judging a PRNG
The fact that this random number generation method will eventually start 
to repeat is a potential weakness because it allows people to predict what’s 
coming next, which is exactly what we don’t want to happen in situations 
where we’re seeking randomness. Suppose that we used our LCG to govern 
an online roulette application for a roulette wheel with 32 slots. A savvy 
gambler who observed the roulette wheel long enough might notice that 
the winning numbers were following a regular pattern that repeated every 
32 spins, and they may win all our money by placing bets on the number 
they now know with certainty will win in each round.

The idea of a savvy gambler trying to win at roulette is useful for 
evaluating any PRNG. If we are governing a roulette wheel with true 
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randomness, no gambler will ever be able to win reliably. But any slight 
weakness, or deviation from true randomness, in the PRNG governing our 
roulette wheel could be exploited by a sufficiently savvy gambler. Even if 
we are creating a PRNG for a purpose that has nothing to do with roulette, 
we can ask ourselves, “If I use this PRNG to govern a roulette application, 
would I lose all my money?” This intuitive “roulette test” is a reasonable 
criterion for judging how good any PRNG is. Our LCG might pass the rou
lette test if we never do more than 32 spins, but after that, a gambler could 
notice the repeating pattern of outputs and start to place bets with perfect 
accuracy. The short period of our LCG has caused it to fail the roulette test.

Because of this, it helps to ensure that a PRNG has a long period. But 
in a case like a roulette wheel with only 32 slots, no deterministic algorithm 
can have a period longer than 32. That’s why we often judge a PRNG by 
whether it has a full period rather than a long period. Consider the PRNG 
that we get by generating list_random(1,2,24):

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 
21, 23, 1]

In this case, the period is 12, which may be long enough for very simple 
purposes, but it is not a full period because it does not encompass every 
possible value in its range. Once again, a savvy gambler might notice that 
even numbers are never chosen by the roulette wheel (not to mention the 
simple pattern the chosen odd numbers follow) and thereby increase their 
winnings at our expense.

Related to the idea of a long, full period is the idea of uniform distribu-
tion, by which we mean that each number within the PRNG’s range has an 
equal likelihood of being output. If we run list_random(1,18,36), we get:

[1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 
1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1]

Here, 1 and 19 each have a 50 percent likelihood of being output by 
the PRNG, while each other number has a likelihood of 0 percent. A rou
lette player would have a very easy time with this nonuniform PRNG. By 
contrast, in the case of list_random(29,23,32), we find that every number has 
about a 3.1 percent likelihood of being output.

We can see that these mathematical criteria for judging PRNGs have 
some relation to each other: the lack of a long or full period can be the 
cause of a lack of uniform distribution. From a more practical perspective, 
these mathematical properties are important only because they cause our 
roulette app to lose money. To state it more generally, the only important 
test of a PRNG is whether a pattern can be detected in it.

Unfortunately, the ability to detect a pattern is hard to pin down concisely 
in mathematical or scientific language. So we look for long, full period and 
uniform distribution as markers that give us a hint about pattern detection. 
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But of course, they’re not the only clues that enable us to detect a pattern. 
Consider the LCG denoted by list_random(1,1,37). This outputs the follow
ing list:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 0, 1]

This has a long period (37), a full period (37), and a uniform distribu
tion (each number has likelihood 1/37 of being output). However, we can 
still detect a pattern in it (the number goes up by 1 every round until it 
gets to 36, and then it repeats from 0). It passes the mathematical tests we 
devised, but it definitely fails the roulette test.

The Diehard Tests for Randomness
There is no single silverbullet test that indicates whether there’s an exploit
able pattern in a PRNG. Researchers have devised many creative tests to 
evaluate the extent to which a collection of random numbers is resistant to 
pattern detection (or in other words can pass the roulette test). One col
lection of such tests is called the Diehard tests. There are 12 Diehard tests, 
each of which evaluates a collection of random numbers in a different way. 
Collections of numbers that pass every Diehard test are deemed to have 
a very strong resemblance to true randomness. One of the Diehard tests, 
called the overlapping sums test, takes the entire list of random numbers and 
finds sums of sections of consecutive numbers from the list. The collection 
of all these sums should follow the mathematical pattern colloquially called 
a bell curve. We can implement a function that generates a list of overlapping 
sums in Python as follows:

def overlapping_sums(the_list,sum_length):
    length_of_list = len(the_list)
    the_list.extend(the_list)
    output = []
    for n in range(0,length_of_list):
        output.append(sum(the_list[n:(n + sum_length)]))
    return(output)

We can run this test on a new random list like so:

import matplotlib.pyplot as plt
overlap = overlapping_sums(list_random(211111,111112,300007),12)
plt.hist(overlap, 20, facecolor = 'blue', alpha = 0.5)
plt.title('Results of the Overlapping Sums Test')
plt.xlabel('Sum of Elements of Overlapping Consecutive Sections of List')
plt.ylabel('Frequency of Sum')
plt.show()

We created a new random list by running list_random(211111,111112,300007).  
This new random list is long enough to make the overlapping sums test per
form well. The output of this code is a histogram that records the frequency 
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of the observed sums. If the list resembles a truly random collection, we 
expect some of the sums to be high and some to be low, but we expect  
most of them to be near the middle of the possible range of values. This  
is exactly what we see in the plot output (Figure 52).

Figure 5-2: The result of the overlapping sums test for an LCG

If you squint, you can see that this plot resembles a bell. Remember 
that the Diehard overlapping sums test says that our list passes if it closely 
resembles a bell curve, which is a specific mathematically important curve 
(Figure 53).

Figure 5-3: A bell curve, or Gaussian normal curve (source:  
Wikimedia Commons)
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The bell curve, like the golden ratio, appears in many sometimes sur
prising places in math and the universe. In this case, we interpret the close 
resemblance between our overlapping sums test results and the bell curve 
as evidence that our PRNG resembles true randomness.

Knowledge of the deep mathematics of randomness can help you as you 
design random number generators. However, you can do almost as well just 
by sticking with a commonsense idea of how to win at roulette.

Linear Feedback Shift Registers
LCGs are easy to implement but are not sophisticated enough for many 
applications of PRNGs; a savvy roulette player could crack an LCG in no 
time at all. Let’s look at a more advanced and reliable type of algorithm 
called linear feedback shift registers (LFSRs), which can serve as a jumpingoff 
point for the advanced study of PRNG algorithms.

LFSRs were designed with computer architecture in mind. At the lowest 
level, data in computers is stored as a series of 0s and 1s called bits. We can 
illustrate a potential string of 10 bits as shown in Figure 54.

1 1 0 1 1 1 0 0 0 1

Figure 5-4: A string of 10 bits

After starting with these bits, we can proceed through a simple LFSR 
algorithm. We start by calculating a simple sum of a subset of the bits—for 
example, the sum of the 4th bit, 6th bit, 8th bit, and 10th bit (we could also 
choose other subsets). In this case, that sum is 3. Our computer architec
ture can only store 0s and 1s, so we take our sum mod 2, and end up with 1 
as our final sum. Then we remove our rightmost bit and shift every remain
ing bit one position to the right (Figure 55). 

1 1 0 1 1 1 0 0 0

Figure 5-5: Bits after removal and shifting

Since we removed a bit and shifted everything, we have an empty space 
where we should insert a new bit. The bit we insert here is the sum we 
calculated before. After that insertion, we have the new state of our bits 
(Figure 56).

11 1 0 1 1 1 0 0 0

Figure 5-6: Bits after replacement with a sum of selected bits
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We take the bit we removed from the right side as the output of the 
algorithm, the pseudorandom number that this algorithm is supposed to 
generate. And now that we have a new set of 10 ordered bits, we can run a 
new round of the algorithm and get a new pseudorandom bit just as before. 
We can repeat this process as long as we’d like.

In Python, we can implement a feedback shift register relatively simply. 
Instead of directly overwriting individual bits on the hard drive, we will just 
create a list of bits like the following:

bits = [1,1,1]

We can define the sum of the bits in the specified locations with one 
line. We store it in a variable called xor_result, because taking a sum mod 
2 is also called the exclusive OR or XOR operation. If you have studied formal 
logic, you may have encountered XOR before—it has a logical definition and 
an equivalent mathematical definition; here we will use the mathematical 
definition. Since we are working with a short bitstring, we don’t sum the 4th, 
6th, 8th, and 10th bits (since those don’t exist), but instead sum the 2nd and 
3rd bits:

xor_result = (bits[1] + bits[2]) % 2

Then, we can take out the rightmost element of the bits easily with 
Python’s handy pop() function, storing the result in a variable called output:

output = bits.pop()

We can then insert our sum with the insert() function, specifying posi
tion 0 since we want it to be on the left side of our list:

bits.insert(0,xor_result)

Now let’s put it all together into one function that will return two out
puts: a pseudorandom bit and a new state for the bits series (Listing 59).

def feedback_shift(bits):
    xor_result = (bits[1] + bits[2]) % 2
    output = bits.pop()
    bits.insert(0,xor_result)
    return(bits,output)

Listing 5-9: A function that implements an LFSR, completing our goal for this section

Just as we did with the LCG, we can create a function that will generate 
an entire list of our output bits:

def feedback_shift_list(bits_this):
    bits_output = [bits_this.copy()]
    random_output = []
    bits_next = bits_this.copy()
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    while(len(bits_output) < 2**len(bits_this)):
        bits_next,next = feedback_shift(bits_next)
        bits_output.append(bits_next.copy())
        random_output.append(next)
    return(bits_output,random_output)

In this case, we run the while loop until we expect the series to repeat. 
Since there are 23 = 8 possible states for our bits list, we can expect a period 
of at most 8. Actually, LFSRs typically cannot output a full set of zeros, so in 
practice we expect a period of at most 23 – 1 = 7. We can run the following 
code to find all possible outputs and check the period:

bitslist = feedback_shift_list([1,1,1])[0]

Sure enough, the output that we stored in bitslist is

[[1, 1, 1], [0, 1, 1], [0, 0, 1], [1, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 0], 
[1, 1, 1]]

We can see that our LFSR outputs all seven possible bitstrings that are 
not all 0s. We have a fullperiod LFSR, and also one that shows a uniform 
distribution of outputs. If we use more input bits, the maximum possible 
period grows exponentially: with 10 bits, the maximum possible period is 
210– 1 = 1023, and with only 20 bits, it is 220 – 1=1,048,575.

We can check the list of pseudorandom bits that our simple LFSR gen
erates with the following:

pseudorandom_bits = feedback_shift_list([1,1,1])[1]

The output that we stored in pseudorandom_bits looks reasonably random 
given how simple our LFSR and its input are:

[1, 1, 1, 0, 0, 1, 0]

LFSRs are used to generate pseudorandom numbers in a variety of 
applications, including white noise. We present them here to give you 
a taste of advanced PRNGs. The most widely used PRNG in practice 
today is the Mersenne Twister, which is a modified, generalized feedback 
shift register—essentially a much more convoluted version of the LFSR 
presented here. If you continue to progress in your study of PRNGs, you 
will find a great deal of convolution and advanced mathematics, but all 
of it will build on the ideas presented here: deterministic, mathematical 
formulas that can resemble randomness as evaluated by stringent math
ematical tests.

Summary
Mathematics and algorithms will always have a close relationship. The 
more deeply you dive into one field, the more ready you will be to take on 
advanced ideas in the other. Math may seem arcane and impractical, but it  
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is a long game: theoretical advances in math sometimes lead to practical 
technologies only many centuries later. In this chapter we discussed contin
ued fractions and an algorithm for generating continued fraction represen
tations of any number. We also discussed square roots, and examined an 
algorithm that handheld calculators use to calculate them. Finally, we dis
cussed randomness, including two algorithms for generating pseudorandom 
numbers, and mathematical principles that we can use to evaluate lists that 
claim to be random.

In the next chapter, we will discuss optimization, including a powerful 
method you can use to travel the world or forge a sword.



You already know optimization. In Chapter 3, 
we covered gradient ascent/descent, which 

lets us “climb hills” to find a maximum or min-
imum. Any optimization problem can be thought 

of as a version of hill climbing: we strive to find the best 
possible outcome out of a huge range of possibilities. 
The gradient ascent tool is simple and elegant, but it has 
an Achilles’ heel: it can lead us to find a peak that is only 
locally optimal, not globally optimal. In the hill-climbing 
analogy, it might take us to the top of a foothill, when  
going downhill for just a little while would enable us to start scaling the huge 
mountain that we actually want to climb. Dealing with this issue is the most 
difficult and crucial aspect of advanced optimization.

In this chapter, we discuss a more advanced optimization algorithm 
using a case study. We’ll consider the traveling salesman problem, as well 
as several of its possible solutions and their shortcomings. Finally, we’ll 

6
A D V A N C E D  O P T I M I Z A T I O N
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introduce simulated annealing, an advanced optimization algorithm that 
overcomes these shortcomings and can perform global, rather than just 
local, optimization.

Life of a Salesman
The traveling salesman problem (TSP) is an extremely famous problem in com-
puter science and combinatorics. Imagine that a traveling salesman wishes 
to visit a collection of many cities to peddle his wares. For any number of rea-
sons—lost income opportunities, the cost of gas for his car, his head aching 
after a long journey (Figure 6-1)—it’s costly to travel between cities.

Figure 6-1: A traveling salesman in Naples
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The TSP asks us to determine the order of travel between cities that will 
minimize travel costs. Like all the best problems in science, it’s easy to state 
and extremely difficult to solve.

Setting Up the Problem
Let’s fire up Python and start exploring. First, we’ll randomly generate a 
map for our salesman to traverse. We start by selecting some number N that 
will represent the number of cities we want on the map. Let’s say N = 40. 
Then we’ll select 40 sets of coordinates: one x value and one y value for each 
city. We’ll use the numpy module to do the random selection:

import numpy as np
random_seed = 1729
np.random.seed(random_seed)
N = 40
x = np.random.rand(N)
y = np.random.rand(N)

In this snippet, we used the numpy module’s random.seed() method. This 
method takes any number you pass to it and uses that number as a “seed” 
for its pseudorandom number generation algorithm (see Chapter 5 for 
more about pseudorandom number generation). This means that if you use 
the same seed we used in the preceding snippet, you’ll generate the same 
random numbers we generate here, so it will be easier to follow the code 
and you’ll get plots and results that are identical to these.

Next, we’ll zip the x values and y values together to create cities, a list 
containing the coordinate pair for each of our 40 randomly generated city 
locations.

points = zip(x,y)
cities = list(points)

If you run print(cities) in the Python console, you can see a list con-
taining the randomly generated points. Each of these points represents a 
city. We won’t bother to give any city a name. Instead, we can refer to the 
first city as cities[0], the second as cities[1], and so on.

We already have everything we need to propose a solution to the TSP. 
Our first proposed solution will be to simply visit all the cities in the order 
in which they appear in the cities list. We can define an itinerary variable 
that will store this order in a list:

itinerary = list(range(0,N))

This is just another way of writing the following:

itinerary = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29, \ 
30,31,32,33,34,35,36,37,38,39]

The order of the numbers in our itinerary is the order in which we’re 
proposing to visit our cities: first city 0, then city 1, and so on.
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Next, we’ll need to judge this itinerary and decide whether it represents 
a good or at least acceptable solution to the TSP. Remember that the point 
of the TSP is to minimize the cost the salesman faces as he travels between 
cities. So what is the cost of travel? We can specify whatever cost function we 
want: maybe certain roads have more traffic than others, maybe there are 
rivers that are hard to cross, or maybe it’s harder to travel north than east 
or vice versa. But let’s start simply: let’s say it costs one dollar to travel a dis-
tance of 1, no matter which direction and no matter which cities we’re trav-
eling between. We won’t specify any distance units in this chapter because 
our algorithms work the same whether we’re traveling miles or kilometers 
or light-years. In this case, minimizing the cost is the same as minimizing 
the distance traveled.

To determine the distance required by a particular itinerary, we need 
to define two new functions. First, we need a function that will generate a 
collection of lines that connect all of our points. After that, we need to sum 
up the distances represented by those lines. We can start by defining an 
empty list that we’ll use to store information about our lines:

lines = []

Next, we can iterate over every city in our itinerary, at each step adding 
a new line to our lines collection that connects the current city and the city 
after it.

for j in range(0,len(itinerary) - 1):
    lines.append([cities[itinerary[j]],cities[itinerary[j + 1]]])

If you run print(lines), you can see how we’re storing information about 
lines in Python. Each line is stored as a list that contains the coordinates of 
two cities. For example, you can see the first line by running print(lines[0]), 
which will show you the following output:

[(0.21215859519373315, 0.1421890509660515), (0.25901824052776146, 
0.4415438502354807)]

We can put these elements together in one function called genlines 
(short for “generate lines”), which takes cities and itinerary as arguments 
and returns a collection of lines connecting each city in our list of cities, in 
the order specified in the itinerary:

def genlines(cities,itinerary):
    lines = []
    for j in range(0,len(itinerary) - 1):
        lines.append([cities[itinerary[j]],cities[itinerary[j + 1]]])
    return(lines)

Now that we have a way to generate a collection of lines between each 
two cities in any itinerary, we can create a function that measures the total 
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distances along those lines. It will start by defining our total distance as 0, and 
then for every element in our lines list, it will add the length of that line to the 
distance variable. We’ll use the Pythagorean theorem to get these line lengths.

N O T E  Using the Pythagorean theorem to calculate distances on Earth is not quite correct; 
the surface of the Earth is curved, so more sophisticated geometry is required to get 
true distances between points on Earth. We’re ignoring this small complexity and 
assuming that our salesman can burrow through the curved crust of the Earth to 
take direct routes, or else that he lives in some Flatland-esque geometrical utopia in 
which distances are easy to calculate using ancient Greek methods. Especially for 
short distances, the Pythagorean theorem provides a very good approximation to the 
true distance.

import math
def howfar(lines):
    distance = 0
    for j in range(0,len(lines)):
        distance += math.sqrt(abs(lines[j][1][0] - lines[j][0][0])**2 + \
        abs(lines[j][1][1] - lines[j][0][1])**2)
    return(distance)

This function takes a list of lines as its input and outputs the sum of the 
lengths of every line. Now that we have these functions, we can call them 
together with our itinerary to determine the total distance our salesman 
has to travel:

totaldistance = howfar(genlines(cities,itinerary))
print(totaldistance)

When I ran this code, I found that the totaldistance was about 16.81. 
You should get the same results if you use the same random seed. If you use 
a different seed or set of cities, your results will vary slightly.

To get a sense of what this result means, it will help to plot our itinerary. 
For that, we can create a plotitinerary() function:

import matplotlib.collections as mc
import matplotlib.pylab as pl
def plotitinerary(cities,itin,plottitle,thename):
    lc = mc.LineCollection(genlines(cities,itin), linewidths=2)
    fig, ax = pl.subplots()
    ax.add_collection(lc)
    ax.autoscale()
    ax.margins(0.1)
    pl.scatter(x, y)
    pl.title(plottitle)
    pl.xlabel('X Coordinate')
    pl.ylabel('Y Coordinate')
    pl.savefig(str(thename) + '.png')
    pl.close()
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The plotitinerary() function takes cities, itin, plottitle, and thename as 
arguments, where cities is our list of cities, itin is the itinerary we want to 
plot, plottitle is the title that will appear at the top of our plot, and thename 
is the name that we will give to the png plot output. The function uses the 
pylab module for plotting and matplotlib’s collections module to create a col-
lection of lines. Then it plots the points of the itinerary and the lines we’ve 
created connecting them. 

If you plot the itinerary with plotitinerary(cities,itinerary,'TSP - Random 
Itinerary','figure2'), you’ll generate the plot shown in Figure 6-2.

Figure 6-2: The itinerary resulting from visiting the cities in the random order in which they 
were generated

Maybe you can tell just by looking at Figure 6-2 that we haven’t yet 
found the best solution to the TSP. The itinerary we’ve given our poor sales-
man has him whizzing all the way across the map to an extremely distant 
city several times, when it seems obvious that he could do much better by 
stopping at some other cities along the way. The goal of the rest of this 
chapter is to use algorithms to find an itinerary with the minimum travel-
ing distance.

The first potential solution we’ll discuss is the simplest and has the 
worst performance. After that, we’ll discuss solutions that trade a little  
complexity for a lot of performance improvement.

Brains vs. Brawn
It might occur to you to make a list of every possible itinerary that can con-
nect our cities and evaluate them one by one to see which is best. If we 
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want to visit three cities, the following is an exhaustive list of every order in 
which they can be visited:

•	 1, 2, 3

•	 1, 3, 2

•	 2, 3, 1

•	 2, 1, 3

•	 3, 1, 2

•	 3, 2, 1

It shouldn’t take long to evaluate which is best by measuring each of the 
lengths one by one and comparing what we find for each of them. This is 
called a brute force solution. It refers not to physical force, but to the effort of 
checking an exhaustive list by using the brawn of our CPUs rather than the 
brains of an algorithm designer, who could find a more elegant approach 
with a quicker runtime.

Sometimes a brute force solution is exactly the right approach. They 
tend to be easy to write code for, and they work reliably. Their major weak-
ness is their runtime, which is never better and usually much worse than 
algorithmic solutions.

In the case of the TSP, the required runtime grows far too fast for a 
brute force solution to be practical for any number of cities higher than 
about 20. To see this, consider the following argument about how many pos-
sible itineraries there are to check if we are working with four cities and try-
ing to find every possible order of visiting them:

 1. When we choose the first city to visit, we have four choices, since there 
are four cities and we haven’t visited any of them yet. So the total num-
ber of ways to choose the first city is 4.

 2. When we choose the second city to visit, we have three choices, since 
there are four cities total and we’ve already visited one of them. So the 
total number of ways to choose the first two cities is 4 × 3 = 12.

 3. When we choose the third city to visit, we have two choices, since there 
are four cities total and we’ve already visited two of them. So the total 
number of ways to choose the first three cities is 4 × 3 × 2 = 24.

 4. When we choose the fourth city to visit, we have one choice, since there 
are four cities total and we’ve already visited three of them. So the total 
number of ways to choose all four cities is 4 × 3 × 2 × 1 = 24.

You should’ve noticed the pattern here: when we have N cities to visit, 
the total number of possible itineraries is N × (N–1) × (N–2) × . . . × 3 × 2 × 1, 
otherwise known as N! (“N factorial”). The factorial function grows incred-
ibly fast: while 3! is only 6 (which we can brute force without even using a 
computer), we find that 10! is over 3 million (easy enough to brute force on 
a modern computer), and 18! is over 6 quadrillion, 25! is over 15 septillion, 
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and 35! and above starts to push the edge of what’s possible to brute force 
on today’s technology given the current expectation for the longevity of the 
universe.

This phenomenon is called combinatorial explosion. Combinatorial explo-
sion doesn’t have a rigorous mathematical definition, but it refers to cases 
like this, in which apparently small sets can, when considered in combina-
tions and permutations, lead to a number of possible choices far beyond the 
size of the original set and beyond any size that we know how to work with 
using brute force.

The number of possible itineraries that connect the 90 zip codes in 
Rhode Island, for example, is much larger than the estimated number of 
atoms in the universe, even though Rhode Island is much smaller than the 
universe. Similarly, a chess board can host more possible chess games than 
the number of atoms in the universe despite the fact that a chess board is 
even smaller than Rhode Island. These paradoxical situations, in which 
the nearly infinite can spring forth from the assuredly bounded, make 
good algorithm design all the more important, since brute force can never 
investigate all possible solutions of the hardest problems. Combinatorial 
explosion means that we have to consider algorithmic solutions to the TSP 
because we don’t have enough CPUs in the whole world to calculate a brute 
force solution.

The Nearest Neighbor Algorithm
Next we’ll consider a simple, intuitive method called the nearest neighbor 
algorithm. We start with the first city on the list. Then we simply find the 
closest unvisited city to the first city and visit that city second. At every step, 
we simply look at where we are and choose the closest unvisited city as the 
next city on our itinerary. This minimizes the travel distance at each step, 
although it may not minimize the total travel distance. Note that rather 
than looking at every possible itinerary, as we would in a brute force search, 
we find only the nearest neighbor at each step. This gives us a runtime 
that’s very fast even for very large N.

Implementing Nearest Neighbor Search
We’ll start by writing a function that can find the nearest neighbor of any 
given city. Suppose that we have a point called point and a list of cities called 
cities. The distance between point and the jth element of cities is given by 
the following Pythagorean-style formula:

point = [0.5,0.5]
j = 10
distance = math.sqrt((point[0] - cities[j][0])**2 + (point[1] - cities[j][1])**2)
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If we want to find which element of cities is closest to our point (the 
point’s nearest neighbor), we need to iterate over every element of cities 
and check the distance between the point and every city, as in Listing 6-1.

def findnearest(cities,idx,nnitinerary):
    point = cities[idx]
    mindistance = float('inf')
    minidx = - 1
    for j in range(0,len(cities)):
        distance = math.sqrt((point[0] - cities[j][0])**2 + (point[1] - cities[j][1])**2)
        if distance < mindistance and distance > 0 and j not in nnitinerary:
            mindistance = distance
            minidx = j
    return(minidx)

Listing 6-1: The findnearest() function, which finds the nearest city to a given city

After we have this findnearest() function, we’re ready to implement 
the nearest neighbor algorithm. Our goal is to create an itinerary called 
nnitinerary. We’ll start by saying that the first city in cities is where our 
salesman starts:

nnitinerary = [0]

If our itinerary needs to have N cities, our goal is to iterate over all the 
numbers between 0 and N – 1, find for each of those numbers the nearest 
neighbor to the most recent city we visited, and append that city to our itin-
erary. We’ll accomplish that with the function in Listing 6-2, donn() (short 
for “do nearest neighbor”). It starts with the first city in cities, and at every 
step adds the closest city to the most recently added city until every city has 
been added to the itinerary.

def donn(cities,N):
    nnitinerary = [0]
    for j in range(0,N - 1):
        next = findnearest(cities,nnitinerary[len(nnitinerary) - 1],nnitinerary)
        nnitinerary.append(next)
    return(nnitinerary)

Listing 6-2: A function that successively finds the nearest neighbor to each city and returns 
a complete itinerary

We already have everything we need to check the performance of 
the nearest neighbor algorithm. First, we can plot the nearest neighbor 
itinerary:

plotitinerary(cities,donn(cities,N),'TSP - Nearest Neighbor','figure3')
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Figure 6-3 shows the result we get.

Figure 6-3: The itinerary generated by the nearest neighbor algorithm

We can also check how far the salesman had to travel using this new 
itinerary:

print(howfar(genlines(cities,donn(cities,N))))

In this case, we find that whereas the salesman travels a distance of 
16.81 following the random path, our algorithm has pushed down the dis-
tance to 6.29. Remember that we’re not using units, so we could interpret 
this as 6.29 miles (or kilometers or parsecs). The important thing is that 
it’s less than the 16.81 miles or kilometers or parsecs we found from the 
random itinerary. This is a significant improvement, all from a very simple, 
intuitive algorithm. In Figure 6-3, the performance improvement is evident; 
there are fewer journeys to opposite ends of the map and more short trips 
between cities that are close to each other.

Checking for Further Improvements
If you look closely at Figure 6-2 or Figure 6-3, you might be able to imagine 
some specific improvements that could be made. You could even attempt those 
improvements yourself and check whether they worked by using our howfar() 
function. For example, maybe you look at our initial random itinerary:

initial_itinerary = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26, \ 
27,28,29,30,31,32,33,34,35,36,37,38,39]



Advanced Optimization   111

and you think you could improve the itinerary by switching the order of the 
salesman’s visits to city 6 and city 30. You can switch them by defining this 
new itinerary with the numbers in question switched (shown in bold):

new_itinerary = [0,1,2,3,4,5,30,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27, \ 
28,29,6,31,32,33,34,35,36,37,38,39]

We can then do a simple comparison to check whether the switch we 
performed has decreased the total distance:

print(howfar(genlines(cities,initial_itinerary)))
print(howfar(genlines(cities,new_itinerary)))

If the new_itinerary is better than the initial_itinerary, we might want to 
throw out the initial_itinerary and keep the new one. In this case, we find that 
the new itinerary has a total distance of about 16.79, a very slight improvement 
on our initial itinerary. After finding one small improvement, we can run the 
same process again: pick two cities, exchange their locations in the itinerary, 
and check whether the distance has decreased. We can continue this process 
indefinitely, and at each step expect a reasonable chance that we can find a way 
to decrease the traveling distance. After repeating this process many times, we 
can (we hope) obtain an itinerary with a very low total distance.

It’s simple enough to write a function that can perform this switch-and-
check process automatically (Listing 6-3):

def perturb(cities,itinerary):
    neighborids1 = math.floor(np.random.rand() * (len(itinerary)))
    neighborids2 = math.floor(np.random.rand() * (len(itinerary)))
    
    itinerary2 = itinerary.copy()
    
    itinerary2[neighborids1] = itinerary[neighborids2]
    itinerary2[neighborids2] = itinerary[neighborids1]
    
    distance1 = howfar(genlines(cities,itinerary))
    distance2 = howfar(genlines(cities,itinerary2))
    
    itinerarytoreturn = itinerary.copy()
    
    if(distance1 > distance2):
        itinerarytoreturn = itinerary2.copy()
    
    return(itinerarytoreturn.copy())

Listing 6-3: A function that makes a small change to an itinerary, compares it to the origi-
nal itinerary, and returns whichever itinerary is shorter

The perturb() function takes any list of cities and any itinerary as its 
arguments. Then, it defines two variables: neighborids1 and neihborids2, 
which are randomly selected integers between 0 and the length of the itin-
erary. Next, it creates a new itinerary called itinerary2, which is the same as 
the original itinerary except that the cities at neighborids1 and neighborids2 
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have switched places. Then it calculates distance1, the total distance of the 
original itinerary, and distance2, the total distance of itinerary2. If distance2 
is smaller than distance1, it returns the new itinerary (with the switch). 
Otherwise, it returns the original itinerary. So we send an itinerary to this 
function, and it always returns an itinerary either as good as or better than 
the one we sent it. We call this function perturb() because it perturbs the 
given itinerary in an attempt to improve it.

Now that we have a perturb() function, let’s call it repeatedly on a ran-
dom itinerary. In fact, let’s call it not just one time but 2 million times in an 
attempt to get the lowest traveling distance possible:

itinerary = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29, \ 
30,31,32,33,34,35,36,37,38,39]

np.random.seed(random_seed)
itinerary_ps = itinerary.copy()
for n in range(0,len(itinerary) * 50000):
    itinerary_ps = perturb(cities,itinerary_ps)

print(howfar(genlines(cities,itinerary_ps)))

We have just implemented something that might be called a perturb 
search algorithm. It’s searching through many thousands of possible itin-
eraries in the hopes of finding a good one, just like a brute force search. 
However, it’s better because while a brute force search would consider every 
possible itinerary indiscriminately, this is a guided search that is consider-
ing a set of itineraries that are monotonically decreasing in total traveling 
distance, so it should arrive at a good solution faster than brute force. We 
only need to make a few small additions to this perturb search algorithm 
in order to implement simulated annealing, the capstone algorithm of this 
chapter.

Before we jump into the code for simulated annealing, we’ll go over 
what kind of improvement it offers over the algorithms we’ve discussed 
so far. We also want to introduce a temperature function that allows us to 
implement the features of simulated annealing in Python.

Algorithms for the Avaricious
The nearest neighbor and perturb search algorithms that we’ve considered so 
far belong to a class of algorithms called greedy algorithms. Greedy algorithms 
proceed in steps, and they make choices that are locally optimal at each step 
but may not be globally optimal once all the steps are considered. In the 
case of our nearest neighbor algorithm, at each step, we look for the closest 
city to where we are at that step, without any regard to the rest of the cities. 
Visiting the closest city is locally optimal because it minimizes the distance 
we travel at the step we’re on. However, since it doesn’t take into account all 
cities at once, it may not be globally optimal—it may lead us to take strange 
paths around the map that eventually make the total trip extremely long and 
expensive for the salesman even though each individual step looked good at 
the time.
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The “greediness” refers to the shortsightedness of this locally opti-
mizing decision process. We can understand these greedy approaches to 
optimization problems with reference to the problem of trying to find the 
highest point in a complex, hilly terrain, where “high” points are analogous 
to better, optimal solutions (short distances in the TSP), and “low” points 
are analogous to worse, suboptimal solutions (long distances in the TSP). 
A greedy approach to finding the highest point in a hilly terrain would be 
to always go up, but that might take us to the top of a little foothill instead 
of the top of the highest mountain. Sometimes it’s better to go down to the 
bottom of the foothill in order to start the more important ascent of the 
bigger mountain. Because greedy algorithms search only for local improve-
ments, they will never allow us to go down and can get us stuck on local 
extrema. This is exactly the problem discussed in Chapter 3.

With that understanding, we’re finally ready to introduce the idea that 
will enable us to resolve the local optimization problem caused by greedy 
algorithms. The idea is to give up the naive commitment to always climbing. 
In the case of the TSP, we may sometimes have to perturb to worse itinerar-
ies so that later we can get the best possible itineraries, just as we go down a 
foothill in order to ultimately go up a mountain. In other words, in order to 
do better eventually, we have to do worse initially.

Introducing the Temperature Function
To do worse with the intention of eventually doing better is a delicate 
undertaking. If we’re overzealous in our willingness to do worse, we might 
go downward at every step and get to a low point instead of a high one. We 
need to find a way to do worse only a little, only occasionally, and only in 
the context of learning how to eventually do better.

Imagine again that we’re in a complex, hilly terrain. We start in the late 
afternoon and know that we have two hours to find the highest point in the 
whole terrain. Suppose we don’t have a watch to keep track of our time, but 
we know that the air gradually cools down in the evening, so we decide to 
use the temperature as a way to gauge approximately how much time we 
have left to find the highest point.

At the beginning of our two hours, when it’s relatively hot outside, it is 
natural for us to be open to creative exploration. Since we have a long time 
remaining, it’s not a big risk to travel downward a little in order to under-
stand the terrain better and see some new places. But as it gets cooler and 
we near the end of our two hours, we’ll be less open to broad exploration. 
We’ll be more narrowly focused on improvements and less willing to travel 
downward.

Take a moment to think about this strategy and why it’s the best way to 
get to the highest point. We already talked about why we want to go down 
occasionally: so that we can avoid a “local optimum,” or the top of a foothill 
next to a huge mountain. But when should we go down? Consider the last  
10 seconds of our two-hour time period. No matter where we are, we should 
go as directly upward as we can at that time. It’s no use to go down to explore 
new foothills and find new mountains during our last 10 seconds, since even 
if we found a promising mountain, we wouldn’t have time to climb it, and 
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if we make a mistake and slip downward during our last 10 seconds, we 
won’t have time to correct it. Thus, the last 10 seconds is when we should go 
directly up and not consider going down at all.

By contrast, consider the first 10 seconds of our two-hour time period. 
During that time, there’s no need to rush directly upward. At the begin-
ning, we can learn the most from going a little downward to explore. If we 
make a mistake in the first 10 seconds, there’s plenty of time to correct it 
later. We’ll have plenty of time to take advantage of anything we learn or 
any mountains we find. During the first 10 seconds, it pays to be the most 
open about going down and the least zealous about going directly up.

You can understand the remainder of the two hours by thinking of the 
same ideas. If we consider the time 10 minutes before the end, we’ll have a 
more moderate version of the mindset we had 10 seconds before the end. 
Since the end is near, we’ll be motivated to go directly upward. However, 
10 minutes is longer than 10 seconds, so we have some small amount of 
openness to a little bit of downward exploration just in case we discover 
something promising. By the same token, the time 10 minutes after the 
beginning will lead us to a more moderate version of the mindset we had 
10 seconds after the beginning. The full two-hour time period will have a 
gradient of intention: a willingness to sometimes go down at first, followed 
by a gradually strengthening zeal to go only up.

In order to model this scenario in Python, we can define a function. 
We’ll start with a hot temperature and a willingness to explore and go 
downward, and we’ll end with a cool temperature and an unwillingness to 
go downward. Our temperature function is relatively simple. It takes t as an 
argument, where t stands for time:

temperature = lambda t: 1/(t + 1)

You can see a simple plot of the temperature function by running the fol-
lowing code in the Python console. This code starts by importing matplotlib 
functionality and then defines ts, a variable containing a range of t values 
between 1 and 100. Finally, it plots the temperature associated with each t 
value. Again, we’re not worried about units or exact magnitude here because 
this is a hypothetical situation meant to show the general shape of a cooling 
function. So we use 1 to represent our maximum temperature, 0 to represent 
our minimum temperature, 0 to represent our minimum time, and 99 to rep-
resent our maximum time, without specifying units.

import matplotlib.pyplot as plt
ts = list(range(0,100))
plt.plot(ts, [temperature(t) for t in ts])
plt.title('The Temperature Function')
plt.xlabel('Time')
plt.ylabel('Temperature')
plt.show()
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The plot looks like Figure 6-4.

Figure 6-4: The temperature decreases as time goes on

This plot shows the temperature we’ll experience during our hypotheti-
cal optimization. The temperature is used as a schedule that will govern 
our optimization: our willingness to go down is proportional to the tem-
perature at any given time.

We now have all the ingredients we need to fully implement simulated 
annealing. Go ahead—dive right in before you overthink it.

Simulated Annealing
Let’s bring all of our ideas together: the temperature function, the search 
problem in hilly terrain, the perturb search algorithm, and the TSP. In 
the context of the TSP, the complex, hilly terrain that we’re in consists of 
every possible solution to the TSP. We can imagine that a better solution 
corresponds to a higher point in the terrain, and a worse solution corre-
sponds to a lower point in the terrain. When we apply the perturb() func-
tion, we’re moving to a different point in the terrain, hoping that point is 
as high as possible.

We’ll use the temperature function to guide our exploration of this 
terrain. When we start, our high temperature will dictate more open-
ness to choosing a worse itinerary. Closer to the end of the process, we’ll 
be less open to choosing worse itineraries and more focused on “greedy” 
optimization.

The algorithm we’ll implement, simulated annealing, is a modified 
form of the perturb search algorithm. The essential difference is that in 
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simulated annealing, we’re sometimes willing to accept itinerary changes 
that increase the distance traveled, because this enables us to avoid the 
problem of local optimization. Our willingness to accept worse itineraries 
depends on the current temperature.

Let’s modify our perturb() function with this latest change. We’ll add 
a new argument: time, which we’ll have to pass to perturb(). The time argu-
ment measures how far we are through the simulated annealing process; we 
start with time 1 the first time we call perturb(), and then time will be 2, 3, 
and so on as many times as we call the perturb() function. We’ll add a line 
that specifies the temperature function and a line that selects a random 
number. If the random number is lower than the temperature, then we’ll be 
willing to accept a worse itinerary. If the random number is higher than the 
temperature, then we won’t be willing to accept a worse itinerary. That way, 
we’ll have occasional, but not constant, times when we accept worse itinerar-
ies, and our likelihood of accepting a worse itinerary will decrease over time 
as our temperature cools. We’ll call this new function perturb_sa1(), where 
sa is short for simulated annealing. Listing 6-4 shows our new perturb_sa1() 
function with these changes.

def perturb_sa1(cities,itinerary,time):
    neighborids1 = math.floor(np.random.rand() * (len(itinerary)))
    neighborids2 = math.floor(np.random.rand() * (len(itinerary)))
    
    itinerary2 = itinerary.copy()
    
    itinerary2[neighborids1] = itinerary[neighborids2]
    itinerary2[neighborids2] = itinerary[neighborids1]
    
    distance1 = howfar(genlines(cities,itinerary))
    distance2 = howfar(genlines(cities,itinerary2))
    
    itinerarytoreturn = itinerary.copy()
    
    randomdraw = np.random.rand()
    temperature = 1/((time/1000) + 1)
    
    if((distance2 > distance1 and (randomdraw) < (temperature)) or (distance1 > distance2)):
        itinerarytoreturn=itinerary2.copy()
    
    return(itinerarytoreturn.copy())

Listing 6-4: An updated version of our perturb() function that takes into account the tem-
perature and a random draw

Just by adding those two short lines, a new argument, and a new if 
condition (all shown in bold in Listing 6-4), we already have a very simple 
simulated annealing function. We also changed the temperature function 
a little; because we’ll be calling this function with very high time values, 
we use time/1000 instead of time as part of the denominator argument in 
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our temperature function. We can compare the performance of simulated 
annealing with the perturb search algorithm and the nearest neighbor 
algorithm as follows:

itinerary = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29, \ 
30,31,32,33,34,35,36,37,38,39]
np.random.seed(random_seed)

itinerary_sa = itinerary.copy()
for n in range(0,len(itinerary) * 50000):
    itinerary_sa = perturb_sa1(cities,itinerary_sa,n)

print(howfar(genlines(cities,itinerary))) #random itinerary
print(howfar(genlines(cities,itinerary_ps))) #perturb search
print(howfar(genlines(cities,itinerary_sa))) #simulated annealing
print(howfar(genlines(cities,donn(cities,N)))) #nearest neighbor

Congratulations! You can perform simulated annealing. You can see 
that a random itinerary has distance 16.81, while a nearest neighbor itiner-
ary has distance 6.29, just like we observed before. The perturb search itin-
erary has distance 7.38, and the simulated annealing itinerary has distance 
5.92. In this case, we’ve found that perturb search performs better than 
a random itinerary, that nearest neighbor performs better than perturb 
search and a random itinerary, and simulated annealing performs better 
than all the others. When you try other random seeds, you may see differ-
ent results, including cases where simulated annealing does not perform as 
well as nearest neighbor. This is because simulated annealing is a sensitive 
process, and several aspects of it need to be tuned precisely in order for it to 
work well and reliably. After we do that tuning, it will consistently give us sig-
nificantly better performance than simpler, greedy optimization algorithms. 
The rest of the chapter is concerned with the finer details of simulated 
annealing, including how to tune it to get the best possible performance.

ME TA PHOR-BA SE D ME TA HE UR IS T ICS

The peculiarities of simulated annealing are easier to understand if you know its 
origin. Annealing is a process from metallurgy, in which metals are heated up 
and then gradually cooled. When the metal is hot, many of the bonds between 
particles in the metal are broken. As the metal cools, new bonds are formed 
between particles that lead to the metal having different, more desirable prop-
erties. Simulated annealing is like annealing in the sense that when our tem-
perature is hot, we “break” things by accepting worse solutions, in the hope 
that then, as the temperature cools, we can fix them in a way that makes them 
better than they were before.

(continued)
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The metaphor is a little contrived, and isn’t one that non-metallurgists find 
intuitive. Simulated annealing is something called a metaphor-based metaheuris-
tic. There are many other metaphor-based metaheuristics that take an existing 
process found in nature or human society and find a way to adapt it to solve 
an optimization problem. They have names like ant colony optimization, cuckoo 
search, cuttlefish optimization, cat swarm optimization, shuffled frog leaping, 
emperor penguins colony, harmony search (based on the improvisation of jazz 
musicians), and the rain water algorithm. Some of these analogies are contrived 
and not very useful, but sometimes they can provide or inspire a real insight into 
a serious problem. In either case, they’re nearly always interesting to learn and 
fun to code.

Tuning Our Algorithm
As mentioned, simulated annealing is a sensitive process. The code we’ve 
introduced shows how to do it in a basic way, but we’ll want to make changes 
to the details in order to do better. This process of changing small details 
or parameters of an algorithm in order to get better performance without 
changing its main approach is often called tuning, and it can make big dif-
ferences in difficult cases like this one.

Our perturb() function makes a small change in the itinerary: it 
switches the place of two cities. But this isn’t the only possible way to per-
turb an itinerary. It’s hard to know in advance which perturbing methods 
will perform best, but we can always try a few.

Another natural way to perturb an itinerary is to reverse some portion 
of it: take a subset of cities, and visit them in the opposite order. In Python, 
we can implement this reversal in one line. If we choose two cities in the 
itinerary, with indices small and big, the following snippet shows how to 
reverse the order of all the cities between them:

small = 10
big = 20
itinerary = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29, \ 
30,31,32,33,34,35,36,37,38,39]
itinerary[small:big] = itinerary[small:big][::-1]
print(itinerary)

When you run this snippet, you can see that the output shows an itiner-
ary with cities 10 through 19 in reverse order:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 20, 21, 
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]
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Another way to perturb an itinerary is to lift a section from where it is 
and place it in another part of the itinerary. For example, we might take the 
following itinerary:

itinerary = [0,1,2,3,4,5,6,7,8,9]

and move the whole section [1,2,3,4] to later in the itinerary by converting 
it to the following new itinerary:

itinerary = [0,5,6,7,8,1,2,3,4,9]

We can do this type of lifting and moving with the following Python 
snippet, which will move a chosen section to a random location:

small = 1
big = 5
itinerary = [0,1,2,3,4,5,6,7,8,9]
tempitin = itinerary[small:big]
del(itinerary[small:big])
np.random.seed(random_seed + 1)
neighborids3 = math.floor(np.random.rand() * (len(itinerary)))
for j in range(0,len(tempitin)):
    itinerary.insert(neighborids3 + j,tempitin[j])

We can update our perturb() function so that it randomly alternates 
between these different perturbing methods. We’ll do this by making 
another random selection of a number between 0 and 1. If this new ran-
dom number lies in a certain range (say, 0–0.45), we’ll perturb by revers-
ing a subset of cities, but if it lies in another range (say, 0.45–0.55), we’ll 
perturb by switching the places of two cities. If it lies in a final range (say, 
0.55–1), we’ll perturb by lifting and moving a subset of cities. In this way, 
our perturb() function can randomly alternate between each type of per-
turbing. We can put this random selection and these types of perturbing 
into our new function, now called perturb_sa2(), as shown in Listing 6-5.

def perturb_sa2(cities,itinerary,time):
    neighborids1 = math.floor(np.random.rand() * (len(itinerary)))
    neighborids2 = math.floor(np.random.rand() * (len(itinerary)))
    
    itinerary2 = itinerary.copy()
    
    randomdraw2 = np.random.rand()
    small = min(neighborids1,neighborids2)
    big = max(neighborids1,neighborids2)
    if(randomdraw2 >= 0.55):
        itinerary2[small:big] = itinerary2[small:big][:: - 1]
    elif(randomdraw2 < 0.45):
        tempitin = itinerary[small:big]
        del(itinerary2[small:big])
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        neighborids3 = math.floor(np.random.rand() * (len(itinerary)))
        for j in range(0,len(tempitin)):
            itinerary2.insert(neighborids3 + j,tempitin[j])
    else:
        itinerary2[neighborids1] = itinerary[neighborids2]
        itinerary2[neighborids2] = itinerary[neighborids1]
    
    distance1 = howfar(genlines(cities,itinerary))
    distance2 = howfar(genlines(cities,itinerary2))
    
    itinerarytoreturn = itinerary.copy()
    
    randomdraw = np.random.rand()
    temperature = 1/((time/1000) + 1)  
    
    if((distance2 > distance1 and (randomdraw) < (temperature)) or (distance1 > distance2)):
        itinerarytoreturn = itinerary2.copy()
    
    return(itinerarytoreturn.copy())

Listing 6-5: Now, we use several different methods to perturb our itinerary.

Our perturb() function is now more complex and more flexible; it can 
make several different types of changes to itineraries based on random 
draws. Flexibility is not necessarily a goal worth pursuing for its own sake, 
and complexity is definitely not. In order to judge whether the complexity 
and flexibility are worth adding in this case (and in every case), we should 
check whether they improve performance. This is the nature of tuning: as 
with tuning a musical instrument, you don’t know beforehand exactly how 
tight a string needs to be—you have to tighten or loosen a little, listen to 
how it sounds, and adjust. When you test the changes here (shown in bold 
in Listing 6-5), you’ll be able to see that they do improve performance com-
pared to the code we were running before.

Avoiding Major Setbacks
The whole point of simulated annealing is that we need to do worse in 
order to do better. However, we want to avoid making changes that leave us 
too much worse off. The way we set up the perturb() function, it will accept a 
worse itinerary any time our random selection is less than the temperature. 
It does this using the following conditional (which is not meant to be run 
alone):

if((distance2 > distance1 and randomdraw < temperature) or (distance1 > distance2)):

We may want to change that condition so that our willingness to accept 
a worse itinerary depends not only on the temperature but also on how 
much worse our hypothetical change makes the itinerary. If it makes it just a 
little worse, we’ll be more willing to accept it than if it makes it much worse. 
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To account for this, we’ll incorporate into our conditional a measurement 
of how much worse our new itinerary is. The following conditional (which is 
also not meant to be run alone) is an effective way to accomplish this:

scale = 3.5
if((distance2 > distance1 and (randomdraw) < (math.exp(scale*(distance1-distance2)) * 
temperature)) or (distance1 > distance2)):

When we put this conditional in our code, we have the function in 
Listing 6-6, where we show only the very end of the perturb() function.

--snip--
# beginning of perturb function goes here

    scale = 3.5
    if((distance2 > distance1 and (randomdraw) < (math.exp(scale * (distance1 - distance2)) * 
temperature)) or (distance1 > distance2)):
        itinerarytoreturn = itinerary2.copy()
        
    return(itinerarytoreturn.copy())

Allowing Resets
During the simulated annealing process, we may unwittingly accept a 
change to our itinerary that’s unequivocally bad. In that case, it may be 
useful to keep track of the best itinerary we’ve encountered so far and 
allow our algorithm to reset to that best itinerary under certain conditions. 
Listing 6-6 provides the code to do this, highlighted in bold in a new, full 
perturbing function for simulated annealing.

def perturb_sa3(cities,itinerary,time,maxitin):
    neighborids1 = math.floor(np.random.rand() * (len(itinerary)))
    neighborids2 = math.floor(np.random.rand() * (len(itinerary)))
    global mindistance
    global minitinerary
    global minidx
    itinerary2 = itinerary.copy()
    randomdraw = np.random.rand()
    
    randomdraw2 = np.random.rand()
    small = min(neighborids1,neighborids2)
    big = max(neighborids1,neighborids2)
    if(randomdraw2>=0.55):
        itinerary2[small:big] = itinerary2[small:big][::- 1 ]
    elif(randomdraw2 < 0.45):
        tempitin = itinerary[small:big]
        del(itinerary2[small:big])
        neighborids3 = math.floor(np.random.rand() * (len(itinerary)))
        for j in range(0,len(tempitin)):
            itinerary2.insert(neighborids3 + j,tempitin[j])
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    else:
        itinerary2[neighborids1] = itinerary[neighborids2]
        itinerary2[neighborids2] = itinerary[neighborids1]
    
    temperature=1/(time/(maxitin/10)+1)
    
    distance1 = howfar(genlines(cities,itinerary))
    distance2 = howfar(genlines(cities,itinerary2))
    
    itinerarytoreturn = itinerary.copy()
    
    scale = 3.5
    if((distance2 > distance1 and (randomdraw) < (math.exp(scale*(distance1 - distance2)) * \
temperature)) or (distance1 > distance2)):
        itinerarytoreturn = itinerary2.copy()
        
    reset = True
    resetthresh = 0.04
    if(reset and (time - minidx) > (maxitin * resetthresh)):
        itinerarytoreturn = minitinerary
        minidx = time
        
    if(howfar(genlines(cities,itinerarytoreturn)) < mindistance):
        mindistance = howfar(genlines(cities,itinerary2))
        minitinerary = itinerarytoreturn
        minidx = time
        
    if(abs(time - maxitin) <= 1):
        itinerarytoreturn = minitinerary.copy()
        
    return(itinerarytoreturn.copy())

Listing 6-6: This function performs the full simulated annealing process and returns an optimized itinerary.

Here, we define global variables for the minimum distance achieved 
so far, the itinerary that achieved it, and the time at which it was achieved. 
If the time progresses very far without finding anything better than the 
itinerary that achieved our minimum distance, we can conclude that the 
changes we made after that point were mistakes, and we allow resetting 
to that best itinerary. We’ll reset only if we’ve attempted many perturba-
tions without finding an improvement on our previous best, and a variable 
called resetthresh will determine how long we should wait before resetting. 
Finally, we add a new argument called maxitin, which tells the function how 
many total times we intend to call this function, so that we know where 
exactly in the process we are. We use maxitin in our temperature function 
as well so that the temperature curve can adjust flexibly to however many 
perturbations we intend to perform. When our time is up, we return the 
itinerary that gave us the best results so far.

Testing Our Performance
Now that we have made these edits and improvements, we can create a func-
tion called siman() (short for simulated annealing), which will create our 
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global variables, and then call our newest perturb() function repeatedly, even-
tually arriving at an itinerary with a very low traveling distance (Listing 6-7).

def siman(itinerary,cities):
    newitinerary = itinerary.copy()
    global mindistance
    global minitinerary
    global minidx
    mindistance = howfar(genlines(cities,itinerary))
    minitinerary = itinerary
    minidx = 0
    
    maxitin = len(itinerary) * 50000
    for t in range(0,maxitin):
        newitinerary = perturb_sa3(cities,newitinerary,t,maxitin)
    
    return(newitinerary.copy())

Listing 6-7: This function performs the full simulated annealing process and returns an opti-
mized itinerary.

Next, we call our siman() function and compare its results to the results 
of our nearest neighbor algorithm:

np.random.seed(random_seed)
itinerary = list(range(N))
nnitin = donn(cities,N)
nnresult = howfar(genlines(cities,nnitin))
simanitinerary = siman(itinerary,cities)
simanresult = howfar(genlines(cities,simanitinerary))
print(nnresult)
print(simanresult)
print(simanresult/nnresult)

When we run this code, we find that our final simulated annealing 
function yields an itinerary with distance 5.32. Compared to the nearest-
neighbor itinerary distance of 6.29, this is an improvement of more than 
15 percent. This may seem underwhelming to you: we spent more than a 
dozen pages grappling with difficult concepts only to shave about 15 percent 
from our total distance. This is a reasonable complaint, and it may be that  
you never need to have better performance than the performance offered by 
the nearest neighbor algorithm. But imagine offering the CEO of a global 
logistics company like UPS or DHL a way to decrease travel costs by 15 per-
cent, and seeing the pupils of their eyes turn to dollar signs as they think of 
the billions of dollars this would represent. Logistics remains a major driver 
of high costs and environmental pollution in every business in the world, 
and doing well at solving the TSP will always make a big practical difference. 
Besides this, the TSP is extremely important academically, as a benchmark 
for comparing optimization methods and as a gateway to investigating 
advanced theoretical ideas.
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You can plot the itinerary we got as the final result of simulated 
annealing by running plotitinerary(cities,simanitinerary,'Traveling 
Salesman Itinerary - Simulated Annealing','figure5'). You’ll see the plot  
in Figure 6-5.

Figure 6-5: The final result of simulated annealing

On one hand, it’s just a plot of randomly generated points with lines 
connecting them. On the other, it’s the result of an optimization process 
that we performed over hundreds of thousands of iterations, relentlessly 
pursuing perfection among nearly infinite possibilities, and in that way it is 
beautiful.

Summary
In this chapter, we discussed the traveling salesman problem as a case study 
in advanced optimization. We discussed a few approaches to the problem, 
including brute force search, nearest neighbor search, and finally simulated 
annealing, a powerful solution that enables doing worse in order to do bet-
ter. I hope that by working through the difficult case of the TSP, you have 
gained skills that you can apply to other optimization problems. There will 
always be a practical need for advanced optimization in business and in 
science.

In the next chapter, we turn our attention to geometry, examining pow-
erful algorithms that enable geometric manipulations and constructions. 
Let the adventure continue!



We humans have a deep, intuitive grasp 
of geometry. Every time we maneuver a 

couch through a hallway, draw a picture in 
Pictionary, or judge how far away another car on 

the highway is, we’re engaging in some kind of geo-
metric reasoning, often depending on algorithms that 
we’ve unconsciously mastered. By now, you won’t be 
surprised to learn that advanced geometry is a natural 
fit for algorithmic reasoning.

In this chapter, we’ll use a geometric algorithm to solve the postmaster 
problem. We’ll begin with a description of the problem and see how we can 
solve it using Voronoi diagrams. The rest of the chapter explains how to 
algorithmically generate this solution. 

7
G E O M E T R Y



126   Chapter 7

The Postmaster Problem
Imagine that you are Benjamin Franklin, and you have been appointed the 
first postmaster general of a new nation. The existing independent post 
offices had been built haphazardly as the nation grew, and your job is to 
turn these chaotic parts into a well-functioning whole. Suppose that in one 
town, four post offices are placed among the homes, as in Figure 7-1.

Post office 4

Post office 1

Post office 2

Post office 3

Figure 7-1: A town and its post offices

Since there has never been a postmaster in your new nation, there has 
been no oversight to optimize the post offices’ deliveries. It could be that 
post office 4 is assigned to deliver to a home that’s closer to post offices 2 
and 3, and at the same time post office 2 is assigned to deliver to a home 
that’s closer to post office 4, as in Figure 7-2.

Post office 4

Post office 1

Post office 2

Post office 3

Figure 7-2: Post offices 2 and 4 have inefficient assignments.
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You can rearrange the delivery assignments so that each home receives 
deliveries from the ideal post office. The ideal post office for a delivery 
assignment could be the one with the most free staff, the one that possesses 
suitable equipment for traversing an area, or the one with the institutional 
knowledge to find all the addresses in an area. But probably, the ideal post 
office for a delivery assignment is simply the closest one. You may notice that 
this is similar to the traveling salesman problem (TSP), at least in the sense 
that we are moving objects around a map and want to decrease the distance 
we have to travel. However, the TSP is the problem of one traveler optimiz-
ing the order of a set route, while here you have the problem of many trav-
elers (letter carriers) optimizing the assignment of many routes. In fact, 
this problem and the TSP can be solved consecutively for maximum gain: 
after you make the assignments of which post office should deliver to which 
homes, the individual letter carriers can use the TSP to decide the order in 
which to visit those homes.

The simplest approach to this problem, which we might call the post-
master problem, is to consider each house in turn, calculating the distance 
between the house and each of the four post offices, and assigning the clos-
est post office to deliver to the house in question.

This approach has a few weaknesses. First, it does not provide an easy 
way to make assignments when new houses are built; every newly built house 
has to go through the same laborious process of comparison with every 
existing post office. Second, doing calculations at the individual house level 
does not allow us to learn about a region as a whole. For example, maybe an 
entire neighborhood lies within the shadow of one post office but lies many 
miles away from all other post offices. It would be best to conclude in one 
step that the whole neighborhood should be served by the same close post 
office. Unfortunately, our method requires us to repeat the calculation for 
every house in the neighborhood, only to get the same result each time.

By calculating distances for each house individually, we’re repeating 
work that we wouldn’t have to do if we could somehow make generalizations 
about entire neighborhoods or regions. And that work will add up. In mega-
cities of tens of millions of inhabitants, with many post offices and quick 
construction rates like we see today around the world, this approach would 
be unnecessarily slow and computing-resource-heavy.

A more elegant approach would be to consider the map as a whole and 
separate it into distinct regions, each of which represents one post office’s 
assigned service area. By drawing just two straight lines, we can accomplish 
that with our hypothetical town (Figure 7-3).

The regions we have drawn indicate areas of closest proximity, mean-
ing that for every single house, point, and pixel, the closest post office is the 
one that shares its region. Now that the entire map is subdivided, we can 
easily assign any new construction to its closest post office simply by check-
ing which region it’s in.

A diagram that subdivides a map into regions of closest proximity, as 
ours does, is called a Voronoi diagram. Voronoi diagrams have a long his-
tory going all the way back to René Descartes. They were used to analyze 
water pump placement in London to provide evidence for how cholera was 
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spread, and they’re still used in physics and materials science to represent 
crystal structures. This chapter will introduce an algorithm for generat-
ing a Voronoi diagram for any set of points, thereby solving the postmaster 
problem.

Post office 4

Post office 1

Post office 2

Post office 3

Figure 7-3: Voronoi diagram separating our town into optimal postal delivery regions

Triangles 101
Let’s back up and start with the simplest elements of the algorithms we’ll 
explore. We’re working in geometry, in which the simplest element of 
analysis is the point. We’ll represent points as lists with two elements: an 
x-coordinate and a y-coordinate, like the following example:

point = [0.2,0.8]

At the next level of complexity, we combine points to form triangles. 
We’ll represent a triangle as a list of three points:

triangle = [[0.2,0.8],[0.5,0.2],[0.8,0.7]]

Let’s also define a helper function that can convert a set of three dispa-
rate points into a triangle. All this little function does is collect three points 
into a list and return the list:

def points_to_triangle(point1,point2,point3):
    triangle = [list(point1),list(point2),list(point3)]
    return(triangle)
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It will be helpful to be able to visualize the triangles we’re working with. 
Let’s create a simple function that will take any triangle and plot it. First, 
we’ll use the genlines() function that we defined in Chapter 6. Remember 
that this function takes a collection of points and converts them into lines. 
Again, it’s a very simple function, just appending points to a list called lines:

def genlines(listpoints,itinerary):
    lines = []
    for j in range(len(itinerary)-1):
        lines.append([listpoints[itinerary[j]],listpoints[itinerary[j+1]]])
    return(lines)

Next, we’ll create our simple plotting function. It will take a triangle we 
pass to it, split it into its x and y values, call genlines() to create a collection 
of lines based on those values, plot the points and lines, and finally save 
the figure to a .png file. It uses the pylab module for plotting and code from 
the matplotlib module to create the line collection. Listing 7-1 shows this 
function.

import pylab as pl
from matplotlib import collections as mc
def plot_triangle_simple(triangle,thename):
    fig, ax = pl.subplots()
    
    xs = [triangle[0][0],triangle[1][0],triangle[2][0]]
    ys = [triangle[0][1],triangle[1][1],triangle[2][1]]
    
    itin=[0,1,2,0]
    
    thelines = genlines(triangle,itin)
    
    lc = mc.LineCollection(genlines(triangle,itin), linewidths=2)
    
    ax.add_collection(lc)
    
    ax.margins(0.1)
    pl.scatter(xs, ys)
    pl.savefig(str(thename) + '.png')
    pl.close()

Listing 7-1: A function for plotting triangles

Now, we can select three points, convert them to a triangle, and plot the 
triangle, all in one line:

plot_triangle_simple(points_to_triangle((0.2,0.8),(0.5,0.2),(0.8,0.7)),'tri')
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Figure 7-4 shows the output.

Figure 7-4: A humble triangle

It will also come in handy to have a function that allows us to calculate 
the distance between any two points using the Pythagorean theorem:

def get_distance(point1,point2):
    distance = math.sqrt((point1[0] - point2[0])**2 + (point1[1] - point2[1])**2)
    return(distance)

Finally, a reminder of the meaning of some common terms in 
geometry:

Bisect To divide a line into two equal segments. Bisecting a line finds 
its midpoint.

Equilateral Meaning “equal sides.” We use this term to describe a 
shape in all which all sides have equal length.

Perpendicular The way we describe two lines that form a 90-degree 
angle.

Vertex The point at which two edges of a shape meet.

Advanced Graduate-Level Triangle Studies
The scientist and philosopher Gottfried Wilhelm Leibniz thought that 
our world was the best of all possible worlds because it was the “simplest in 
hypotheses and richest in phenomena.” He thought that the laws of science 
could be boiled down to a few simple rules but that those rules led to the 
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complex variety and beauty of the world we observe. This may not be true 
for the universe, but it is certainly true for triangles. Starting with some-
thing that is extremely simple in hypothesis (the idea of a shape with three 
sides), we enter a world that is extremely rich in phenomena.

Finding the Circumcenter
To begin to see the richness of the phenomena of the world of triangles, 
consider the following simple algorithm, which you can try with any triangle:

 1. Find the midpoint of each side of the triangle.

 2. Draw a line from each vertex of the triangle to the midpoint of the ver-
tex’s opposite side.

After you follow this algorithm, you will see something like Figure 7-5.

Figure 7-5: Triangle centroid (source Wikimedia Commons)

Remarkably, all the lines you drew meet in a single point that looks 
something like the “center” of the triangle. All three lines will meet at a sin-
gle point no matter what triangle you start with. The point where they meet 
is commonly called the centroid of the triangle, and it’s always on the inside 
in a place that looks like it could be called the triangle’s center.

Some shapes, like circles, always have one point that can unambigu-
ously be called the shape’s center. But triangles aren’t like this: the centroid 
is one center-ish point, but there are other points that could also be consid-
ered centers. Consider this new algorithm for any triangle:

 1. Bisect each side of the triangle.

 2. Draw a line perpendicular to each side through the side’s midpoint.

In this case, the lines do not typically go through the vertices like they 
did when we drew a centroid. Compare Figure 7-5 with Figure 7-6.
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Figure 7-6: Triangle circumcenter (source: Wikimedia Commons)

Notice that the lines do all meet, again in a point that is not the centroid, 
but is often inside the triangle. This point has another interesting property: it’s 
the center of the unique circle that goes through all three vertices of our tri-
angle. Here is another of the rich phenomena related to triangles: every trian-
gle has one unique circle that goes through all three of its points. This circle 
is called the circumcircle because it is the circle that circumscribes the triangle. 
The algorithm we just outlined finds the center of that circumcircle. For this 
reason, the point where all three of these lines meet is called the circumcenter.

Like the centroid, the circumcenter is a point that could be called the 
center of a triangle, but they are not the only candidates—an encyclope-
dia at https://faculty.evansville.edu/ck6/encyclopedia/ETC.html contains a list of 
40,000 (so far) points that could be called triangle centers for one reason or 
another. As the encyclopedia itself says, the definition of a triangle center is 
one that “is satisfied by infinitely many objects, of which only finitely many 
will ever be published.” Remarkably, starting with three simple points and 
three straight sides, we get a potentially infinite encyclopedia of unique  
centers—Leibniz would be so pleased.

We can write a function that finds the circumcenter and circumradius 
(the radius of the circumcircle) for any given triangle. This function relies 
on conversion to complex numbers. It takes a triangle as its input and 
returns a center and a radius as its output:

def triangle_to_circumcenter(triangle):
    x,y,z = complex(triangle[0][0],triangle[0][1]), complex(triangle[1][0],triangle[1][1]), \ 
    complex(triangle[2][0],triangle[2][1])
    w = z - x
    w /= y - x
    c = (x-y) * (w-abs(w)**2)/2j/w.imag - x
    radius = abs(c + x)
    return((0 - c.real,0 - c.imag),radius)

https://faculty.evansville.edu/ck6/encyclopedia/ETC.html
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The specific details of how this function calculates the center and 
radius are complex. We won’t dwell on it here, but I encourage you to walk 
through the code on your own, if you’d like.

Increasing Our Plotting Capabilities
Now that we can find a circumcenter and a circumradius for every tri-
angle, let’s improve our plot_triangle() function so it can plot everything. 
Listing 7-2 shows the new function.

def plot_triangle(triangles,centers,radii,thename):
    fig, ax = pl.subplots()
    ax.set_xlim([0,1])
    ax.set_ylim([0,1])
    for i in range(0,len(triangles)):
        triangle = triangles[i]
        center = centers[i]
        radius = radii[i]
        itin = [0,1,2,0]
        thelines = genlines(triangle,itin)
        xs = [triangle[0][0],triangle[1][0],triangle[2][0]]
        ys = [triangle[0][1],triangle[1][1],triangle[2][1]]
        
        lc = mc.LineCollection(genlines(triangle,itin), linewidths = 2)
        
        ax.add_collection(lc)
        ax.margins(0.1)
        pl.scatter(xs, ys)
        pl.scatter(center[0],center[1])
        
        circle = pl.Circle(center, radius, color = 'b', fill = False)
        
        ax.add_artist(circle)
    pl.savefig(str(thename) + '.png')
    pl.close()

Listing 7-2: Our improved plot_triangle() function, which plots the circumcenter and 
cicrumcircle

We start by adding two new arguments: a centers variable that’s a list of 
the respective circumcenters of all triangles, and a radii variable that’s a list 
of the radius of every triangle’s circumcircle. Note that we take arguments 
that consist of lists, since this function is meant to draw multiple triangles 
instead of just one triangle. We’ll use pylab’s circle-drawing capabilities to 
draw the circles. Later, we’ll be working with multiple triangles at the same 
time. It will be useful to have a plotting function that can plot multiple tri-
angles instead of just one. We’ll put a loop in our plotting function that will 
loop through every triangle and center and plot each of them successively.

We can call this function with a list of triangles that we define:

triangle1 = points_to_triangle((0.1,0.1),(0.3,0.6),(0.5,0.2))
center1,radius1 = triangle_to_circumcenter(triangle1)
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triangle2 = points_to_triangle((0.8,0.1),(0.7,0.5),(0.8,0.9))
center2,radius2 = triangle_to_circumcenter(triangle2)
plot_triangle([triangle1,triangle2],[center1,center2],[radius1,radius2],'two')

Our output is shown in Figure 7-7.

Figure 7-7: Two triangles with circumcenter and circumcircles

Notice that our first triangle is close to equilateral. Its circumcircle is 
small and its circumcenter lies within it. Our second triangle is a narrow, 
sliver triangle. Its circumcircle is large and its circumcenter is far outside 
the plot boundaries. Every triangle has a unique circumcircle, and different 
triangle shapes lead to different kinds of circumcircles. It could be worth-
while to explore different triangle shapes and the circumcircles they lead to 
on your own. Later, the differences between these triangles’ circumcircles 
will be important.

Delaunay Triangulation
We’re ready for the first major algorithm of this chapter. It takes a set of 
points as its input and returns a set of triangles as its output. In this context, 
turning a set of points into a set of triangles is called triangulation.

The points_to_triangle() function we defined near the beginning of the 
chapter is the simplest possible triangulation algorithm. However, it’s quite 
limited because it works only if we give it exactly three input points. If we 
want to triangulate three points, there’s only one possible way to do so: out-
put a triangle consisting of exactly those three points. If we want to triangu-
late more than three points, there will inevitably be more than one way to 
triangulate. For example, consider the two distinct ways to triangulate the 
same seven points shown in Figure 7-8.
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Figure 7-8: Two different ways to triangulate seven points (Wikimedia Commons)

In fact, there are 42 possible ways to triangulate this regular heptagon 
Figure 7-9).

Figure 7-9: All 42 possible ways to triangulate seven points (source: Wikipedia)
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If you have more than seven points and they are irregularly placed, the 
number of possible triangulations can rise to staggering magnitudes.

We can accomplish triangulation manually by getting pen and paper 
and connecting dots. Unsurprisingly, we can do it better and faster by using 
an algorithm.

There are a several different triangulation algorithms. Some are meant 
to have a quick runtime, others are meant to be simple, and still others are 
meant to yield triangulations that have specific desirable properties. What 
we’ll cover here is called the Bowyer-Watson algorithm, and it’s designed to take 
a set of points as its input and output a Delaunay triangulation.

A Delaunay triangulation (DT) aims to avoid narrow, sliver triangles. 
It tends to output triangles that are somewhere close to equilateral. 
Remember that equilateral triangles have relatively small circumcircles and 
sliver triangles have relatively large circumcircles. With that in mind, con-
sider the technical definition of a DT: for a set of points, it is the set of tri-
angles connecting all the points in which no point is inside the circumcircle 
of any of the triangles. The large circumcircles of sliver triangles would be 
very likely to encompass one or more of the other points in the set, so a rule 
stating that no point can be inside any circumcircle leads to relatively few 
sliver triangles. If this is unclear, don’t fret—you’ll see it visualized in the 
next section.

Incrementally Generating Delaunay Triangulations
Our eventual goal is to write a function that will take any set of points 
and output a full Delaunay triangulation. But let’s start with something 
simple: we’ll write a function that takes an existing DT of n points and also 
one point that we want to add to it, and outputs a DT of n + 1 points. This 
“Delaunay expanding” function will get us very close to being able to write 
a full DT function.

N O T E  The example and images in this section are courtesy of LeatherBee ( https://leatherbee 
.org/index.php/2018/10/06/terrain-generation-3-voronoi-diagrams/).

First, suppose that we already have the DT of nine points shown in 
Figure 7-10.

Now suppose we want to add a 10th point to our DT (Figure 7-11).
A DT has only one rule: no point can lie within a circumcircle of 

any of its triangles. So we check the circumcircle of every circle in our 
existing DT, to determine whether point 10 lies within any of them. 
We find that point 10 lies within the circumcircles of three triangles 
(Figure 7-12).

https://leatherbee.org/index.php/2018/10/06/terrain-generation-3-voronoi-diagrams/
https://leatherbee.org/index.php/2018/10/06/terrain-generation-3-voronoi-diagrams/
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Figure 7-10: A DT with nine points

Figure 7-11: A 9-point DT with the 10th point we want to add
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Figure 7-12: Three triangles in the DT have circumcircles  
containing point 10.

These triangles are no longer allowed to be in our DT, so we will 
remove them, yielding Figure 7-13.

Figure 7-13: We have removed the invalid triangles.

We haven’t finished yet. We need to fill in the hole that we’ve created 
and make sure that point 10 is properly connected to the other points. If 
we don’t, then we won’t have a collection of triangles, we’ll just have points 
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and lines. The way we connect point 10 can be described simply: add an 
edge connecting point 10 to every vertex of the largest empty polygon that 
point 10 lies within (Figure 7-14).

Figure 7-14: Completing the 10-point DT by reconnecting  
valid triangles

Voilà! We started with a 9-point DT, added a new point, and now have 
a 10-point DT. This process may seem straightforward. Unfortunately, as 
is often the case with geometric algorithms, what seems clear and intuitive 
to the human eye can be tricky to write code for. But let’s not allow this to 
deter us, brave adventurers.

Implementing Delaunay Triangulations
Let’s start by assuming that we already have a DT, which we’ll call delaunay. 
It will be nothing more than a list of triangles. We can even start with one 
triangle alone:

delaunay = [points_to_triangle((0.2,0.8),(0.5,0.2),(0.8,0.7))]

Next, we’ll define a point that we want to add to it, called point_to_add:

point_to_add = [0.5,0.5]

We first need to determine which, if any, triangles in the existing DT 
are now invalid because their circumcircle contains the point_to_add. We’ll 
do the following:

 1. Use a loop to iterate over every triangle in the existing DT.

 2. For each triangle, find the circumcenter and radius of its circumcircle.
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 3. Find the distance between the point_to_add and this circumcenter.

 4. If this distance is less than the circumradius, then the new point is 
inside the triangle’s circumcircle. We can then conclude this triangle is 
invalid and needs to be removed from the DT.

We can accomplish these steps with the following code snippet:

import math
invalid_triangles = []
delaunay_index = 0
while delaunay_index < len(delaunay):
    circumcenter,radius = triangle_to_circumcenter(delaunay[delaunay_index])
    new_distance = get_distance(circumcenter,point_to_add)
    if(new_distance < radius):
        invalid_triangles.append(delaunay[delaunay_index])
    delaunay_index += 1

This snippet creates an empty list called invalid_triangles, loops through 
every triangle in our existing DT, and checks whether a particular triangle is 
invalid. It does this by checking whether the distance between the point_to_add 
and the circumcenter is less than the circumcircle’s radius. If a triangle is 
invalid, we append it to the invalid_triangles list.

Now we have a list of invalid triangles. Since they are invalid, we want to 
remove them. Eventually, we’ll also need to add new triangles to our DT. To 
do that, it will help to have a list of every point that is in one of the invalid 
triangles, as those points will be in our new, valid triangles.

Our next code snippet removes all invalid triangles from our DT, and 
we also get a collection of the points that make them up.

points_in_invalid = []

for i in range(len(invalid_triangles)):
    delaunay.remove(invalid_triangles[i])
    for j in range(0,len(invalid_triangles[i])):
        points_in_invalid.append(invalid_triangles[i][j])

1 points_in_invalid = [list(x) for x in set(tuple(x) for x in points_in_invalid)]

We first create an empty list called points_in_invalid. Then, we loop 
through invalid_triangles, using Python’s remove() method to take each 
invalid triangle out of the existing DT. We then loop through every point 
in the triangle to add it to the points_in_invalid list. Finally, since we may 
have added some duplicate points to the points_in_invalid list, we’ll use a list 
comprehension 1 to re-create points_in_invalid with only unique values.

The final step in our algorithm is the trickiest one. We have to add  
new triangles to replace the invalid ones. Each new triangle will have the 
point_to_add as one of its points, and and two points from the existing DT  
as its other points. However, we can’t add every possible combination of 
point_to_add and two existing points.

In Figures 7-13 and 7-14, notice that the new triangles we needed to 
add were all triangles with point 10 as one of their points, and with edges 
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selected from the empty polygon that contained point 10. This may seem 
simple enough after a visual check, but it’s not straightforward to write code 
for it.

We need to find a simple geometric rule that can be easily explained 
in Python’s hyper-literal style of interpretation. Think of the rules that 
could be used to generate the new triangles in Figure 7-14. As is common 
in mathematical situations, we could find multiple equivalent sets of rules. 
We could have rules related to points, since one definition of a triangle 
is a set of three points. We could have other rules related to lines, since 
another, equivalent definition of triangles is a set of three line segments. 
We could use any set of rules; we just want the one that will be the sim-
plest to understand and implement in our code. One possible rule is that 
we should consider every possible combination of points in the invalid tri-
angles with the point_to_add, but we should add one of those triangles only 
if the edge not containing the point_to_add occurs exactly once in the list 
of invalid triangles. This rule works because the edges that occur exactly 
once will be the edges of the outer polygon surrounding the new point (in 
Figure 7-13, the edges in question are the edges of the polygon connect-
ing points 1, 4, 8, 7, and 3).

The following code implements this rule:

for i in range(len(points_in_invalid)):
    for j in range(i + 1,len(points_in_invalid)):
        #count the number of times both of these are in the bad triangles
        count_occurrences = 0
        for k in range(len(invalid_triangles)):
            count_occurrences += 1 * (points_in_invalid[i] in invalid_triangles[k]) * \ 
            (points_in_invalid[j] in invalid_triangles[k])
        if(count_occurrences == 1):
            delaunay.append(points_to_triangle(points_in_invalid[i], points_in_invalid[j], \ 
point_to_add))

Here we loop through every point in points_in_invalid. For each one, we 
loop through every following point in points_in_invalid. This double loop 
enables us to consider every combination of two points that was in an invalid 
triangle. For each combination, we loop through all the invalid triangles and 
count how many times those two points are together in an invalid triangle. If 
they are together in exactly one invalid triangle, then we conclude that they 
should be together in one of our new triangles, and we add a new triangle to 
our DT that consists of those two points together with our new point.

We have completed the steps that are required to add a new point to an 
existing DT. So we can take a DT that has n points, add a new point, and 
end up with a DT that has n + 1 points. Now, we need to learn to use this 
capability to take a set of n points and build a DT from scratch, from zero 
points all the way to n points. After we get the DT started, it’s really quite 
simple: we just need to loop through the process that goes from n points to 
n + 1 points over and over until we have added all of our points.

There is just one more complication. For reasons that we’ll discuss 
later, we want to add three more points to the collection of points whose 
DT we’re generating. These points will lie far outside our chosen points, 
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which we can ensure by finding the uppermost and leftmost points, adding 
a new point that is higher and farther left than either of those, and doing 
similarly for the lowermost and rightmost points and the lowermost and 
leftmost points. We’ll se these points together as the first triangle of our 
DT. We’ll start with a DT that connects three points: the three points in 
the new triangle just mentioned. Then, we’ll follow the logic that we’ve 
already seen to turn a three-point DT into a four-point DT, then into a 
five-point DT, and so on until we’ve added all of our points.

In Listing 7-3, we can combine the code we wrote earlier to create a 
function called gen_delaunay(), which takes a set of points as its input and 
outputs a full DT.

def gen_delaunay(points):
    delaunay = [points_to_triangle([-5,-5],[-5,10],[10,-5])]
    number_of_points = 0
    
    
    while number_of_points < len(points): 1
        point_to_add = points[number_of_points]
        
        delaunay_index = 0
        
        invalid_triangles = [] 2
        while delaunay_index < len(delaunay):
            circumcenter,radius = triangle_to_circumcenter(delaunay[delaunay_index])
            new_distance = get_distance(circumcenter,point_to_add)
            if(new_distance < radius):
                invalid_triangles.append(delaunay[delaunay_index])
            delaunay_index += 1
            
        points_in_invalid = [] 3       
        for i in range(0,len(invalid_triangles)):
            delaunay.remove(invalid_triangles[i])
            for j in range(0,len(invalid_triangles[i])):
                points_in_invalid.append(invalid_triangles[i][j])
        points_in_invalid = [list(x) for x in set(tuple(x) for x in points_in_invalid)]
          
        for i in range(0,len(points_in_invalid)): 4
            for j in range(i + 1,len(points_in_invalid)):
                #count the number of times both of these are in the bad triangles
                count_occurrences = 0
                for k in range(0,len(invalid_triangles)):
                    count_occurrences += 1 * (points_in_invalid[i] in invalid_triangles[k]) * \ 
                    (points_in_invalid[j] in invalid_triangles[k])
                if(count_occurrences == 1):
                    delaunay.append(points_to_triangle(points_in_invalid[i], \ 
points_in_invalid[j], point_to_add))
        
        number_of_points += 1
    
    return(delaunay)

Listing 7-3: A function that takes a set of points and returns a Delaunay triangulation
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The full DT generation function starts by adding the new outside trian-
gle mentioned earlier. It then loops through every point in our collection of 
points 1. For every point, it creates a list of invalid triangles: every triangle 
that’s in the DT whose circumcircle includes the point we’re currently look-
ing at 2. It removes those invalid triangles from the DT and creates a collec-
tion of points using each point that was in those invalid triangles 3. Then, 
using those points, it adds new triangles that follow the rules of Delaunay 
triangulations 4. It accomplishes this incrementally, using exactly the code 
that we have already introduced. Finally, it returns delaunay, a list containing 
the collection of triangles that constitutes our DT.

We can easily call this function to generate a DT for any collection of 
points. In the following code, we specify a number for N and generate N 
random points (x and y values). Then, we zip the x and y values, put them 
together into a list, pass them to our gen_delaunay() function, and get back a 
full, valid DT that we store in a variable called the_delaunay:

N=15
import numpy as np
np.random.seed(5201314)
xs = np.random.rand(N)
ys = np.random.rand(N)
points = zip(xs,ys)
listpoints = list(points)
the_delaunay = gen_delaunay(listpoints)

We’ll use the_delaunay in the next section to generate a Voronoi 
diagram.

From Delaunay to Voronoi
Now that we’ve completed our DT generation algorithm, the Voronoi dia-
gram generation algorithm is within our grasp. We can turn a set of points 
into a Voronoi diagram by following this algorithm:

 1. Find the DT of a set of points.

 2. Take the circumcenter of every triangle in the DT.

 3. Draw lines connecting the circumcenters of all triangles in the DT that 
share an edge.

We already know how to do step 1 (we did it in the previous section), 
and we can accomplish step 2  withthe triangle_to_circumcenter() function. 
So the only thing we need is a code snippet that can accomplish step 3.

The code we write for step 3 will live in our plotting function. 
Remember that we pass a set of triangles and circumcenters to that func-
tion as its inputs. Our code will need to create a collection of lines connect-
ing circumcenters. But it will not connect all of the circumcenters, only 
those from triangles that share an edge.
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We’re storing our triangles as collections of points, not edges. But 
it’s still easy to check whether two of our triangles share an edge; we just 
check whether they share exactly two points. If they share only one point, 
then they have vertices that meet but no common edge. If they share three 
points, they are the same triangle and so will have the same circumcenter. 
Our code will loop through every triangle, and for each triangle, it will loop 
through every triangle again, and check the number of points that the two 
triangles share. If the number of common points is exactly two, then it will 
add a line between the circumcenters of the triangles in question. The lines 
between the circumcenters will be the boundaries of our Voronoi diagram. 
The following code snippet shows how we’ll loop through triangles, but it’s 
part of a larger plotting function, so don’t run it yet:

--snip--
for j in range(len(triangles)):
    commonpoints = 0
    for k in range(len(triangles[i])):
        for n in range(len(triangles[j])):
            if triangles[i][k] == triangles[j][n]:
               commonpoints += 1
    if commonpoints == 2:
        lines.append([list(centers[i][0]),list(centers[j][0])])

This code will be added to our plotting function, since our final goal is 
a plotted Voronoi diagram.

While we’re at it, we can make several other useful additions to our 
plotting function. The new plotting function is shown in Listing 7-4, with 
the changes in bold:

def plot_triangle_circum(triangles,centers,plotcircles,plotpoints, \ 
plottriangles,plotvoronoi,plotvpoints,thename):
    fig, ax = pl.subplots()
    ax.set_xlim([-0.1,1.1])
    ax.set_ylim([-0.1,1.1])
    
    lines=[]
    for i in range(0,len(triangles)):
        triangle = triangles[i]
        center = centers[i][0]
        radius = centers[i][1]
        itin = [0,1,2,0]
        thelines = genlines(triangle,itin)
        xs = [triangle[0][0],triangle[1][0],triangle[2][0]]
        ys = [triangle[0][1],triangle[1][1],triangle[2][1]]
        
        lc = mc.LineCollection(genlines(triangle,itin), linewidths=2)
        if(plottriangles):
            ax.add_collection(lc)
        if(plotpoints):
            pl.scatter(xs, ys)
        
        ax.margins(0.1)
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        1 if(plotvpoints):

            pl.scatter(center[0],center[1])
        
        circle = pl.Circle(center, radius, color = 'b', fill = False)
        if(plotcircles):
            ax.add_artist(circle)
        

        2 if(plotvoronoi):
            for j in range(0,len(triangles)):
                commonpoints = 0
                for k in range(0,len(triangles[i])):
                    for n in range(0,len(triangles[j])):
                        if triangles[i][k] == triangles[j][n]:
                            commonpoints += 1
                if commonpoints == 2:
                    lines.append([list(centers[i][0]),list(centers[j][0])])
        
        lc = mc.LineCollection(lines, linewidths = 1)
        
        ax.add_collection(lc)
    
    pl.savefig(str(thename) + '.png')
    pl.close()

Listing 7-4: A function that plots triangles, circumcenters, circumcircles, Voronoi points, 
and Voronoi boundaries

First, we add new arguments that specify exactly what we want to plot. 
Remember that in this chapter we have worked with points, edges, trian-
gles, circumcircles, circumcenters, DTs, and Voronoi boundaries. It could 
be overwhelming to the eye to plot all of these together, so we will add 
plotcircles to specify whether we want to plot our circumcircles, plotpoints 
to specify whether we want to plot our collection of points, plottriangles to 
specify whether we want to plot our DT, plotvoronoi to specify whether we 
want to plot our Voronoi diagram edges, and plotvpoints which to specify 
whether we want to plot our circumcenters (which are the vertices of the 
Voronoi diagram edges). The new additions are shown in bold. One addi-
tion plots the Voronoi vertices (circumcenters), if we have specified in our 
arguments that we want to plot them 1. The longer addition plots the 
Voronoi edges 2. We’ve also specified a few if statements that allow us to 
plot, or not plot, triangles, vertices, and circumcircles, as we prefer.

We’re almost ready to call this plotting function and see our final 
Voronoi diagram. However, first we need to get the circumcenters of every 
triangle in our DT. Luckily, this is very easy. We can create an empty list 
called circumcenters and append the circumcenter of every triangle in our 
DT to that list, as follows:

circumcenters = []
for i in range(0,len(the_delaunay)):
    circumcenters.append(triangle_to_circumcenter(the_delaunay[i]))
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Finally, we’ll call our plotting function, specifying that we want it to 
draw the Voronoi boundaries:

plot_triangle_circum(the_delaunay,circumcenters,False,True,False,True,False,'final')

Figure 7-15 shows our output.

Figure 7-15: A Voronoi diagram. Phew!

We’ve transformed a set of points into a Voronoi diagram in mere sec-
onds. You can see that the boundaries in this Voronoi diagram run right 
up to the edge of the plot. If we increased the size of the plot, the Voronoi 
edges would continue even farther. Remember that Voronoi edges con-
nect the centers of circumcircles of triangles in our DT. But our DT could 
be connecting very few points that are close together in the center of our 
plot, so all the circumcenters could lie within a small area in the middle 
of our plot. If that happened, the edges of our Voronoi diagram wouldn’t 
extend to the edges of the plot space. This is why we added the new outer 
triangle in the first line of our gen_delaunay() function; by having a triangle 
whose points are far outside our plot area, we can be confident that there 
will always be Voronoi edges that run to the edge of our map, so that (for 
example) we will know which post office to assign to deliver to new suburbs 
built on or outside the edge of the city.

Finally, you might enjoy playing with our plotting function. For example, 
if you set all of its input arguments to True, you can generate a messy but 
beautiful plot of all the elements we have discussed in this chapter:

plot_triangle_circum(the_delaunay,circumcenters,True,True,True,True,True,'everything')
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Our output is shown in Figure 7-16.

Figure 7-16: Magic eye

You can use this image to convince your roommates and family mem-
bers that you are doing top-secret particle collision analysis work for CERN, 
or maybe you could use it to apply for an art fellowship as a spiritual suc-
cessor to Piet Mondrian. As you look at this Voronoi diagram with its DT 
and circumcircles, you could imagine post offices, water pumps, crystal 
structures, or any other possible application of Voronoi diagrams. Or you 
could just imagine points, triangles, and lines and revel in the pure joys of 
geometry.

Summary
This chapter introduced methods for writing code to do geometric rea-
soning. We started by drawing simple points, lines, and triangles. We pro-
ceeded to discuss different ways to find the center of a triangle, and how 
this enables us to generate a Delaunay triangulation for any set of points. 
Finally, we went over simple steps for using a Delaunay triangulation to 
generate a Voronoi diagram, which can be used to solve the postmaster 
problem or to contribute to any of a variety of other applications. They are 
complex in some ways, but in the end they boil down to elementary manip-
ulations of points, lines, and triangles.

In the next chapter, we discuss algorithms that can be used to work 
with languages. In particular, we’ll talk about how an algorithm can correct 
text that’s missing spaces and how to write a program that can predict what 
word should come next in a natural phrase.





In this chapter, we step into the messy world 
of human language. We’ll start by discuss-

ing the differences between language and 
math that make language algorithms difficult. 

We’ll continue by building a space insertion algorithm 
that can take any text in any language and insert spaces 
wherever they’re missing. After that, we’ll build a phrase 
completion algorithm that can imitate the style of a 
writer and find the most fitting next word in a phrase.

The algorithms in this chapter rely heavily on two tools that we haven’t 
used before: list comprehensions and corpuses. List comprehensions enable 
us to quickly generate lists using the logic of loops and iterations. They’re 
optimized to run very quickly in Python and they’re easy to write concisely, 
but they can be hard to read and their syntax takes some getting used to. 
A corpus is a body of text that will “teach” our algorithm the language and 
style we want it to use.

8
L A N G U A G E
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Why Language Algorithms Are Hard
The application of algorithmic thinking to language goes back at least as 
far as Descartes, who noticed that although there are infinite numbers, 
anyone with a rudimentary understanding of arithmetic knows how to cre-
ate or interpret a number they’ve never encountered before. For example, 
maybe you’ve never encountered the number 14,326—never counted that 
high, never read a financial report about that many dollars, never mashed 
exactly those keys on the keyboard. And yet I’m confident that you can eas-
ily grasp exactly how high it is, what numbers are higher or lower than it, 
and how to manipulate it in equations.

The algorithm that lets us easily understand hitherto unimagined num-
bers is simply a combination of the 10 digits (0–9), memorized in order, and 
the place system. We know that 14,326 is one higher than 14,325 because the 
digit 6 comes one after the digit 5 in order, they occupy the same place 
in their respective numbers, and the digits in all the other places are the 
same. Knowing the digits and the place system enables us to instantly have 
an idea of how 14,326 is similar to 14,325 and how both are larger than 12 
and smaller than 1,000,000. We can also understand at a glance that 14,326 
is similar to 4,326 in some respects but differs greatly in size.

Language is not the same. If you are learning English and you see the 
word stage for the first time, you cannot reliably reason about its meaning 
simply by noting its similarity to stale or stake or state or stave or stade or sage, 
even though those words differ from stage about as much as 14,326 does 
from 14,325. Nor can you reliably suppose that a bacterium is larger than 
an elk because of the number of syllables and characters in the words. 
Even supposedly reliable rules of language, like adding s to form plurals 
in English, can lead us badly astray when we infer that the word “princes” 
refers to less of something than the word “princess.”

In order to use algorithms with language, we must either make lan-
guage simpler, so that the short mathematical algorithms we have explored 
so far can reliably work with it, or make our algorithms smarter, so that they 
can deal with the messy complexity of human language as it has developed 
naturally. We’ll do the latter.

Space Insertion
Imagine that you are the chief algorithm officer at a large old company 
that has a warehouse full of handwritten paper records. The chief record 
digitization officer has been conducting a long-term project of scanning 
those paper records to image files, and then using text recognition technol-
ogy to convert the images to text that can be easily stored in the company’s 
databases. However, some of the handwriting on the records is awful and 
the text recognition technology is imperfect, so the final digital text that 
is extracted from a paper record is sometimes incorrect. You’ve been given 
only the digitized text and you’re asked to find a way to correct the mistakes 
without referring to the paper originals.



Language   151

Suppose that you read the first digitized sentence into Python and find 
that it’s a quote from G. K. Chesterton: “The one perfectly divine thing, the 
one glimpse of God’s paradise given on earth, is to fight a losing battle—
and not lose it.” You take this imperfectly digitized text and store it in a vari-
able called text:

text = "The oneperfectly divine thing, the oneglimpse of God's paradisegiven 
on earth, is to fight a losingbattle - and notlose it."

You’ll notice that this text is in English, and while the spelling of each 
word is correct, there are missing spaces throughout: oneperfectly should 
actually be one perfectly, paradisegiven should be paradise given, and so on. 
(Missing a space is uncommon for humans, but text recognition technol-
ogy often makes this kind of mistake.) In order to do your job, you’ll have 
to insert spaces at the appropriate spots in this text. For a fluent English 
speaker, this task may not seem difficult to do manually. However, imagine 
that you need to do it quickly for millions of scanned pages—you will obvi-
ously need to write an algorithm that can do it for you.

Defining a Word List and Finding Words
The first thing we will do is teach our algorithm some English words. This 
isn’t very hard: we can define a list called word_list and populate it with 
words. Let’s start with just a few words:

word_list = ['The','one','perfectly','divine']

In this chapter, we’ll create and manipulate lists using list comprehen-
sions, which you’ll probably like after you get used to them. The following is 
a very simple list comprehension that creates a copy of our word_list:

word_list_copy = [word for word in word_list]

You can see that the syntax for word in word_list is very similar to the 
syntax for a for loop. But we don’t need a colon or extra lines. In this case, 
the list comprehension is as simple as possible, just specifying that we want 
each word in word_list to be in our new list, word_list_copy. This may not be 
so useful, but we can concisely add logic to make it more useful. For exam-
ple, if we want to find every word in our word list that contains the letter n, 
all it takes is the simple addition of an if statement:

has_n = [word for word in word_list if 'n' in word]

We can run print(has_n) to see that the result is what we expect:

['one', 'divine']

Later in the chapter, you’ll see more complex list comprehensions, 
including some that have nested loops. However, all of them follow the 
same basic pattern: a for loop specifying iteration, with optional if state-
ments describing the logic of what we want to select for our final list output.
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We’ll use Python’s re module to access text manipulation tools. One of 
re’s useful functions is finditer(), which can search our text to find the loca-
tion of any word in our word_list. We use finditer() in a list comprehension 
like so:

import re
locs = list(set([(m.start(),m.end()) for word in word_list for m in re.finditer(word, text)]))

That line is a little dense, so take a moment to make sure you under-
stand it. We’re defining a variable called locs, short for “locations”; this 
variable will contain the locations in the text of every word in our word list. 
We’ll use a list comprehension to get this list of locations.

The list comprehension takes place inside the square brackets ([]). 
We use for word in word_list to iterate over every word in our word_list. For 
each word, we call re.finditer(), which finds the selected word in our text 
and returns a list of every location where that word occurs. We iterate over 
these locations, and each individual location is stored in m. When we access 
m.start() and m.end(), we’ll get the location in the text of the beginning and 
end of the word, respectively. Notice—and get used to—the order of the for 
loops, since some people find it the opposite of the order they expected.

The whole list comprehension is enveloped by list(set()). This is a con-
venient way to get a list that contains only unique values with no duplicates. 
Our list comprehension alone might have multiple identical elements, but 
converting it to a set automatically removes duplicates, and then converting 
it back to a list puts it in the format we want: a list of unique word locations. 
You can run print(locs) to see the result of the whole operation:

[(17, 23), (7, 16), (0, 3), (35, 38), (4, 7)]

In Python, ordered pairs like these are called tuples, and these tuples show 
the locations of each word from word_list in our text. For example, when we run 
text[17:23] (using the numbers from the third tuple in the preceding list), we 
find that it’s divine. Here, d is the 17th character of our text, i is the 18th charac-
ter of our text, and so on until e, the final letter of divine, is the 22nd character 
of our text, so the tuple is rounded off with 23. You can check that the other 
tuples also refer to the locations of words in our word_list.

Notice that text[4:7] is one, and text[7:16] is perfectly. The end of the 
word one runs into the beginning of the word perfectly without any inter-
vening space. If we hadn’t noticed that immediately by reading the text, we 
could have caught it by looking at the tuples (4, 7) and (7, 16) in our locs 
variable: since 7 is the second element of (4, 7) and also the first element of 
(7, 16), we know that one word ends in the same index where another word 
begins. In order to find places where we need to insert spaces, we’ll look for 
cases like this: where the end of one valid word is at the same place as the 
beginning of another valid word.

Dealing with Compound Words
Unfortunately, two valid words appearing together without a space is not 
conclusive evidence that a space is missing. Consider the word butterfly. We 
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know that butter is a valid word and fly is a valid word, but we can’t necessar-
ily conclude that butterfly was written in error, because butterfly is also a valid 
word. So we need to check not only for valid words that appear together 
without a space but also for valid words that, when mashed together without 
a space, do not together form another valid word. This means that in our 
text, we need to check whether oneperfectly is a word, whether paradisegiven 
is a word, and so on.

In order to check this, we need to find all the spaces in our text. We 
can look at all the substrings between two consecutive spaces and call those 
potential words. If a potential word is not in our word list, then we’ll con-
clude that it’s invalid. We can check each invalid word to see whether it’s 
made up of a combination of two smaller words; if it is, we’ll conclude that 
there’s a missing space and add it back in, right between the two valid words 
that have combined to form the invalid word.

Checking Between Existing Spaces for Potential Words
We can use re.finditer() again to find all the spaces in our text, which we’ll 
store in a variable called spacestarts. We’ll also add two more elements to 
our spacestarts variable: one to represent the location of the beginning of 
the text and one to represent the location of the end. This ensures that we 
find every potential word, since words at the very beginning and end will be 
the only words that are not between spaces. We also add a line that sorts the 
spacestarts list:

spacestarts = [m.start() for m in re.finditer(' ', text)]
spacestarts.append(-1)
spacestarts.append(len(text))
spacestarts.sort()

The list spacestarts records the locations of the spaces in our text. We 
got these locations by using a list comprehension and the re.finditer() 
tool. In this case, re.finditer() finds the location of every space in the 
text and stores it in a list, which refers to each individual element as m. 
For each of those m elements, which are spaces, we get the location where 
the space begins by using the start() function. We are looking for poten-
tial words between those spaces. It will be useful to have another list that 
records the locations of characters that come just after a space; these will 
be the locations of the first character of each potential word. We’ll call 
that list spacestarts_affine, since in technical terms, this new list is an 
affine transformation of the spacestarts list. Affine is often used to refer  
to linear transformations, such as adding 1 to each location, which  
we’ll do here. We’ll also sort this list:

spacestarts_affine = [ss+1 for ss in spacestarts]
spacestarts_affine.sort()

Next, we can get all the substrings that are between two spaces:

between_spaces = [(spacestarts[k] + 1,spacestarts[k + 1]) for k in range(0,len(spacestarts) - 1 )]
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The variable we’re creating here is called between_spaces, and it’s a list 
of tuples of the form (<location of beginning of substring>, <location of end of 
substring>), like (17, 23). The way we get these tuples is through a list compre-
hension. This list comprehension iterates over k. In this case, k takes on the 
values of integers between 0 and one less than the length of the spacestarts 
list. For each k, we will generate one tuple. The first element of the tuple is 
spacestarts[k]+1, which is one position after the location of each space. The 
second element of the tuple is spacestarts[k+1], which is the location of the 
next space in the text. This way, our final output contains tuples that indi-
cate the beginning and end of each substring between spaces.

Now, consider all of the potential words that are between spaces, and 
find the ones that are not valid (not in our word list):

between_spaces_notvalid = [loc for loc in between_spaces if \ 
text[loc[0]:loc[1]] not in word_list]

Looking at between_spaces_notvalid, we can see that it’s a list of the loca-
tions of all invalid potential words in our text:

[(4, 16), (24, 30), (31, 34), (35, 45), (46, 48), (49, 54), (55, 68), (69, 
71), (72, 78), (79, 81), (82, 84), (85, 90), (91, 92), (93, 105), (106, 107), 
(108, 111), (112, 119), (120, 123)]

Our code thinks that all these locations refer to invalid words. However, 
if you look at some of the words referred to here, they look pretty valid. 
For example, text[103:106] outputs the valid word and. The reason our code 
thinks that and is an invalid word is that it isn’t in our word list. Of course, 
we could add it to our word list manually and continue using that approach 
as we need our code to recognize words. But remember that we want this 
space insertion algorithm to work for millions of pages of scanned text, 
and they may contain many thousands of unique words. It would be helpful 
if we could import a word list that already contained a substantial body of 
valid English words. Such a collection of words is referred to as a corpus.

Using an Imported Corpus to Check for Valid Words
Luckily, there are existing Python modules that allow us to import a full 
corpus with just a few lines. First, we need to download the corpus:

import nltk
nltk.download('brown')

We’ve downloaded a corpus called brown from the module called nltk. 
Next, we’ll import the corpus:

from nltk.corpus import brown
wordlist = set(brown.words())
word_list = list(wordlist)
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We have imported the corpus and converted its collection of words 
into a Python list. Before we use this new word_list, however, we should do 
some cleanup to remove what it thinks are words but are actually punctua-
tion marks:

word_list = [word.replace('*','') for word in word_list]
word_list = [word.replace('[','') for word in word_list]
word_list = [word.replace(']','') for word in word_list]
word_list = [word.replace('?','') for word in word_list]
word_list = [word.replace('.','') for word in word_list]
word_list = [word.replace('+','') for word in word_list]
word_list = [word.replace('/','') for word in word_list]
word_list = [word.replace(';','') for word in word_list]
word_list = [word.replace(':','') for word in word_list]
word_list = [word.replace(',','') for word in word_list]
word_list = [word.replace(')','') for word in word_list]
word_list = [word.replace('(','') for word in word_list]
word_list.remove('')

These lines use the remove() and replace() functions to replace punctua-
tion with empty strings and then remove the empty strings. Now that we have 
a suitable word list, we’ll be able to recognize invalid words more accurately. 
We can rerun our check for invalid words using our new word_list and get 
better results:

between_spaces_notvalid = [loc for loc in between_spaces if \ 
text[loc[0]:loc[1]] not in word_list]

When we print the list between_spaces_notvalid, we get a shorter and 
more accurate list:

[(4, 16), (24, 30), (35, 45), (55, 68), (72, 78), (93, 105), (112, 119), (120, 123)]

Now that we have found the invalid potential words in our text, we’ll 
check in our word list for words that could be combined to form those 
invalid words. We can begin by looking for words that start just after a 
space. These words could be the first half of an invalid word:

partial_words = [loc for loc in locs if loc[0] in spacestarts_affine and \ 
loc[1] not in spacestarts]

Our list comprehension iterates over every element of our locs variable, 
which contains the location of every word in the text. It checks whether 
locs[0], the beginning of the word, is in spacestarts_affine, a list containing 
the characters that come just after a space. Then it checks whether loc[1] 
is not in spacestarts, which checks whether the word ends where a space 
begins. If a word starts after a space and doesn’t end at the same place as a 
space, we put it in our partial_words variable, because this could be a word 
that needs to have a space inserted after it.
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Next, let’s look for words that end with a space. These could be the sec-
ond half of an invalid word. To find them, we make some small changes to 
the previous logic:

partial_words_end = [loc for loc in locs if loc[0] not in spacestarts_affine \ 
and loc[1] in spacestarts]

Now we can start inserting spaces.

Finding First and Second Halves of Potential Words
Let’s start by inserting a space into oneperfectly. We’ll define a variable 
called loc that stores the location of oneperfectly in our text:

loc = between_spaces_notvalid[0]

We now need to check whether any of the words in partial_words could be 
the first half of oneperfectly. For a valid word to be the first half of oneperfectly, 
it would have to have the same beginning location in the text , but not the 
same ending location, as oneperfectly. We’ll write a list comprehension that 
finds the ending location of every valid word that begins at the same location 
as oneperfectly:

endsofbeginnings = [loc2[1] for loc2 in partial_words if loc2[0] == loc[0] \ 
and (loc2[1] - loc[0]) > 1]

We’ve specified loc2[0] == loc[0], which says that our valid word must 
start at the same place as oneperfectly. We’ve also specified (loc2[1]-loc[0])>1, 
which ensures that the valid word we find is more than one character long. 
This is not strictly necessary, but it can help us avoid false positives. Think of 
words like avoid, aside, along, irate, and iconic, in which the first letter could 
be considered a word on its own but probably shouldn’t be.

Our list endsofbeginnings should include the ending location of every 
valid word that begins at the same place as oneperfectly. Let’s use a list com-
prehension to create a similar variable, called beginningsofends, that will find 
the beginning location of every valid word that ends at the same place as 
oneperfectly:

beginningsofends = [loc2[0] for loc2 in partial_words_end if loc2[1] == loc[1] and \ 
(loc2[1] - loc[0]) > 1]

We’ve specified loc2[1] == loc[1], which says that our valid word must 
end at the same place as oneperfectly. We’ve also specified (loc2[1]-loc[0])>1, 
which ensures that the valid word we find is more than one character long, 
just as we did before.

We’re almost home; we just need to find whether any locations are con-
tained in both endsofbeginnings and beginningsofends. If there are, that means 
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that our invalid word is indeed a combination of two valid words without a 
space. We can use the intersection() function to find all elements that are 
shared by both lists:

pivot = list(set(endsofbeginnings).intersection(beginningsofends))

We use the list(set()) syntax again; just like before, it’s to make sure 
that our list contains only unique values, with no duplicates. We call the 
result pivot. It’s possible that pivot will contain more than one element. 
This would mean that there are more than two possible combinations of 
valid words that could compose our invalid word. If this happens, we’ll 
have to decide which combination is the one the original writer intended. 
This cannot be done with certainty. For example, consider the invalid word 
choosespain. It’s possible that this invalid word is from a travel brochure for 
Iberia (“Choose Spain!”), but it’s also possible that it’s from a description 
of a masochist (“chooses pain”). Because of the huge quantity of words in 
our language and the numerous ways they can be combined, sometimes 
we can’t be certain which is right. A more sophisticated approach would 
take into account context—whether other words around choosespain tend 
to be about olives and bullfighting or about whips and superfluous dentist 
appointments. Such an approach would be difficult to do well and impos-
sible to do perfectly, illustrating again the difficulty of language algorithms 
in general. In our case, we’ll take the smallest element of pivot, not because 
this is certainly the correct one, but just because we have to take one:

import numpy as np
pivot = np.min(pivot)

Finally, we can write one line that replaces our invalid word with the 
two valid component words plus a space:

textnew = text
textnew = textnew.replace(text[loc[0]:loc[1]],text[loc[0]:pivot]+' '+text[pivot:loc[1]])

If we print this new text, we can see that it has correctly inserted a space 
into the misspelling oneperfectly, though it hasn’t yet inserted spaces in the 
rest of the misspellings.

The one perfectly divine thing, the oneglimpse of God's paradisegiven on 
earth, is to fight a losingbattle - and notlose it.

We can put all this together into one beautiful function, shown in 
Listing 8-1. This function will use a for loop to insert spaces into every 
instance of two valid words running together to become an invalid word.

def insertspaces(text,word_list):

    locs = list(set([(m.start(),m.end()) for word in word_list for m in re.finditer(word, \ 
text)]))
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    spacestarts = [m.start() for m in re.finditer(' ', text)]
    spacestarts.append(-1)
    spacestarts.append(len(text))
    spacestarts.sort()
    spacestarts_affine = [ss + 1 for ss in spacestarts]
    spacestarts_affine.sort()
    partial_words = [loc for loc in locs if loc[0] in spacestarts_affine and loc[1] not in \ 
    spacestarts]
    partial_words_end = [loc for loc in locs if loc[0] not in spacestarts_affine and loc[1] \ 
    in spacestarts]
    between_spaces = [(spacestarts[k] + 1,spacestarts[k+1]) for k in \ 
    range(0,len(spacestarts) - 1)]
    between_spaces_notvalid = [loc for loc in between_spaces if text[loc[0]:loc[1]] not in \ 
    word_list]
    textnew = text
    for loc in between_spaces_notvalid:
        endsofbeginnings = [loc2[1] for loc2 in partial_words if loc2[0] == loc[0] and \ 
    (loc2[1] - loc[0]) > 1]
        beginningsofends = [loc2[0] for loc2 in partial_words_end if loc2[1] == loc[1] and \ 
    (loc2[1] - loc[0]) > 1]
        pivot = list(set(endsofbeginnings).intersection(beginningsofends))
        if(len(pivot) > 0):
            pivot = np.min(pivot)
            textnew = textnew.replace(text[loc[0]:loc[1]],text[loc[0]:pivot]+' \ 
            '+text[pivot:loc[1]])
    textnew = textnew.replace('  ',' ')
    return(textnew)

Listing 8-1: A function that inserts spaces into texts, combining much of the code in the chapter so far

Then we can define any text and call our function as follows:

text = "The oneperfectly divine thing, the oneglimpse of God's paradisegiven on earth, is to \ 
fight a losingbattle - and notlose it."
print(insertspaces(text,word_list))

We see the output just as we expect, with spaces inserted perfectly:

The one perfectly divine thing, the one glimpse of God's paradise given on earth, is to fight  
a losing battle - and not lose it.

We’ve created an algorithm that can correctly insert spaces into English 
text. One thing to consider is whether you can do the same for other lan-
guages. You can—as long as you read in a good, appropriate corpus for 
the language you’re working with to define the word_list, the function we 
defined and called in this example can correctly insert spaces into text in 
any language. It can even correct a text in a language you’ve never studied 
or even heard of. Try different corpuses, different languages, and different 
texts to see what kind of results you can get, and you’ll get a glimpse of the 
power of language algorithms.
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Phrase Completion
Imagine that you are doing algorithm consulting work for a startup that is 
trying to add features to a search engine they are building. They want to 
add phrase completion so that they can provide search suggestions to users. 
For example, when a user types in peanut butter and, a search suggestion fea-
ture might suggest adding the word jelly. When a user types in squash, the 
search engine could suggest both court and soup.

Building this feature is simple. We’ll start with a corpus, just like we did 
with our space checker. In this case, we’re interested not only in the indi-
vidual words of our corpus but also in how the words fit together, so we’ll 
compile lists of n-grams from our corpus. An n-gram is simply a collection 
of n words that appear together. For example, the phrase “Reality is not 
always probable, or likely” is made up of seven words once spoken by the 
great Jorge Luis Borges. A 1-gram is an individual word, so the 1-grams of 
this phrase are reality, is, not, always, probable, or, and likely. The 2-grams are 
every string of two words that appear together, including reality is, is not, not 
always, always probable, and so on. The 3-grams are reality is not, is not always, 
and so on.

Tokenizing and Getting N-grams
We’ll use a Python module called nltk to make n-gram collection easy. We’ll 
first tokenize our text. Tokenizing simply means splitting a string into its 
component words, ignoring punctuation. For example:

from nltk.tokenize import sent_tokenize, word_tokenize
text = "Time forks perpetually toward innumerable futures"
print(word_tokenize(text))

The result we see is this:

['Time', 'forks', 'perpetually', 'toward', 'innumerable', 'futures']

We can tokenize and get the n-grams from our text as follows:

import nltk
from nltk.util import ngrams
token = nltk.word_tokenize(text)
bigrams = ngrams(token,2)
trigrams = ngrams(token,3)
fourgrams = ngrams(token,4)
fivegrams = ngrams(token,5)

Alternatively, we can put all the n-grams in a list called grams:

grams = [ngrams(token,2),ngrams(token,3),ngrams(token,4),ngrams(token,5)]

In this case, we have gotten a tokenization and a list of n-grams for a 
short one-sentence text. However, in order to have an all-purpose phrase 
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completion tool, we’ll need a considerably larger corpus. The brown corpus 
we used for space insertion won’t work because it consists of single words 
and so we can’t get its n-grams.

One corpus we could use is a collection of literary texts made available 
online by Google’s Peter Norvig at http://norvig.com/big.txt. For the examples 
in this chapter, I downloaded a file of Shakespeare’s complete works, avail-
able for free online at http://www.gutenberg.org/files/100/100-0.txt, and then 
removed the Project Gutenberg boilerplate text on the top. You could also 
use the complete works of Mark Twain, available at http://www.gutenberg.org/ 
cache/epub/3200/pg3200.txt. Read a corpus into Python as follows:

import requests
file = requests.get('http://www.bradfordtuckfield.com/shakespeare.txt')
file = file.text
text = file.replace('\n', '')

Here, we used the requests module to directly read a text file containing 
the collected works of Shakespeare from a website where it’s being hosted, 
and then read it into our Python session in a variable called text.

After reading in your chosen corpus, rerun the code that created the 
grams variable. Here it is with the new definition of the text variable:

token = nltk.word_tokenize(text)
bigrams = ngrams(token,2)
trigrams = ngrams(token,3)
fourgrams = ngrams(token,4)
fivegrams = ngrams(token,5)
grams = [ngrams(token,2),ngrams(token,3),ngrams(token,4),ngrams(token,5)]

Our Strategy
Our strategy for generating search suggestions is simple. When a user types 
in a search, we check how many words are in their search. In other words, a 
user enters an n-gram and we determine what n is. When a user searches for 
an n-gram, we are helping them add to their search, so we will want to sug-
gest an n + 1-gram. We’ll search  our corpus and find all n + 1-grams whose 
first n elements match our n-gram. For example, a user might search for 
crane, a 1-gram, and our corpus might contain the 2-grams crane feather, crane 
operator, and crane neck. Each is a potential search suggestion we could offer.

We could stop there, providing every n + 1-gram whose first n elements 
matched the n + 1-gram the user had entered. However, not all suggestions 
are equally good. For example, if we are working for a custom engine that 
searches through manuals for industrial construction equipment, it’s likely 
that crane operator will be a more relevant, useful suggestion than crane 
feather. The simplest way to determine which n + 1-gram is the best sugges-
tion is to offer the one that appears most often in our corpus.

Thus, our full algorithm: a user searches for an n-gram, we find all  
n + 1-grams whose first n elements match the user’s n-gram, and we recom-
mend the matching n + 1-gram that appears most frequently in the corpus.

http://norvig.com/big.txt
http://www.gutenberg.org/files/100/100-0.txt
http://www.gutenberg.org/cache/epub/3200/pg3200.txt
http://www.gutenberg.org/cache/epub/3200/pg3200.txt
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Finding Candidate n + 1-grams
In order to find the n + 1-grams that will constitute our search suggestions, 
we need to know how long the user’s search term is. Suppose the search 
term is life is a, meaning that we’re looking for suggestions for how to 
complete the phrase “life is a . . .”. We can use the following simple lines to 
get the length of our search term:

from nltk.tokenize import sent_tokenize, word_tokenize
search_term = 'life is a'
split_term = tuple(search_term.split(' '))
search_term_length = len(search_term.split(' '))

Now that we know the length of the search term, we know n—it’s 3. 
Remember that we’ll be returning the most frequent n + 1-grams (4-grams) 
to the user. So we need to take into account the different frequencies of dif-
ferent n + 1-grams. We’ll use a function called Counter(), which will count 
the number of occurrences of each n + 1-gram in our collection.

from collections import Counter
counted_grams = Counter(grams[search_term_length - 1])

This line has selected only the n + 1-grams from our grams variable. 
Applying the Counter() function creates a list of tuples. Each tuple has an n 
+ 1-gram as its first element and the frequency of that n + 1-gram in our cor-
pus as its second element. For example, we can print the first element  
of counted_grams:

print(list(counted_grams.items())[0])

The output shows us the first n + 1-gram in our corpus and tells us that 
it appears only once in the entire corpus:

(('From', 'fairest', 'creatures', 'we'), 1)

This n-gram is the beginning of Shakespeare’s Sonnet 1. It’s fun to look 
at some of the interesting 4-grams we can randomly find in Shakespeare’s 
works. For example, if you run print(list(counted_grams)[10]), you can see 
that the 10th 4-gram in Shakespeare’s works is “rose might never die.” If you 
run print(list(counted_grams)[240000]), you can see that the 240,000th n-gram 
is “I shall command all.” The 323,002nd is “far more glorious star” and the 
328,004th is “crack my arms asunder.” But we want to do phrase completion, 
not just n + 1-gram browsing. We need to find the subset of n + 1-grams whose 
first n elements match our search term. We can do that as follows:

matching_terms = [element for element in list(counted_grams.items()) if \ 
element[0][:-1] == tuple(split_term)]

This list comprehension iterates over every n + 1-gram and calls 
each element as it does so. For each element, it checks whether element[0]
[:-1]==tuple(split_term). The left side of this equality, element[0][:-1], 
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simply takes the first n elements of each n + 1-gram: the [:-1] is a handy 
way to disregard the last element of a list. The right side of the equal-
ity, tuple(split_term), is the n-gram we’re searching for (“life is a”). So 
we’re checking for n + 1-grams whose first n elements are the same as our 
n-gram of interest. Whichever terms match are stored in our final output, 
called matching_terms.

Selecting a Phrase Based on Frequency
Our matching_terms list has everything we need to finish the job; it consists of 
n + 1-grams whose first n elements match the search term, and it includes 
their frequencies in our corpus. As long as there is at least one element 
in the matching terms list, we can find the element that occurs most fre-
quently in the corpus and suggest it to the user as the completed phrase. 
The following snippet gets the job done:

if(len(matching_terms)>0):
    frequencies = [item[1] for item in matching_terms]
    maximum_frequency = np.max(frequencies)
    highest_frequency_term = [item[0] for item in matching_terms if item[1] == \ 
maximum_frequency][0]
    combined_term = ' '.join(highest_frequency_term)

In this snippet, we started by defining frequencies, a list containing the 
frequency of every n + 1-gram in our corpus that matches the search term. 
Then, we used the numpy module’s max() function to find the highest of those 
frequencies. We used another list comprehension to get the first n + 1-gram 
that occurs with the highest frequency in the corpus, and finally we created 
a combined_term, a string that puts together all of the words in that search 
term, with spaces separating the words.

Finally, we can put all of our code together in a function, shown in 
Listing 8-2.

def search_suggestion(search_term, text):
    token = nltk.word_tokenize(text)
    bigrams = ngrams(token,2)
    trigrams = ngrams(token,3)
    fourgrams = ngrams(token,4)
    fivegrams = ngrams(token,5)
    grams = [ngrams(token,2),ngrams(token,3),ngrams(token,4),ngrams(token,5)]
    split_term = tuple(search_term.split(' '))
    search_term_length = len(search_term.split(' '))
    counted_grams = Counter(grams[search_term_length-1])
    combined_term = 'No suggested searches'    
    matching_terms = [element for element in list(counted_grams.items()) if \ 
element[0][:-1] == tuple(split_term)]
    if(len(matching_terms) > 0):
        frequencies = [item[1] for item in matching_terms]
        maximum_frequency = np.max(frequencies)
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        highest_frequency_term = [item[0] for item in matching_terms if item[1] == \ 
maximum_frequency][0]
        combined_term = ' '.join(highest_frequency_term)
    return(combined_term)

Listing 8-2: A function that provides search suggestions by taking an n-gram and returning the most likely  
n + 1-gram that starts with the input n-gram

When we call our function, we pass an n-gram as the argument, and 
the function returns an n + 1-gram. We call it as follows:

file = requests.get('http://www.bradfordtuckfield.com/shakespeare.txt')
file = file=file.text
text = file.replace('\n', '')
print(search_suggestion('life is a', text))

And you can see that the suggestion is life is a tedious, which is the 
most common 4-gram that Shakespeare used that started with the words 
life is a (tied with two other 4-grams). Shakespeare used this 4-gram only 
once, in Cymbeline, when Imogen says, “I see a man’s life is a tedious one.” 
In King Lear, Edgar tells Gloucester “Thy life is a miracle” (or “Thy life’s a 
miracle,” depending on which text you use), so that 4-gram would also be a 
valid completion of our phrase.

We can have some fun by trying a different corpus and seeing how the 
results differ. Let’s use the corpus of Mark Twain’s collected works:

file = requests.get('http://www.bradfordtuckfield.com/marktwain.txt')
file = file=file.text
text = file.replace('\n', '')

With this new corpus, we can check for search suggestions again:

print(search_suggestion('life is a',text))

In this case, the completed phrase is life is a failure, indicating a 
difference between the two text corpuses, and maybe also a difference 
between the style and attitude of Shakespeare and those of Mark Twain. 
You can also try other search terms. For example, I love is completed by 
you if we use Mark Twain’s corpus, and thee if we use Shakespeare’s corpus, 
showing a difference in style across the centuries and ocean, if not a dif-
ference in ideas. Try another corpus and some other phrases and see how 
your phrases get completed. If you use a corpus written in another lan-
guage, you can do phrase completion for languages you don’t even speak 
using the exact function we just wrote.

Summary
In this chapter, we discussed algorithms that can be used to work with 
human language. We started with a space insertion algorithm that can cor-
rect incorrectly scanned texts, and we continued with a phrase completion 
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algorithm that can add words to input phrases to match the content and 
style of a text corpus. The approaches we took to these algorithms are simi-
lar to the approaches that work for other types of language algorithms, 
including spell checkers and intent parsers.

In the next chapter, we’ll explore machine learning, a powerful and 
growing field that every good algorithm-smith should be familiar with. 
We’ll focus on a machine learning algorithm called decision trees, which are 
simple, flexible, accurate, and interpretable models that can take you far on 
your journey through algorithms and life.



Now that you understand the ideas behind 
many fundamental algorithms, we can turn 

to more advanced ideas. In this chapter, we 
explore machine learning. Machine learning refers 

to a broad range of methods, but they all share the 
same goal: finding patterns in data and using them to 
make predictions. We’ll discuss a method called deci-
sion trees and then build one that can predict a person’s 
level of happiness based on some of their personal 
characteristics.

Decision Trees
Decision trees are diagrams that have a branching structure resembling 
a tree. We can use decision trees in the same way we use flowcharts—by 
answering yes/no questions, we are guided along a path that leads to a 

9
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final decision, prediction, or recommendation. The process of creating a 
decision tree that leads to optimal decisions is a paradigmatic example of a 
machine learning algorithm.

Let’s consider a real-world scenario in which we might use decision 
trees. In emergency rooms, an important decision-maker must perform tri-
age for every newly admitted patient. Triage simply means assigning priority: 
someone who is minutes from death but can be saved by a timely operation 
will be admitted to treatment immediately, whereas someone who has a 
paper cut or a mild case of sniffles will be asked to wait until more urgent 
cases can be cleared up.

Triage is difficult because you have to make a reasonably accurate diag-
nosis with very little information or time. If a 50-year-old woman comes to 
the emergency room and complains of bad chest pain, the person in charge 
of triage has to decide whether her pain is more likely to be heartburn or a 
heart attack. The thought process of a person who makes triage decisions is 
necessarily complex. They’ll take into account a number of factors: the age 
and sex of the patient, whether they are obese or a smoker, the symptoms 
they report and the way they talk about them, the expression on their face, 
how busy the hospital is and what other patients are waiting for treatment, 
and factors that they may not even be consciously aware of. In order to 
become good at triage, a person has to learn many patterns.

Understanding the way a triage professional makes a decision is not 
easy. Figure 9-1 shows a hypothetical, totally made-up triage decision pro-
cess (not meant as medical advice—don’t try this at home!).

Patient complains of chest pain

Patient is male Patient is female

Not obese Obese
=

High risk

Smoker
=

High risk

Not a smoker

Not diabetic
=

Low risk

Diabetic
=

High risk

Younger than 45
=

Low risk

Older than 45
=

High risk

Figure 9-1: A simplified decision tree for heart attack triage

You can read this diagram from top to bottom. At the top, we can 
see that the heart-attack diagnosis process begins with a patient report-
ing chest pain. After that, the process branches out depending on the sex 
of the patient. If the patient is a man, the diagnosis process continues in 
the left branch and we determine whether he is obese. If the patient is a 
woman, the process continues in the right branch instead, and we deter-
mine whether she is a smoker. At each point in the process, we follow the 
appropriate branch until we reach the bottom of the tree, where we find 
the tree’s classification of whether the patient is at high risk or low risk 
for a heart attack. This binary branching process resembles a tree whose 
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trunk branches into smaller offshoots until reaching the ends of the far-
thest branches. Accordingly, the decision process illustrated in Figure 9-1 is 
called a decision tree.

Every place you see text in Figure 9-1 is a node of the decision tree. A 
node like “Not obese” is known as a branching node because there’s at least 
one more branch to follow before we’re able to make a prediction. The “Not 
diabetic = Low risk” node is a terminal node because if we’ve arrived there, we 
don’t need to branch anymore and we know the decision tree’s final classifi-
cation (“Low risk”).

If we could design a thorough, well-researched decision tree that always 
led to good triage decisions, it’s possible that someone without medical train-
ing could perform triage of heart attack patients, which would save every 
emergency room in the world plenty of money because they would no longer 
need to hire and train judicious, highly educated triage professionals. A suffi-
ciently good decision tree could even make it possible to replace human triage 
professionals with robots, though whether that’s a good goal is debatable. A 
good decision tree may even lead to better decisions than the average human 
would make, since it could potentially eliminate the unconscious biases that 
we fallible humans possess. (And in fact, this has already happened: in 1996 
and 2002, separate teams of researchers published papers about their success 
improving triage results for patients complaining of chest pain by using deci-
sion trees.)

The branching decision steps described in a decision tree constitute  
an algorithm. Executing such an algorithm is very simple: just decide which 
of the two branches you should be on at every node, and follow the branches 
to the end. But don’t obey the suggestions of every decision tree you encoun-
ter. Remember that anyone can make a decision tree that prescribes any  
conceivable decision process, even if it leads to wrong decisions. The hard  
part of decision trees is not executing the decision tree algorithm but design-
ing the decision tree so that it leads to the best possible decisions. Creating  
an optimal decision tree is an application of machine learning, though  
merely following a decision tree is not. Let’s discuss the algorithm that creates 
an optimal decision tree—an algorithm to generate an algorithm—and  
proceed through the steps of the process to generate an accurate decision 
tree.

Building a Decision Tree
Let’s build a decision tree that uses information about a person to predict 
how happy they are. Finding the secret of happiness has preoccupied millions 
of people for millennia, and social science researchers today spill plenty of 
ink (and burn through plenty of research grants) pursuing the answers. If 
we had a decision tree that could use a few pieces of information and reliably 
predict how happy a person is, it would give us important clues about what 
determines a person’s happiness, and maybe even some ideas about how to 
achieve it ourselves. By the end of this chapter, you’ll know how to build such 
a decision tree.
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Downloading Our Dataset
Machine learning algorithms find useful patterns in data, so they require  
a good dataset. We’ll use data from the European Social Survey (ESS)  
for our decision tree. You can download the files we’ll use from http://
bradfordtuckfield.com/ess.csv and http://bradfordtuckfield.com/variables.csv. (We 
got our files originally from https://www.kaggle.com/pascalbliem/european 
-social-survey-ess-8-ed21-201617, where they’re publicly available for free). 
The ESS is a large-scale survey of adults across Europe that is conducted 
every two years. It asks a wide variety of personal questions, including 
religious affiliation, health status, social life, and level of happiness. The 
files we’ll look at are stored in CSV format. The file extension .csv is short 
for comma-separated values, and it’s a very common and simple way to store 
datasets so that they can be opened by Microsoft Excel, LibreOffice Calc, 
text editors, and some Python modules.

The file variables.csv contains a detailed description of each question 
recorded in the survey. For example, in line 103 of variables.csv, we can see a 
description of a variable called happy. This variable records a survey-taker’s 
answer to the question “Taking all things together, how happy would you 
say you are?” The answers to this question range from 1 (not happy at all) 
to 10 (extremely happy). Look at the other variables in variables.csv to see 
the variety of information available to us. For example, the variable sclmeet 
records how often respondents meet socially with friends, relatives, or  
colleagues. The variable health records subjective general health. The  
variable rlgdgr records a subjective rating of how religious respondents  
are, and so on.

After seeing our data, we can start to think of hypotheses related to 
happiness predictions. We might reasonably suppose that people who 
have active social lives and good health are happier than others. Other 
variables—like gender, household size, and age—may be less easy to 
hypothesize about.

Looking at the Data
Let’s start by reading in the data. Download the data from the link and save 
it locally as ess.csv. Then we can use the pandas module to work with it, stor-
ing it in our Python session in a variable called ess:

import pandas as pd
ess = pd.read_csv('ess.csv')

Remember, in order to read the CSV file, you’ll have to be storing it 
in the same place as you’re running Python from, or you’ll have to change 
'ess.csv' in the previous snippet to reflect the exact filepath where you’re 
storing the CSV file. We can use the shape attribute of a pandas dataframe to 
see how many rows and columns are in our data:

print(ess.shape)

http://bradfordtuckfield.com/ess.csv
http://bradfordtuckfield.com/ess.csv
http://bradfordtuckfield.com/variables.csv
https://www.kaggle.com/pascalbliem/european-social-survey-ess-8-ed21-201617
https://www.kaggle.com/pascalbliem/european-social-survey-ess-8-ed21-201617
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The output should be (44387, 534), indicating that our dataset has 
44,387 rows (one for each respondent) and 534 columns (one for each 
question in the survey). We can look more closely at some of the columns 
that interest us by using the pandas module’s slicing functions. For example, 
here’s how we look at the first five answers to the “happy” question:

print(ess.loc[:,'happy'].head())

Our dataset, ess, has 534 columns, one for each question in the sur-
vey. For some purposes, we may want to work with all 534 columns at once. 
Here, we want to look only at the happy column, not the other 533. That’s 
why we used the loc() function. Here, the loc() function has sliced the vari-
able called happy from the pandas dataframe. In other words, it takes out only 
that column and ignores the other 533. Then, the head() function shows us 
the first five rows of that column. You can see that the first five responses 
are 5, 5, 8, 8, and 5. We can do the same with the sclmeet variable:

print(ess.loc[:,'sclmeet'].head())

The result should be 6, 4, 4, 4, and 6. The happy responses and the sclmeet 
responses will line up in order. For example, the 134th element of sclmeet 
is a response given by the same person who gave the response in the 134th 
element of happy.

The ESS staff strives to get a complete set of responses from every survey 
participant. However, there are some cases where responses to some survey 
questions are missing, sometimes because a participant either refuses to 
answer or doesn’t know how to answer. Missing responses in the ESS dataset  
are assigned codes that are much higher than the possible range of real 
responses. For example, on a question that asks a respondent to choose 
a number on a scale from 1 to 10, the ESS records a 77 response if the 
respondent refuses to answer. For our analysis, we’ll consider only responses 
that are complete, with no missing values for variables that interest us. We 
can restrict the ess data so that it contains only full responses for the variables 
we care about as follows:

ess = ess.loc[ess['sclmeet'] <= 10,:].copy()
ess = ess.loc[ess['rlgdgr'] <= 10,:].copy()
ess = ess.loc[ess['hhmmb'] <= 50,:].copy()
ess = ess.loc[ess['netusoft'] <= 5,:].copy()
ess = ess.loc[ess['agea'] <= 200,:].copy()
ess = ess.loc[ess['health'] <= 5,:].copy()
ess = ess.loc[ess['happy'] <= 10,:].copy()
ess = ess.loc[ess['eduyrs'] <= 100,:].copy().reset_index(drop=True)

Splitting Our Data
There are many ways we could use this data to explore the relationship 
between someone’s social life and their happiness. One of the simplest 



170   Chapter 9

approaches is a binary split: we compare the happiness levels of people 
with highly active social lives to those of people with less active social lives 
(Listing 9-1).

import numpy as np
social = list(ess.loc[:,'sclmeet'])
happy = list(ess.loc[:,'happy'])
low_social_happiness = [hap for soc,hap in zip(social,happy) if soc <= 5]
high_social_happiness = [hap for soc,hap in zip(social,happy) if soc > 5]
            
meanlower = np.mean(low_social_happiness)
meanhigher = np.mean(high_social_happiness)

Listing 9-1: Calculating the mean happiness levels of people with inactive and active 
social lives

In Listing 9-1, we imported the numpy module in order to calculate means. 
We defined two new variables, social and happy, by slicing them from the ess 
dataframe. Then, we used list comprehensions to find the happiness levels of 
all people with lower ratings of social activity (which we saved in the variable 
low_social_happiness) and the happiness levels of all people with higher ratings 
of social activity (which we saved in the variable high_social_happiness). Finally, 
we calculated the mean happiness rating of unsocial people (meanlower) and 
the mean happiness rating of highly social people (meanhigher). If you run 
print(meanlower) and print(meanhigher), you should see that people who rated 
themselves as highly social also rated themselves as slightly happier than their 
less socially active peers: about 7.8 was the mean happiness level reported by 
the socially active, and about 7.2 was the mean happiness level for the socially 
inactive.

We can draw a simple diagram of what we just did, as in Figure 9-2.

All survey respondents

sclmeet <= 5 sclmeet > 5

Mean happiness: 7.2 Mean happiness: 7.8

Figure 9-2: A simple decision tree predicting happiness  
based on frequency of social outings

This diagram of our simple binary split has already started to resemble 
a decision tree. This is not a coincidence: making a binary split in a dataset 
and comparing outcomes in each half is exactly the process at the heart of 
the decision tree generation algorithm. In fact, Figure 9-2 can rightfully 
be called a decision tree, albeit one that has only one branching node. We 
can use Figure 9-2 as a very simple predictor of happiness: we find out how 
often someone goes out socially. If their sclmeet value is 5 or less, then we 
can predict that their happiness is 7.2. If it is higher than 5, then we can 
predict that their happiness is 7.8. It will not be a perfect prediction, but it’s 
a start and it’s more accurate than random guessing.
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We can try to use our decision tree to draw conclusions about the impact 
of various characteristics and lifestyle choices. For example, we see that the 
difference between low social happiness and high social happiness is about 
0.6, and we conclude that increasing one’s level of social activity from low to 
high could lead to a predicted increase in happiness of about 0.6 on a 10-point 
scale. Of course, trying to draw these sorts of conclusions is fraught with diffi-
culties. It could be that social activity does not cause happiness, but rather that 
happiness causes social activity; maybe happy people are more often in the 
jovial mood that leads to ccalling their friends and arranging social meetings. 
Disentangling correlation from causation is beyond the scope of this chapter, 
but regardless of the direction of causation, our simple decision tree has at 
least given us the fact of the association, which we can investigate further if we 
care to. As cartoonist Randall Munroe put it, “Correlation doesn’t imply cau-
sation, but it does waggle its eyebrows suggestively and gesture furtively while 
mouthing ‘look over there.’”

We know how to make a simple decision tree with two branches. Now 
we just need to perfect how we create branches and then make many of 
them for a better, more complete decision tree.

Smarter Splitting
When we compared the happiness levels of people with active versus inac-
tive social lives, we used 5 as our split point, saying that those who were rated 
higher than 5 had an active social life and those who were rated at 5 or 
below had an inactive social life. We chose 5 because it is a natural middle 
point for ratings that go from 1 to 10. However, remember that our goal is 
to build an accurate predictor of happiness. Rather than splitting based 
on intuitions about what a natural midpoint is or what seems like an active 
social life, it would be best to make our binary split in some place that leads 
to the best possible accuracy.

In machine learning problems, there are a few different ways to mea-
sure accuracy. The most natural way is to find the sum of our errors. In our 
case, the error that interests us is the difference between our prediction 
of someone’s happiness rating and their actual happiness rating. If our 
decision tree predicts that your happiness is 6 but it’s actually 8, then that 
tree’s error for your rating is 2. If we add up the prediction errors for every 
respondent in some group, we can get an error sum that measures the deci-
sion tree’s accuracy for predicting the happiness of members of that group. 
The closer we can get our error sum to zero, the better our tree is (but 
please see "The Problem of Overfitting" on page 179 for important cave-
ats). This snippet shows a simple way to find the error sum:

lowererrors = [abs(lowhappy - meanlower) for lowhappy in low_social_happiness]
highererrors = [abs(highhappy - meanhigher) for highhappy in high_social_happiness]

total_error = sum(lowererrors) + sum(highererrors)

This code takes the sum of all prediction errors for all respondents. It 
defines lowererrors, a list containing the prediction error for each less social 
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respondent, and highererrors, a list containing the prediction error for each 
more social respondent. Notice that we took the absolute value so that we’re 
adding only non-negative numbers to calculate the error sum. When we 
run this code, we find that our total error is about 60224. This number is 
much higher than zero, but if you consider that this is a sum of errors for 
more than 40,000 respondents whose happiness we predicted using a tree 
with only two branches, suddenly it doesn’t seem so bad.

We can try different split points to see if our error improves. For exam-
ple, we can classify everyone with a social rating higher than 4 as high social 
and everyone with a social rating of 4 or lower as low social, and compare 
the resulting error rates. Or we could use 6 as our split point instead. In 
order to get the highest possible accuracy, we should check every possible 
split point in order, and choose the split point that leads to the lowest pos-
sible error. Listing 9-2 contains a function that accomplishes this.

def get_splitpoint(allvalues,predictedvalues):
    lowest_error = float('inf')
    best_split = None
    best_lowermean = np.mean(predictedvalues)
    best_highermean = np.mean(predictedvalues)
    for pctl in range(0,100):
        split_candidate = np.percentile(allvalues, pctl)
        
        loweroutcomes = [outcome for value,outcome in zip(allvalues,predictedvalues) if \ 
value <= split_candidate]
        higheroutcomes = [outcome for value,outcome in zip(allvalues,predictedvalues) if \ 
value > split_candidate]
        
        if np.min([len(loweroutcomes),len(higheroutcomes)]) > 0:
            meanlower = np.mean(loweroutcomes)
            meanhigher = np.mean(higheroutcomes)
            
            lowererrors = [abs(outcome - meanlower) for outcome in loweroutcomes]
            highererrors = [abs(outcome - meanhigher) for outcome in higheroutcomes]
            
            total_error = sum(lowererrors) + sum(highererrors)
            
            if total_error < lowest_error:
                best_split = split_candidate
                lowest_error = total_error
                best_lowermean = meanlower
                best_highermean = meanhigher
    return(best_split,lowest_error,best_lowermean,best_highermean)

Listing 9-2: A function that finds the best point at which to split a variable for a branch point of a decision tree

In this function, we use a variable called pctl (short for percentile) to 
loop through every number from 0 to 100. In the first line of the loop, we 
define a new split_candidate variable, which is the pctl-th percentile of the 
data. After that, we go through the same process we used in Listing 9-2. 
We create a list of the happiness levels of people whose sclmeet values are 
less than or equal to the split candidate, and the happiness levels of people 
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whose sclmeet values are greater than the split candidate, and we check the 
errors that come from using that split candidate. If the error sum from 
using that split candidate is smaller than any of the error sums from using 
any previous split candidate, then we redefine the best_split variable to be 
equal to split_candidate. After the loop completes, the best_split variable  
is equal to the split point that led to the highest accuracy.

We can run this function for any variable, as in the following example 
where we run it for hhmmb, the variable recording the respondent’s number 
of household members.

allvalues = list(ess.loc[:,'hhmmb'])
predictedvalues = list(ess.loc[:,'happy'])
print(get_splitpoint(allvalues,predictedvalues))

The output here shows us the correct split point as well as the predicted 
happiness level for the groups defined by that split point:

(1.0, 60860.029867951016, 6.839403436723225, 7.620055170794695)

We interpret this output to mean that the best place to split the hhmmb 
variable is at 1.0; we split the survey respondents into people who live alone 
(one household member) and those who live with others (more than one 
household member). We can also see the average happiness levels for those 
two groups: about 6.84 and about 7.62, respectively.

Choosing Splitting Variables
For any variable we choose in our data, we can find the optimal place to 
put our split point. However, remember that in a decision tree like the one 
in Figure 9-1, we are not finding split points for only one variable. We split 
men from women, the obese from the non-obese, smokers from nonsmok-
ers, and so on. A natural question is, how we should know which variable to 
split at each branching node? We could reorder the nodes in Figure 9-1 so 
that we split by weight first and sex second, or sex only on the left branch or 
not at all. Deciding which variable to split at each branch point is a crucial 
part of generating an optimal decision tree, so we should write code for 
that part of the process.

We’ll use the same principle we used to get optimal split points to 
decide the best split variable: the best way to split is the one that leads to 
the smallest error. In order to determine that, we need to iterate over each 
available variable and check whether splitting on that variable leads to the 
smallest error. We then determine which variable leads to the split with the 
lowest error. We can accomplish this by using Listing 9-3.

def getsplit(data,variables,outcome_variable):
    best_var = ''
    lowest_error = float('inf')
    best_split = None
    predictedvalues = list(data.loc[:,outcome_variable])
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    best_lowermean = -1
    best_highermean = -1
    for var in variables:
        allvalues = list(data.loc[:,var])
        splitted = get_splitpoint(allvalues,predictedvalues)
        
        if(splitted[1] < lowest_error):
            best_split = splitted[0]
            lowest_error = splitted[1]
            best_var = var
            best_lowermean = splitted[2]
            best_highermean = splitted[3]          
    
    generated_tree = [[best_var,float('-inf'),best_split,best_lowermean],[best_var,best_split,\ 
    float('inf'),best_highermean]]
    
    return(generated_tree)

Listing 9-3: A function that iterates over every variable and finds the best variable to split on

In Listing 9-3, we’ve defined a function with a for loop that iterates over 
all the variables in a list of variables. For each of those variables, it finds the 
best split point by calling the get_splitpoint() function. Each variable, split 
at its best split point, will lead to a certain error sum for our predictions. If 
a particular variable has a lower error sum than any previous variable we 
considered, we’ll store that variable name as best_var. After looping through 
every variable name, it has found the variable with the lowest error sum, 
stored in best_var. We can run this code on a set of variables other than  
sclmeet as follows:

variables = ['rlgdgr','hhmmb','netusoft','agea','eduyrs']
outcome_variable = 'happy'
print(getsplit(ess,variables,outcome_variable))

In this case, we see the following output:

[['netusoft', -inf, 4.0, 7.041597337770383], ['netusoft', 4.0, inf, 
7.73042471042471]]

Our getsplit() function has output a very simple “tree” in the form of a 
nested list. This tree has only two branches. The first branch is represented 
by the first nested list, and the second branch is represented by the second 
nested list. Each element of both nested lists tells us something about their 
respective branches. The first list tells us that we’re looking at a branch 
based on a respondent’s value of netusoft (frequency of internet usage). 
Specifically, the first branch corresponds to people whose value of netusoft 
is between  -inf and 4.0, where inf stands for infinity. In other words, people 
in this branch report their internet usage as 4 or less on a 5-point scale. The 
last element of each list shows an estimated happiness rating: about 7.0 for 
those who are not highly active internet users. We can draw a plot of this 
simple tree in Figure 9-3.
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All survey respondents

netusoft <= 4 netusoft > 4

Mean happiness: 7.0 Mean happiness: 7.7

Figure 9-3: The tree generated by our first call to the getsplit() function

Our function so far is telling us that people with relatively low internet 
use report themselves as feeling less happy, with a mean happiness rating 
of about 7.0, whereas people who report the highest level of internet use 
report happiness levels at about 7.7 on average. Again, we need to be care-
ful about how we draw conclusions from this single fact: internet use may 
not be a true driver of happiness, but it may instead be correlated to happi-
ness levels because of its strong correlations with age, wealth, health, edu-
cation, and other characteristics. Machine learning alone doesn’t usually 
allow us to determine complex causal links with certainty, but, as it has with 
the simple tree in Figure 9-3, it enables us to make accurate predictions.

Adding Depth
We’ve completed everything we need to make the best possible split at each 
branch point and generate a tree with two branches. Next, we need to grow 
the tree beyond just one branching node and two terminal nodes. Look at 
Figure 9-1 and notice that it has more than two branches. It has what we 
call a depth of three because there are up to three successive branches you 
have to follow in order to get the final diagnosis. The final step of our deci-
sion tree generation process is to specify a depth that we want to reach, and 
build new branches until we reach that depth. The way we accomplish this 
is by making the additions to our getsplit() function shown in Listing 9-4.

maxdepth = 3
def getsplit(depth,data,variables,outcome_variable):
    --snip--
    generated_tree = [[best_var,float('-inf'),best_split,[]],[best_var,\ 
best_split,float('inf'),[]]]
    
    if depth < maxdepth:
        splitdata1=data.loc[data[best_var] <= best_split,:]
        splitdata2=data.loc[data[best_var] > best_split,:]
        if len(splitdata1.index) > 10 and len(splitdata2.index) > 10:
            generated_tree[0][3] = getsplit(depth + 1,splitdata1,variables,outcome_variable)
            generated_tree[1][3] = getsplit(depth + 1,splitdata2,variables,outcome_variable)
        else:
            depth = maxdepth + 1
            generated_tree[0][3] = best_lowermean
            generated_tree[1][3] = best_highermean
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    else:
        generated_tree[0][3] = best_lowermean
        generated_tree[1][3] = best_highermean
    return(generated_tree)

Listing 9-4: A function that can generate a tree of a specified depth

In this updated function, when we define the generated_tree variable, 
we now add empty lists to it, instead of means. We insert means only in ter-
minal nodes, but if we want a tree that has greater depth, we need to insert 
other branches within each branch (that’s what the empty lists will contain). 
We also added an if statement with a long chunk of code at the end of the 
function. If the depth of the current branch is less than the maximum 
depth we want in a tree, this section will recursively call the get_split() 
function again to fill in another branch inside it. This process continues 
until the maximum depth is reached.

We can run this code to find the decision tree that leads to the lowest 
error in happiness predictions for our dataset:

variables = ['rlgdgr','hhmmb','netusoft','agea','eduyrs']
outcome_variable = 'happy'
maxdepth = 2
print(getsplit(0,ess,variables,outcome_variable))

When we do so, we should get the following output, which represents a 
tree with a depth of two:

[['netusoft', -inf, 4.0, [['hhmmb', -inf, 4.0, [['agea', -inf, 15.0, 8.035714285714286], 
['agea', 15.0, inf, 6.997666564322997]]], ['hhmmb', 4.0, inf, [['eduyrs', -inf, 11.0, 
7.263969171483622], ['eduyrs', 11.0, inf, 8.0]]]]], ['netusoft', 4.0, inf, [['hhmmb', -inf, 
1.0, [['agea', -inf, 66.0, 7.135361428970136], ['agea', 66.0, inf, 7.621993127147766]]], 
['hhmmb', 1.0, inf, [['rlgdgr', -inf, 5.0, 7.743893678160919], ['rlgdgr', 5.0, inf, 
7.9873320537428025]]]]]]

Listing 9-5. A representation of a decision tree using nested lists

What you see here is a collection of lists nested within each other. These 
nested lists represent our full decision tree, though it’s not as easy to read as 
Figure 9-1. In each level of nesting, we find a variable name and its range, 
just like we saw with the simple tree illustrated in Figure 9-3. The first level 
of nesting shows us the same branch we found in Figure 9-3: a branch that 
represents respondents whose value of netusoft was less than or equal to  
4.0. The next list, nested within the first, begins with hhmmb, -inf, 4.0. This 
is another branch of our decision tree that branches from the branch we just 
examined, and consists of people whose self-reported household size is 4 
or less. If we drew the portion of a decision tree that we’ve looked at in our 
nested list so far, it would look like Figure 9-4.

We can continue to look at the nested lists to fill in more branches 
of our decision tree. Lists that are nested within other lists correspond to 
branches that are lower on the tree. A nested list branches from the list that 
contains it. The terminal nodes, instead of containing more nested lists, 
have an estimated happiness score.
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All survey respondents

Internet usage <= 4

Household members <= 4

Figure 9-4: A selection of branches from the decision tree

We’ve successfully created a decision tree that enables us to predict hap-
piness levels with relatively low error. You can examine the output to see the 
relative determinants of happiness, and the happiness levels associated with 
each branch.

There is more exploring we can do with decision trees and our dataset. 
For example, we can try to run the same code but with a different or larger set 
of variables. We can also create a tree with a different maximum depth. Here 
is an example of running the code with a different variable list and depth:

variables = ['sclmeet','rlgdgr','hhmmb','netusoft','agea','eduyrs','health']
outcome_variable = 'happy'
maxdepth = 3
print(getsplit(0,ess,variables,outcome_variable))

When we run it with these parameters, we find a very different decision 
tree. You can see the output here:

[['health', -inf, 2.0, [['sclmeet', -inf, 4.0, [['health', -inf, 1.0, [['rlgdgr', -inf, 
9.0, 7.9919636617749825], ['rlgdgr', 9.0, inf, 8.713414634146341]]], ['health', 1.0, inf, 
[['netusoft', -inf, 4.0, 7.195121951219512], ['netusoft', 4.0, inf, 7.565659008464329]]]]], 
['sclmeet', 4.0, inf, [['eduyrs', -inf, 25.0, [['eduyrs', -inf, 8.0, 7.9411764705882355], 
['eduyrs', 8.0, inf, 7.999169779991698]]], ['eduyrs', 25.0, inf, [['hhmmb', -inf, 1.0, 
7.297872340425532], ['hhmmb', 1.0, inf, 7.9603174603174605]]]]]]], ['health', 2.0, inf, 
[['sclmeet', -inf, 3.0, [['health', -inf, 3.0, [['sclmeet', -inf, 2.0, 6.049427365883062], 
['sclmeet', 2.0, inf, 6.70435393258427]]], ['health', 3.0, inf, [['sclmeet', -inf, 1.0, 
4.135036496350365], ['sclmeet', 1.0, inf, 5.407051282051282]]]]], ['sclmeet', 3.0, inf, 
[['health', -inf, 4.0, [['rlgdgr', -inf, 9.0, 6.992227707173616], ['rlgdgr', 9.0, inf, 
7.434662998624484]]], ['health', 4.0, inf, [['hhmmb', -inf, 1.0, 4.948717948717949], ['hhmmb', 
1.0, inf, 6.132075471698113]]]]]]]]

In particular, notice that the first branch is split on the variable health 
instead of the variable netusoft. Other branches at lower depths are split 
at different points and for different variables. The flexibility of the deci-
sion tree method means that starting with the same dataset and the same 
end goal, two researchers can potentially reach very different conclusions, 
depending on the parameters they use and decisions they make about how 
to work with the data. This is a common characteristic of machine learning 
methods, and part of what makes them so difficult to master.
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Evaluating Our Decision Tree
In order to generate our decision tree, we compared error rates for each 
potential split point and each potential splitting variable, and we always 
chose the variable and split point that led to the lowest error rate for a 
particular branch. Now that we’ve successfully generated a decision tree, it 
makes sense to do similar error calculations, not just for a particular branch 
but for the whole tree. Evaluating the error rate for the whole tree can give 
us a sense of how well we’ve accomplished our prediction task, and how 
well we’re likely to perform on future tasks (for example, future hospital 
patients complaining of chest pain).

If you look at the decision tree output that we’ve generated so far, you’ll 
notice that it’s a little hard to read all the nested lists, and there’s no natural 
way to determine how happy we predict someone is without painstakingly 
reading through the nested branches and finding the right terminal node. 
It will be helpful for us to write code that can determine the predicted level 
of happiness for a person based on what we know about them from their ESS 
answers. The following function, get_prediction(), can accomplish this for us:

def get_prediction(observation,tree):
    j = 0
    keepgoing = True
    prediction = - 1
    while(keepgoing):
        j = j + 1
        variable_tocheck = tree[0][0]
        bound1 = tree[0][1]
        bound2 = tree[0][2]
        bound3 = tree[1][2]
        if observation.loc[variable_tocheck] < bound2:
            tree = tree[0][3]
        else:
            tree = tree[1][3]
        if isinstance(tree,float):
            keepgoing = False
            prediction = tree
    return(prediction)

Next, we can create a loop that goes through any portion of our dataset 
and gets any tree’s happiness prediction for that portion. In this case, let’s 
try a tree with a maximum depth of four:

predictions=[]
outcome_variable = 'happy'
maxdepth = 4
thetree = getsplit(0,ess,variables,outcome_variable)
for k in range(0,30):
    observation = ess.loc[k,:]
    predictions.append(get_prediction(observation,thetree))

print(predictions)
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This code just repeatedly calls the get_prediction() function and appends 
the result to our predictions list. In this case, we made predictions only for the 
first 30 observations. 

Finally, we can check how these predictions compare to the actual hap-
piness ratings, to see what our total error rate is. Here, we’ll make predic-
tions for our entire dataset, and calculate the absolute differences between 
our predictions and the recorded happiness values:

predictions = []

for k in range(0,len(ess.index)):
    observation = ess.loc[k,:]
    predictions.append(get_prediction(observation,thetree))

ess.loc[:,'predicted'] = predictions
errors = abs(ess.loc[:,'predicted'] - ess.loc[:,'happy'])

print(np.mean(errors))

When we run this, we find that the mean error made by predictions in 
our decision tree is 1.369. This is higher than zero but lower than it might 
be if we used a worse prediction method. Our decision tree seems to make 
reasonably good predictions so far.

The Problem of Overfitting
You may have noticed one very important way that our method for evaluat-
ing our decision tree doesn’t resemble how predictions work in real life. 
Remember what we did: we used the full set of survey respondents to gen-
erate our decision tree, and then we used that same set of respondents to 
judge the accuracy of our tree’s predictions. But it’s redundant to predict 
the happiness ratings of respondents who already took the survey—they 
took the survey, so we already know their happiness ratings and don’t need 
to predict them at all! This would be like getting a dataset of past heart 
attack patients, meticulously studying their pretreatment symptoms, and 
building a machine learning model that told us whether someone had a 
heart attack last week. By now, it’s already quite clear whether that person 
had a heart attack last week, and there are better ways to know than by 
looking at their initial triage diagnosis data. It’s easy to predict the past, 
but remember that true prediction is always about the future. As Wharton 
professor Joseph Simmons put it, “History is about what happened. Science 
is about what happens next.”

You may think that this isn’t a serious problem. After all, if we can make  
a decision tree that works well with last week’s heart attack patients, it’s 
reasonable to suppose that it will work well with next week’s heart attack 
patients. This is true to some extent. However, there is a danger that if we 
aren’t careful, we can encounter a common, dastardly peril called overfitting, 
the tendency of machine learning models to achieve very low error rates on 
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the datasets used to create them (like data from the past) and then unex-
pectedly high error rates on other data (like the data that actually matters, 
from the future).

Consider the example of heart attack predictions. If we observe an 
emergency room for several days, maybe, by coincidence, every admitted 
patient who is wearing a blue shirt is suffering from a heart attack and  
every admitted patient who is wearing a green shirt is healthy. A decision  
tree model that included shirt color in its prediction variables would pick up 
this pattern and use it as a branching variable because it has such high diag-
nostic accuracy in our observations. However, if we then use that decision 
tree to predict heart attacks in another hospital, or for some future day, we’ll 
find that our predictions are often wrong, as many people in green shirts also 
suffer heart attacks and many people in blue shirts don’t. The observations 
we used to build our decision tree are called in-sample observations, and the 
observations that we then test our model on, which are not part of our deci-
sion tree generation process, are called out-of-sample observations. Overfitting 
means that by zealously seeking low error rates in predictions of our in-sam-
ple observations, we have caused our decision tree model to have inordinately 
high error rates when predicting our out-of-sample observations.

Overfitting is a serious issue in all applications of machine learning, 
and it trips up even the best machine learning practitioners. To avoid it, 
we’ll take an important step that will make our decision tree creation pro-
cess better resemble the real-life prediction scenario.

Remember that real-life prediction is about the future, but when we 
build our decision tree we necessarily have data only from the past. We can’t 
possibly get data from the future, so we’ll split our dataset into two subsets: a 
training set, which we’ll use only to build our decision tree, and a test set, which 
we’ll use only to check the accuracy of our decision tree. Our test set is from 
the past, just like the rest of our data, but we treat it as if it’s the future; we 
don’t use it to create our decision tree (as if it hasn’t happened yet), but we do 
use it—only after completely building the decision tree—to test the accuracy 
of our decision tree (as if we got it later in the future).

By doing this simple training/test split, we’ve made our decision 
tree generation process resemble the real-life problem of predicting the 
unknown future; the test set is like a simulated future. The error rate that we 
find on the test set gives us a reasonable expectation of the error rate we’ll 
get from the actual future. We’ll know that we’re guilty of overfitting if the 
error on our training set is very low and the error on our test set is very high.

We can define training and test sets as follows:

import numpy as np
np.random.seed(518)
ess_shuffled = ess.reindex(np.random.permutation(ess.index)).reset_index(drop = True)
training_data = ess_shuffled.loc[0:37000,:]
test_data = ess_shuffled.loc[37001:,:].reset_index(drop = True)

In this snippet, we used the numpy module to shuffle the data—in 
other words, keeping all the data but moving the rows randomly. We 
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accomplished this with the reindex() method of the pandas module. The 
reindexing is done with a random shuffling of the row numbers, which we 
get by using the numpy module’s permutation capability. After shuffling the 
dataset, we select the first 37,000 shuffled rows as a training dataset, and the 
remainder of the rows as a test dataset. The command np.random.seed(518) is 
not necessary, but if you run it you’ll ensure that you’ll get the same pseudo-
random results that we show here.

After defining our training and test data, we generate a decision tree 
using only the training data:

thetree = getsplit(0,training_data,variables,outcome_variable)

Finally, we check the average error rate on the test data, which wasn’t 
used to train our decision tree:

predictions = []
for k in range(0,len(test_data.index)):
    observation = test_data.loc[k,:]
    predictions.append(get_prediction(observation,thetree))

test_data.loc[:,'predicted'] = predictions
errors = abs(test_data.loc[:,'predicted'] - test_data.loc[:,'happy'])
print(np.mean(errors))

We find that our mean error rate on the test data is 1.371. This is just a 
hair higher than the 1.369 error rate we found when we used the whole data-
set for both training and testing. This indicates that our model doesn’t suffer 
from overfitting: it’s good at predicting the past and almost exactly as good 
at predicting the future. Quite often, instead of getting this good news, we 
get bad news—that our model is worse than we thought it was—but it’s good 
to get this news because we can still make improvements before we start 
using our model in a real scenario. In such cases, before our model is ready 
to be deployed in real life, we’ll need to make improvements to it so that its 
error rate on the test set is minimized.

Improvements and Refinements
You may find that you’ve created a decision tree that has lower accuracy 
than you would like. For example, you might have worse accuracy than you 
should because you’re guilty of overfitting. Many of the strategies for deal-
ing with overfitting issues boil down to some kind of simplification, since 
simple machine learning models are less likely to suffer from overfitting 
than are complex models.

The first and easiest way to simplify our decision tree models is to limit 
their maximum depth; since depth is a variable that we can redefine in one 
short line, this is easy to do. To determine the right depth, we have to check 
the error rates on out-of-sample data for different depths. If the depth is 
too high, it’s likely to cause high error because of overfitting. If the depth 
is too low, it is likely to cause high error because of underfitting. You can 
think of underfitting as something like the mirror image of overfitting. 
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Overfitting consists of attempting to learn from patterns that are arbitrary 
or irrelevant—in other words, learning “too much” from noise in our train-
ing data, like whether someone is wearing a green shirt. Underfitting con-
sists of failing to learn enough—creating models that miss crucial patterns 
in the data, like whether someone is obese or uses tobacco.

Overfitting tends to result from models that have too many variables or 
too much depth, whereas underfitting tends to result from models that have 
too few variables or too little depth. Just as with many situations in algorithm 
design, the right place to be is a happy medium between too high and too 
low. Choosing the right parameters for a machine learning model, includ-
ing the depth of a decision tree, is often referred to as tuning, because fixing 
the tightness of a string on a guitar or violin also relies on finding a happy 
medium between a pitch that’s too high and one that’s too low.

Another way to simplify our decision tree model is to do what’s called 
pruning. For this, we grow a decision tree to its full depth and then find 
branches that we can remove from the tree without increasing our error 
rate by much.

Another refinement worth mentioning is using different measures to 
choose the right split point and the right splitting variable. In this chapter, 
we introduced the idea of using the classification error sum to decide where 
to put the split point; the right split point is one that minimizes our error 
sum. But there are other ways to decide on the right split point for a deci-
sion tree, including Gini impurity, entropy, information gain, and variance 
reduction. In practice, these other measures, especially Gini impurity and 
information gain, are almost always used rather than classification error 
rate, because some mathematical properties make them better in many 
cases. Experiment with different ways to choose a split point and splitting 
variable to find one that seems to perform the best for your data and your 
decision problem.

Everything we do in machine learning is meant to enable us to 
make accurate predictions on new data. When you’re trying to improve 
a machine learning model, you can always judge whether an action is 
worthwhile by checking how much it improves your error rate on test 
data. And feel free to be creative to find improvements—anything that 
improves your error rate on test data is probably worth trying.

Random Forests
Decision trees are useful and valuable, but they are not regarded as the 
best machine learning method by professionals. This is in part because 
of their reputation for overfitting and relatively high error rates, and in 
part because of the invention of a method called random forests, which 
has become popular recently and provides an unequivocal performance 
improvement over decision trees.

As its name suggests, a random forest model consists of a collection 
of decision tree models. Each decision tree in the random forest depends 
on some randomization. Using randomization, we get a diverse forest with 
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many trees instead of a forest that is just one tree repeated over and over. 
The randomization occurs in two places. First, the training dataset is ran-
domized: each tree is built considering only a subset of the training set, 
which is randomly selected and will be different for every tree. (The test 
set is randomly selected at the beginning of the process, but it’s not reran-
domized or reselected for every tree.) Second, the variables used to build 
the tree are randomized: only a subset of the full set of variables is used for 
each tree, and the subset could be different every time as well.

After building a collection of these different, randomized trees, we 
have a whole random forest. To make a prediction about a particular obser-
vation, we have to find what each of these different decision trees predicts, 
and then take the average of the prediction for every individual decision 
tree. Since the decision trees are randomized in both their data and their 
variables, taking an average of all of them helps avoid the problem of over-
fitting and often leads to more accurate predictions.

Our code in this chapter creates decision trees “from scratch,” by 
directly manipulating datasets and lists and loops. When you work with 
decision trees and random forests in the future, you can rely on exist-
ing Python modules that do much of that heavy lifting for you. But don’t 
let these modules become a crutch: if you understand every step of these 
important algorithms well enough to code them from scratch yourself, you 
can be much more effective in your machine learning efforts.

Summary
This chapter introduced machine learning and explored decision tree 
learning, a fundamental, simple, and useful machine learning method. 
Decision trees constitute a type of algorithm, and the generation of a deci-
sion tree is itself an algorithm, so this chapter contained an algorithm for 
generating an algorithm. By learning decision trees and the fundamen-
tal ideas of random forests, you have taken a big step toward becoming a 
machine learning expert. The knowledge you’ve gained in this chapter 
will be a solid foundation for other machine learning algorithms you may 
choose to learn, including advanced ones like neural networks. All machine 
learning methods attempt the type of task we tried here: prediction based 
on patterns in a dataset. In the next chapter, we explore artificial intelli-
gence, one of the most advanced undertakings of our adventure.





Throughout this book, we’ve noted the 
capacity of the human mind to do remark-

able things, whether it be catching baseballs, 
proofreading texts, or deciding whether some-

one is having a heart attack. We explored the ways we 
can translate these abilities into algorithms, and the  
challenges therein. In this chapter, we face these challenges once more 
and build an algorithm for artificial intelligence (AI). The AI algorithm 
we’ll discuss will be applicable not only to one narrow task, like catching a 
baseball, but to a wide range of competitive scenarios. This broad applica-
bility is what excites people about artificial intelligence—just as a human 
can learn new skills throughout life, the best AI can apply itself to domains 
it’s never seen before with only minimal reconfiguration.

The term artificial intelligence has an aura about it that can make people 
think that it’s mysterious and highly advanced. Some believe that AI enables 
computers to think, feel, and experience conscious thought in the same way 
that humans do; whether computers will ever be able to do so is an open, 
difficult question that is far beyond the scope of this chapter. The AI that 
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we’ll build is much simpler and will be capable of playing a game well, but 
not of writing sincerely felt love poems or feeling despondency or desire (as 
far as I can tell!).

Our AI will be able to play dots and boxes, a simple but nontrivial game 
played worldwide. We’ll start by drawing the game board. Then we’ll build 
functions to keep score as games are in progress. Next, we’ll generate game 
trees that represent all possible combinations of moves that can be played 
in a given game. Finally, we’ll introduce the minimax algorithm, an elegant 
way to implement AI in just a few lines.

La Pipopipette
Dots and boxes was invented by the French mathematician Édouard Lucas, 
who named it la pipopipette. It starts with a lattice, or grid of points, like the 
one shown in Figure 10-1.

Figure 10-1: A lattice, which we can use as a game board for dots and boxes

The lattice is usually a rectangle but can be any shape. Two players 
play against each other, taking turns. On each turn, a player is allowed to 
draw a line segment that connects two adjacent points in the lattice. If they 
use different colors to draw their line segments, we can see who has drawn 
what, though that’s not required. As they proceed through the game, line 
segments fill the lattice until every possible segment connecting adjacent 
points is drawn. You can see an example game in progress in Figure 10-2.

A player’s goal in dots and boxes is to draw line segments that complete 
squares. In Figure 10-2, you can see that in the bottom left of the game 
board, one square has been completed. Whichever player drew the line seg-
ment that completed that square will have earned one point from doing so. 
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In the top-right section, you can see that three sides of another square have 
been drawn. It’s player one’s turn, and if they use their turn to draw a line 
segment between (4,4) and (4,3), they’ll earn one point for that. If instead 
they draw another line segment, like a line segment from (4,1) to (5,1), 
then they’ll give they’ll give player two a chance to finish the square and 
earn a point. Players only earn points for completing the smallest possible 
squares on the board: those with a side length of 1. The player who’s earned 
the most points when the lattice is completely filled in with line segments 
wins the game. There are some variations on the game, including different 
board shapes and more advanced rules, but the simple AI we’ll build in this 
chapter will work with the rules we’ve described here.

Figure 10-2: A dots and boxes game in progress

Drawing the Board
Though not strictly necessary for our algorithmic purposes, drawing the 
board can make it easier to visualize the ideas we’re discussing. A very simple 
plotting function can make an n×n lattice by looping over x and y coordinates 
and using the plot() function in Python’s matplotlib module:

import matplotlib.pyplot as plt
from matplotlib import collections as mc
def drawlattice(n,name):
    for i in range(1,n + 1):
        for j in range(1,n + 1):
            plt.plot(i,j,'o',c = 'black')
    plt.savefig(name)
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In this code, n represents the size of each side of our lattice, and we use 
the name argument for the filepath where we want to save the output. The  
c = 'black' argument specifies the color of the points in our lattice. We can 
create a 5×5 black lattice and save it with the following command:

drawlattice(5,'lattice.png')

This is exactly the command that was used to create Figure 10-1.

Representing Games
Since a game of dots and boxes consists of successively drawn line seg-
ments, we can record a game as a list of ordered lines. Just as we did in 
previous chapters, we can represent a line (one move) as a list consisting 
of two ordered pairs (the ends of the line segment). For example, we can 
represent the line between (1,2) and (1,1) as this list:

[(1,2),(1,1)]

A game will be an ordered list of such lines, like the following example:

game = [[(1,2),(1,1)],[(3,3),(4,3)],[(1,5),(2,5)],[(1,2),(2,2)],[(2,2),(2,1)],[(1,1),(2,1)], \ 
[(3,4),(3,3)],[(3,4),(4,4)]]

This game is the one illustrated in Figure 10-2. We can tell it must still 
be in progress, since not all of the possible line segments have been drawn 
to fill in the lattice.

We can add to our drawlattice() function to create a drawgame() function. 
This function should draw the points of the game board as well as all line 
segments that have been drawn between them in the game so far. The func-
tion in Listing 10-1 will do the trick.

def drawgame(n,name,game):
    colors2 = []
    for k in range(0,len(game)):
        if k%2 == 0:
            colors2.append('red')
        else:
            colors2.append('blue')   
    lc = mc.LineCollection(game, colors = colors2, linewidths = 2)
    fig, ax = plt.subplots()
    for i in range(1,n + 1):
        for j in range(1,n + 1):
            plt.plot(i,j,'o',c = 'black')
    ax.add_collection(lc)
    ax.autoscale()
    ax.margins(0.1)
    plt.savefig(name)

Listing 10-1: A function that draws a game board for dots and boxes
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This function takes n and name as arguments, just as drawlattice() did. It 
also includes exactly the same nested loops we used to draw lattice points in 
drawlattice(). The first addition you can see is the colors2 list, which starts 
out empty, and we fill it up with the colors we assign to the line segments 
that we’ll draw. In dots and boxes, turns alternate between the two play-
ers, so we’ll alternate the colors of the line segments that we assign to the 
players—in this case, red for the first player and blue for the second player. 
The for loop after the definition of the colors2 list fills it up with alternating 
instances of 'red' and 'blue' until there are as many color assignments as 
there are moves in the game. The other lines of code we’ve added create a 
collection of lines out of our game moves and draw them, in the same way 
we’ve drawn collections of lines in previous chapters.

N O T E  This book is not printed in color, and it’s not totally necessary to have any colors 
when you play dots and boxes. But the code for colors is included anyway so you  
can see them when you run the code at home.

We can call our drawgame() function in one line as follows:

drawgame(5,'gameinprogress.png',game)

This is exactly how we created Figure 10-2.

Scoring Games
Next, we’ll create a function that can keep score for a dots and boxes game. 
We start with a function that can take any given game and find the com-
pleted squares that have been drawn, and then we create a function that 
will calculate the score. Our function will count completed squares by iter-
ating over every line segment in the game. If a line is a horizontal line, we 
determine whether it is the top of a completely drawn square by checking 
whether the parallel line below it has also been drawn in the game, and  
also whether the left and right sides of the square have been drawn. The 
function in Listing 10-2 accomplishes this:

def squarefinder(game):
    countofsquares = 0
    for line in game:
        parallel = False
        left=False
        right=False
        if line[0][1]==line[1][1]:
            if [(line[0][0],line[0][1]-1),(line[1][0],line[1][1] - 1)] in game:
                parallel=True
            if [(line[0][0],line[0][1]),(line[1][0]-1,line[1][1] - 1)] in game:
                left=True           
            if [(line[0][0]+1,line[0][1]),(line[1][0],line[1][1] - 1)] in game:
                right=True  
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            if parallel and left and right:
                countofsquares += 1
    return(countofsquares)

Listing 10-2: A function that counts the number of squares that appear in a dots and boxes game board

You can see that the function returns the value of countofsquares, which 
we initialized with a 0 value at the beginning of the function. The function’s 
for loop iterates over every line segment in a game. We start out assuming 
that neither the parallel line below this line nor the left and right lines that 
would connect these parallel lines have been played in the game so far. If a 
given line is a horizontal line, we check for the existence of those parallel, 
left, and right lines. If all four lines of the square we’ve checked are listed 
in the game, then we increment the countofsquares variable by 1. In this way, 
countofsquares records the total number of squares that have been com-
pletely drawn in the game so far.

Now we can write a short function to calculate the score of a game. The 
score will be recorded as a list with two elements, like [2,1]. The first ele-
ment of the score list represents the score of the first player, and the second 
element represents the score of the second player. Listing 10-3 has our scor-
ing function.

def score(game):
    score = [0,0]
    progress = []
    squares = 0
    for line in game:
        progress.append(line)
        newsquares = squarefinder(progress)
        if newsquares > squares:
            if len(progress)%2 == 0:
                score[1] = score[1] + 1
            else:
                score[0] = score[0] + 1
        squares=newsquares
    return(score)

Listing 10-3: A function that finds the score of an in-progress dots and boxes game

Our scoring function proceeds through every line segment in a game 
in order, and considers the partial game consisting of every line drawn 
up to that turn. If the total number of squares drawn in a partial game is 
higher than the number of squares that had been drawn one turn previ-
ously, then we know that the player whose turn it was scored that turn, and 
we increment their score by 1. You can run print(score(game)) to see the 
score of the game illustrated in Figure 10-2.

Game Trees and How to Win a Game
Now that you’ve seen how to draw and score dots and boxes, let’s consider 
how to win it. You may not be particularly interested in dots and boxes as a 
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game, but the way to win at it is the same as the way to win at chess or check-
ers or tic-tac-toe, and an algorithm for winning all those games can give 
you a new way to think about every competitive situation you encounter in 
life. The essence of a winning strategy is simply to systematically analyze the 
future consequences of our current actions, and to choose the action that 
will lead to the best possible future. This may sound tautological, but the 
way we accomplish it will rely on careful, systematic analysis; this can take 
the form of a tree, similar to the trees we constructed in Chapter 9.

Consider the possible future outcomes illustrated in Figure 10-3.

I draw a line from (4,4) to (4,3).

Current game is shown in Figure 10-2
I’m behind 0–1.

I draw a line from (1,3) to (2,3).

Opponent draws a line
from (1,3) to (2,3)

The game is tied 1–1. The game is tied 1–1. I’m behind 0–2. I’m behind 0–1.

Opponent draws a line
from (3,1) to (4,1).

Opponent draws a line
from (4,4) to (4,3).

Opponent draws a line
from (3,1) to (4,1).

Figure 10-3: A tree of some possible continuations of our game

We start at the top of the tree, considering the current situation: we’re 
behind 0–1 and it’s our turn to move. One move we consider is the move 
in the left branch: drawing a line from (4,4) to (4,3). This move will com-
plete a square and give us one point. No matter what move our opponent 
makes (see the possibilities listed in the two branches in the bottom left 
of Figure 10-3), the game will be tied after our opponent’s next move. By 
contrast, if we use our current turn to draw a line from (1,3) to (2,3), as 
described in Figure 10-3’s right branch, our opponent then has a choice 
between drawing a line from (4,4) to (4,3) and completing a square and 
earning a point, or drawing another line like one connecting (3,1) and 
(4,1), and leaving the score at 0–1.

Considering these possibilities, within two moves the game could be 
at any of three different scores: 1–1, 0–2, or 0–1. In this tree, it’s clear that 
we should choose the left branch, because every possibility that grows from 
that branch leads to a better score for us than do the possibilities growing 
from the right branch. This style of reasoning is the essence of how our AI 
will decide on the best move. It will build a game tree, check the outcomes 
at all terminal nodes of the game tree, and then use simple recursive rea-
soning to decide what move to make, in light of the possible futures that 
decision will open up.

You probably noticed that the game tree in Figure 10-3 is woefully 
incomplete. It appears that there are only two possible moves (the left 
branch and the right branch), and that after each of those possible moves, 
our opponent has only two possible moves. Of course, this is incorrect; 
there are many choices available to both players. Remember that they can 
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connect any two adjacent points in the lattice. The true game tree rep-
resenting this moment in our game would have many branches, one for 
each possible move for each player. This is true at every level of the tree: 
not only do I have many moves to choose from, but so does my opponent, 
and each of those moves will have its own branch at every point in the tree 
where it’s playable. Only near the end of the game, when nearly all the 
line segments have already been drawn, will the number of possible moves 
shrink to two and one. We didn’t draw every branch of the game tree in 
Figure 10-3, because there’s not enough space on the page—we only had 
space to include a couple of moves, just to illustrate the idea of the game 
tree and our thought process.

You can imagine a game tree extending to any possible depth—we 
should consider not only our move and the opponent’s response, but 
also our response to that response, and our opponent’s response to  
that response, and so on as far as we care to continue the tree-building.

Building Our Tree
The game trees we’re building here are different in important ways from 
the decision trees of Chapter 9. The most important difference is the goal: 
decision trees enable classifications and predictions based on characteristics, 
while game trees simply describe every possible future. Since the goal is dif-
ferent, so will be the way we build it. Remember that in Chapter 9 we had to 
select a variable and a split point to decide every branch in the tree. Here, 
knowing what branches will come next is easy, since there will be exactly one 
branch for every possible move. All we need to do is generate a list of every 
possible move in our game. We can do this with a couple of nested loops that 
consider every possible connection between points in our lattice:

allpossible = []

gamesize = 5

for i in range(1,gamesize + 1):
    for j in range(2,gamesize + 1):
        allpossible.append([(i,j),(i,j - 1)])

for i in range(1,gamesize):
    for j in range(1,gamesize + 1):
        allpossible.append([(i,j),(i + 1,j)])

This snippet starts by defining an empty list, called allpossible, and a 
gamesize variable, which is the length of each side of our lattice. Then, we 
have two loops. The first is meant to add vertical moves to our list of pos-
sible moves. Notice that for every possible value of i and j, this first loop 
appends the move represented by [(i,j),(i,j - 1)] to our list of possible 
moves. This will always be a vertical line. Our second loop is similar, but 
for every possible combination of i and j, it appends the horizontal move 
[(i,j),(i + 1,j)] to our list of possible moves. At the end, our allpossible 
list will be populated with every possible move.
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If you think about a game that’s in progress, like the game illustrated 
in Figure 10-2, you’ll realize that not every move is always possible. If a 
player has already played a particular move during a game, no player can 
play that same move again for the rest of the game. We’ll need a way to 
remove all moves that have already been played from the list of all possible 
moves, resulting in a list of all possible moves remaining for any particular 
in-progress game. This is easy enough:

for move in allpossible:
    if move in game:
        allpossible.remove(move)

As you can see, we iterate over every move in our list of possible moves, 
and if it’s already been played, we remove it from our list. In the end, we have 
a list of only moves that are possible in this particular game. You can run 
print(allpossible) to see all of these moves and check that they’re correct.

Now that we have a list of every possible move, we can construct the 
game tree. We’ll record a game tree as a nested list of moves. Remember 
that each move can be recorded as a list of ordered pairs, like [(4,4),(4,3)], 
the first move in the left branch of Figure 10-3. If we wanted to express a 
tree that consisted of only the top two moves in Figure 10-3, we could write 
it as follows:

simple_tree = [[(4,4),(4,3)],[(1,3),(2,3)]]

This tree contains only two moves: the ones we’re considering playing 
in the current state of the game in Figure 10-3. If we want to include the 
opponent’s potential responses, we’ll have to add another layer of nest-
ing. We do this by putting each move in a list together with its children, the 
moves that branch out from the original move. Let’s start by adding empty 
lists representing a move’s children:

simple_tree_with_children = [[[(4,4),(4,3)],[]],[[(1,3),(2,3)],[]]]

Take a moment to make sure you see all the nesting we’ve done. Each 
move is a list itself, as well as the first element of a list that will also contain 
the list’s children. Then, all of those lists together are stored in a master list 
that is our full tree.

We can express the entire game tree from Figure 10-3, including the 
opponent’s responses, with this nested list structure:

full_tree = [[[(4,4),(4,3)],[[(1,3),(2,3)],[(3,1),(4,1)]]],[[(1,3),(2,3)],[[(4,4),(4,3)],\ 
[(3,1),(4,1)]]]]

The square brackets quickly get unwieldy, but we need the nested 
structure so we can correctly keep track of which moves are which moves’ 
children.
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Instead of writing out game trees manually, we can build a function 
that will create them for us. It will take our list of possible moves as an input 
and then append each move to the tree (Listing 10-4).

def generate_tree(possible_moves,depth,maxdepth):
    tree = []
    for move in possible_moves:
        move_profile = [move]
        if depth < maxdepth:
            possible_moves2 = possible_moves.copy()
            possible_moves2.remove(move)
            move_profile.append(generate_tree(possible_moves2,depth + 1,maxdepth))
        tree.append(move_profile)
    return(tree)

Listing 10-4: A function that creates a game tree of a specified depth

This function, generate_tree(), starts out by defining an empty list called 
tree. Then, it iterates over every possible move. For each move, it creates  
a move_profile. At first, the move_profile consists only of the move itself. But  
for branches that are not yet at the lowest depth of the tree, we need  
to add those moves’ children. We add children recursively: we call the  
generate_tree() function again, but now we have removed one move from 
the possible_moves list. Finally, we append the move_profile list to the tree.

We can call this function simply, with a couple of lines:

allpossible = [[(4,4),(4,3)],[(4,1),(5,1)]]
thetree = generate_tree(allpossible,0,1)
print(thetree)

When we run this, we see the following tree:

[[[(4, 4), (4, 3)], [[[(4, 1), (5, 1)]]]], [[(4, 1), (5, 1)], [[[(4, 4), (4, 3)]]]]]

Next, we’ll make two additions to make our tree more useful: the first 
records the game score along with the moves, and the second appends a 
blank list to keep a place for children (Listing 10-5).

def generate_tree(possible_moves,depth,maxdepth,game_so_far):
    tree = []
    for move in possible_moves:
        move_profile = [move]
        game2 = game_so_far.copy()
        game2.append(move)
        move_profile.append(score(game2))
        if depth < maxdepth:
            possible_moves2 = possible_moves.copy()
            possible_moves2.remove(move)
            move_profile.append(generate_tree(possible_moves2,depth + 1,maxdepth,game2))
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        else:
            move_profile.append([])
        tree.append(move_profile)
    return(tree)

Listing 10-5: A function that generates a game tree, including child moves and game scores

We can call this again as follows:

allpossible = [[(4,4),(4,3)],[(4,1),(5,1)]]
thetree = generate_tree(allpossible,0,1,[])
print(thetree)

We see the following results:

[[[(4, 4), (4, 3)], [0, 0], [[[(4, 1), (5, 1)], [0, 0], []]]], [[(4, 1), (5, 1)], [0, 0], \ 
[[[(4, 4), (4, 3)], [0, 0], []]]]]

You can see that each entry in this tree is a full move profile, consisting 
of a move (like [(4,4),(4,3)]), a score (like [0,0]), and a (sometimes empty) 
list of children.

Winning a Game
We’re finally ready to create a function that can play dots and boxes well. 
Before we write the code, let’s consider the principles behind it. Specifically, 
how is it that we, as humans, play dots and boxes well? More generally, how 
is it that we go about winning any strategic game (like chess or tic-tac-toe)? 
Every game has unique rules and features, but there’s a general way to 
choose a winning strategy based on an analysis of the game tree.

The algorithm we’ll use for choosing a winning strategy is called mini-
max (a combination of the words minimum and maximum), so called because 
while we’re trying to maximize our score in the game, our opponent is try-
ing to minimize our score. The constant fight between our maximization 
and our opponent’s minimization is what we have to strategically consider 
as we’re choosing the right move.

Let’s look closely at the simple game tree in Figure 10-3. In theory, a 
game tree can grow to be enormous, with a huge depth and many branches 
at each depth. But any game tree, big or small, consists of the same compo-
nents: a lot of little nested branches.

At the point we’re considering in Figure 10-3, we have two choices. 
Figure 10-4 shows them.

I draw a line from (4,4) to (4,3).
What future does this lead to?

Current game is shown in Figure 10-2.
I’m behind 0–1.

I draw a line from (1,3) to (2,3).
What future does this lead to?

Figure 10-4: Considering which of two moves to choose
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Our goal is to maximize our score. To decide between these two moves, 
we need to know what they will lead to, what future each move brings to 
pass. To know that, we need to travel farther down the game tree and look 
at all the possible consequences. Let’s start with the move on the right 
(Figure 10-5).

Opponent draws a line
from (4,4) to (4,3).

I draw a line from (1,3) to (2,3).
What future does this lead to?
Answer: if our opponent plays
well, we’ll be behind 0–2.

Opponent draws a line
from (3,1) to (4,1).

I’m behind 0–2. I’m behind 0–1.

Figure 10-5: Assuming that an opponent will try to  
minimize your score, you can find what future you  
expect a move to lead to.

This move could bring about either of two possible futures: we could 
be behind 0–1 at the end of our tree, or we could be behind 0–2. If our 
opponent is playing well, they will want to maximize their own score, which 
is the same as minimizing our score. If our opponent wants to minimize 
our score, they’ll choose the move that will put us behind 0–2. By contrast, 
consider our other option, the left branch of Figure 10-5, whose possible 
futures we consider in Figure 10-6.

Opponent draws a line
from (1,3) to (2,3).

I draw a line from (4,4) to (4,3).
What future does this lead to?
Answer: if our opponent plays
well, we’ll be tied 1–1.

Opponent draws a line
from (3,1) to (4,1).

The game is tied 1–1. The game is tied 1–1.

Figure 10-6: No matter what the opponent’s choice,  
we expect the same outcome.

In this case, both of our opponent’s choices lead to a score of 1–1. 
Again assuming that our opponent will be acting to minimize our score,  
we say that this move leads to a future of the game being tied 1–1.

Now we know what future will be brought about by the two moves. 
Figure 10-7 notes these futures in an updated version of Figure 10-4.

Because we know exactly what future to expect from each of our two 
moves, we can do a maximization: the move that leads to the maximum,  
the best score, is the move on the left, so we choose that one.
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Current game shown in Figure 10-2.
I’m behind 0–1.

I draw a line from (4,4) to (4,3).
What future does this lead to?
Answer: the game will be tied 1–1.

I draw a line from (1,3) to (2,3).
What future does this lead to?
Answer: I’ll be behind 0–2.

Figure 10-7: Using Figures 10-5 and 10-6, we can reason about  
the futures that each move will lead to and then compare them.

The reasoning process we just went through is known as the minimax 
algorithm. Our decision in the present is about maximizing our score. But 
in order to maximize our score, we have to consider all the ways that our 
opponent will try to minimize our score. So the best choice is a maximum 
of minima.

Note that minimax goes through time in reverse. The game proceeds 
forward in time, from the present to the future. But in a way, the minimax 
algorithm proceeds backward in time, because we consider the scores of 
possible far futures first and then work our way back to the present to find 
the current choice that will lead to the best future. In the context of our 
game tree, the minimax code starts at the top of the tree. It calls itself 
recursively on each of its child branches. The child branches, in turn, call 
minimax recursively on their own child branches. This recursive calling 
continues all the way to the terminal nodes, where, instead of calling mini-
max again, we calculate the game score for each node. So we’re calculating 
the game score for the terminal nodes first; we’re starting our game score 
calculations in the far future. These scores are then passed back to their 
parent nodes so that the parent nodes can calculate the best moves and 
corresponding score for their part of the game. These scores and moves 
are passed back up through the game tree until arriving back at the very 
top, the parent node, which represents the present.

Listing 10-6 has a function that accomplishes minimax.

import numpy as np
def minimax(max_or_min,tree):
    allscores = []
    for move_profile in tree:
        if move_profile[2] == []:
            allscores.append(move_profile[1][0] - move_profile[1][1])
        else:
            move,score=minimax((-1) * max_or_min,move_profile[2])
            allscores.append(score)
    newlist = [score * max_or_min for score in allscores]
    bestscore = max(newlist)
    bestmove = np.argmax(newlist)
    return(bestmove,max_or_min * bestscore)

Listing 10-6: A function that uses minimax to find the best move in a game tree 
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Our minimax() function is relatively short. Most of it is a for loop that 
iterates over every move profile in our tree. If the move profile has no child 
moves, then we calculate the score associated with that move as the differ-
ence between our squares and our opponent’s squares. If the move profile 
does have child moves, then we call minimax() on each child to get the score 
associated with each move. Then all we need to do is find the move associ-
ated with the maximum score.

We can call our minimax() function to find the best move to play in any 
turn in any in-progress game. Let’s make sure everything is defined cor-
rectly before we call minimax(). First, let’s define the game, and get all pos-
sible moves, using exactly the same code we used before:

allpossible = []

game = [[(1,2),(1,1)],[(3,3),(4,3)],[(1,5),(2,5)],[(1,2),(2,2)],[(2,2),(2,1)],[(1,1),(2,1)],\ 
[(3,4),(3,3)],[(3,4),(4,4)]]

gamesize = 5

for i in range(1,gamesize + 1):
    for j in range(2,gamesize + 1):
        allpossible.append([(i,j),(i,j - 1)])

for i in range(1,gamesize):
    for j in range(1,gamesize + 1):
        allpossible.append([(i,j),(i + 1,j)])

for move in allpossible:
    if move in game:
        allpossible.remove(move)

Next, we’ll generate a complete game tree that extends to a depth of 
three levels:

thetree = generate_tree(allpossible,0,3,game)

Now that we have our game tree, we can call our minimax() function: 

move,score = minimax(1,thetree)

And finally, we can check the best move as follows:

print(thetree[move][0])

We see that the best move is [(4, 4), (4, 3)], the move that completes a 
square and earns us a point. Our AI can play dots and boxes, and choose the 
best moves! You can try other game board sizes, or different game scenarios, 
or different tree depths, and check whether our implementation of the mini-
max algorithm is able to perform well. In a sequel to this book, we’ll discuss 
how to ensure that your AI doesn’t become simultaneously self-aware and 
evil and decide to overthrow humanity.



Artificial Intelligence   199

Adding Enhancements
Now that you can perform minimax, you can use it for any game you hap-
pen to be playing. Or you can apply it to life decisions, thinking through 
the future and maximizing every minimum possibility. (The structure 
of the minimax algorithm will be the same for any competitive scenario, 
but in order to use our minimax code for a different game, we would have 
to write new code for the generation of the game tree, the enumeration of 
every possible move, and the calculation of game scores.)

The AI we’ve built here has very modest capabilities. It’s only able to 
play one game, with one simple version of the rules. Depending on what 
processor you use to run this code, it can probably look only a few moves 
forward without taking an unreasonable amount of time (a few minutes or 
more) for each decision. It’s natural to want to enhance our AI to make it 
better.

One thing we’ll definitely want to improve is our AI’s speed. It’s slow 
because of the large size of the game trees it has to work through. One of 
the main ways to improve the performance of minimax is by pruning the 
game tree. Pruning, as you might remember from Chapter 9, is exactly what 
it sounds like: we remove branches from the tree if we consider them excep-
tionally poor or if they represent a duplicate of another branch. Pruning is 
not trivial to implement and requires learning yet more algorithms to do it 
well. One example is the alpha–beta pruning algorithm, which will stop check-
ing particular sub-branches if they are certainly worse than sub-branches 
elsewhere in the tree.

Another natural improvement to our AI would be to enable it to work 
with different rules or different games. For example, a commonly used rule 
in dots and boxes is that after earning a point, a player gets to draw another 
line. Sometimes this results in a cascade, in which one player completes many 
boxes in a row in a single turn. This simple change, which was called “make 
it, take it” on my elementary school playground, changes the game’s strategic 
considerations and will require some changes to our code. You can also try to 
implement an AI that plays dots and boxes on a lattice that has a cross shape 
or some other exotic shape that could influence strategy. The beauty of mini-
max is that it doesn’t require subtle strategic understanding; it requires only 
an ability to look ahead, and that’s why a coder who isn’t good at chess can 
write an implementation of minimax that can beat them at chess.

There are some powerful methods that go beyond the scope of this 
chapter that can improve the performance of computer AI. These methods 
include reinforcement learning (where a chess program, for example, plays 
against itself to get better), Monte Carlo methods (where a shogi program 
generates random future shogi games to help understand possibilities), and 
neural networks (where a tic-tac-toe program predicts what its opponent 
will do using a machine learning method similar to what we discussed in 
Chapter 9). These methods are powerful and remarkable, but they mostly 
just make our tree search and minimax algorithms more efficient; tree 
search and minimax remain the humble workhorse core of strategic AI.
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Summary
In this chapter, we discussed artificial intelligence. It’s a term surrounded 
by hype, but when you see that it takes only about a dozen lines to write 
a minimax() function, AI suddenly doesn’t seem so mysterious and intimi-
dating. But of course, to prepare to write those lines, we had to learn the 
game rules, draw the game board, construct game trees, and configure 
our minimax() function to calculate game outcomes correctly. Not to men-
tion the rest of the journey of this book, in which we carefully constructed 
algorithms that prepared us to think algorithmically and to write this func-
tion when we needed it.

The next chapter suggests next steps for ambitious algorithmicists who 
want to continue their journey to the edges of the world of algorithms and 
push out to further frontiers.



You’ve made it through the dark forest of 
searching and sorting, across the frozen 

river of esoteric mathematics, over the 
treacherous mountain passes of gradient ascent, 

past the swamp of geometric despair, and you’ve con-
quered the dragon of slow runtimes. Congratulations.  
If you wish, you’re free to return to your comfortable home in a land free 
from algorithms. This chapter is for those who instead wish to continue 
the adventure after they close this book.

No single book can contain everything about algorithms. There is too 
much to know, and more is being discovered all the time. This chapter is 
about three things: doing more with algorithms, using them in better and 
faster ways, and solving their deepest mysteries.

In this chapter, we’ll build a simple chatbot that can talk to us about 
previous chapters of the book. Then we’ll discuss some of the hardest 
problems in the world and how we might make progress toward crafting 

11
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algorithms to solve them. We’ll conclude by discussing some of the deepest 
mysteries of the world of algorithms, including detailed instructions on how 
to win a million dollars with advanced algorithmic theory.

Doing More with Algorithms
The 10 previous chapters of this book covered algorithms that can perform 
a variety of tasks in many fields. But algorithms can do even more than we’ve 
seen here. If you wish to continue your adventure with algorithms, you should 
explore other fields and the important algorithms associated with them.

For example, the many algorithms for information compression can store 
a long book in a coded form that is only a fraction of the size of the original, 
and they can compress a complex photograph or film file into a manageable 
size with either minimal or no loss of quality.

Our ability to communicate securely online, including confidently pass-
ing our credit card information to third parties, relies on cryptographic 
algorithms. Cryptography is great fun to study because it comes with a 
thrilling history of adventurers, spies, betrayals, and triumphant nerds  
who broke codes to win wars.

Recently, innovative algorithms have been developed to perform paral-
lel distributed computing. Instead of performing one operation at a time, 
millions of times, distributed computing algorithms split up a dataset into 
many little parts and then send them to different computers, which per-
form the needed operation simultaneously and return the results, to be 
recompiled and presented as the final output. By working on all parts of the 
data concurrently instead of consecutively, parallel computing saves a huge 
amount of time. This is extremely useful for applications in machine learn-
ing, where there’s a need to process datasets that are extremely large or to 
perform a large number of simple computations simultaneously.

For decades, people have been excited about the potential of quantum 
computing. Quantum computers, if we can engineer them to work properly, 
have the potential to perform extremely difficult calculations (including the 
calculations needed to break state-of-the-art cryptography) in a tiny frac-
tion of the time required on today’s nonquantum supercomputers. Since 
quantum computers are built with different architecture than standard com-
puters, it’s possible to design new algorithms that take advantage of their 
different physical properties to perform tasks with extra speed. For now, this 
is more or less only an academic concern, since quantum computers are not 
yet in a state where they are used for practical purposes. But if the technol-
ogy ever matures, quantum algorithms could become extremely important.

When you learn about algorithms in these or many other fields, you 
will not be starting from scratch. By mastering the algorithms of this book, 
you’ve come to grasp they are, how they tend to function, and how to write 
code for them. Learning your first algorithm may have felt quite difficult, 
but learning your 50th or 200th will be much easier, since your brain will 
be used to the general patterns of how they are constructed and how to 
think about them.
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To prove that you can now understand and code algorithms, we’ll 
explore a few algorithms that work together to provide the functionality of 
a chatbot. If you can pick up how they work and how to write code for them 
in the short introduction provided here, then you’re on your way to being 
able to pick up how any algorithm works in any field.

Building a Chatbot
Let’s build a simple chatbot that can answer questions about the table of 
contents of this book. We’ll start by importing modules that will be impor-
tant later:

import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from scipy import spatial
import numpy as np
import nltk, string

The next step we’ll take to create our chatbot is text normalization, the 
process of converting natural language text to standardized substrings; it 
enables easy comparison between superficially different texts. We want our 
bot to understand that America and america refer to the same thing, that 
regeneration expresses the same idea as regenerate (albeit a different part of 
speech), that centuries is the plural of century, and that hello; is not essentially 
different from hello. We want our chatbot to treat in the same way words 
that are from the same root, unless there is some reason not to.

Say we have the following query:

query = 'I want to learn about geometry algorithms.'

The first thing we can do is convert all characters to lowercase. Python’s 
built-in lower() method accomplishes this:

print(query.lower())

This outputs i want to learn about geometry algorithms.. Another thing 
we can do is remove punctuation. To do that, first we’ll create a Python 
object called a dictionary :

remove_punctuation_map = dict((ord(char), None) for char in string.punctuation)

This snippet creates a dictionary that maps every standard punctuation 
mark to the Python object None, and it stores the dictionary in a variable 
called remove_punctuation_map. We then use this dictionary to remove punc-
tuation like so:

print(query.lower().translate(remove_punctuation_map))

Here, we’ve used the translate() method to take all the punctuation 
marks we find in the query and replace them with nothing—or in other 
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words, remove the punctuation marks. The output we get is the same as 
we saw before—i want to learn about geometry algorithms—but without the 
period at the end. Next, we can perform tokenization, which converts a text 
string to a list of coherent substrings:

print(nltk.word_tokenize(query.lower().translate(remove_punctuation_map)))

We used the nltk’s tokenization function to accomplish this, yielding 
this output: ['i', 'want', 'to', 'learn', 'about', 'geometry', 'algorithms'].

Now we can do what’s called stemming. In English, we use the words 
jump, jumps, jumping, jumped, and other derived forms that are all different 
but share a stem: the verb jump. We don’t want our chatbot to be distracted 
by small differences in word derivation; we want to consider a sentence 
about jumping to be comparable to a sentence about a jumper, even though 
they are technically different words. Stemming removes the ends of derived 
words to convert them into standardized word stems. A function for stem-
ming is available in Python’s nltk module, and we can use this function with 
a list comprehension as follows:

stemmer = nltk.stem.porter.PorterStemmer()
def stem_tokens(tokens):
    return [stemmer.stem(item) for item in tokens]

In this snippet, we’ve created a function called stem_tokens(). It takes a 
list of tokens and calls nltk’s stemmer.stem() function to turn them into stems:

print(stem_tokens(nltk.word_tokenize(query.lower().translate(remove_punctuation_map))))

The output is ['i', 'want', 'to', 'learn', 'about', 'geometri', 'algorithm']. 
Our stemmer has converted algorithms to algorithm and geometry to geometri. It 
has replaced a word with what it regards as its stem: a singular word or word 
portion that will make text comparisons easier. Finally, we put our normal-
ization steps together in one function, normalize():

def normalize(text):
    return stem_tokens(nltk.word_tokenize(text.lower().translate(remove_punctuation_map)))

Text Vectorization
Now you’re ready to learn how to convert texts to numeric vectors. It’s easier 
to make quantitative comparisons between numbers and vectors than 
between words, and we’ll need to make quantitative comparisons to make 
our chatbot work.

We’ll use a simple method called TFIDF, or term frequency-inverse docu-
ment frequency, which converts documents into numeric vectors. Each docu-
ment vector has one element for each term in a corpus. Each element is the 
product of the term frequency for a given term (a raw count of the number 
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of times the term occurs in a particular document) and the inverse docu-
ment frequency for a given term (a logarithm of a reciprocal of what pro-
portion of documents the term appears in).

For example, imagine that we are creating TFIDF vectors for biogra-
phies of US presidents. In the context of creating TFIDF vectors, we’ll refer 
to each biography as a document. In the biography of Abraham Lincoln, 
the word representative will probably appear at least once, since he served in 
the Illinois House of Representatives and the US House of Representatives. 
If representative appears three times in the biography, then we say its term 
frequency is 3. More than a dozen presidents have served in the US House 
of Representatives, so maybe about 20 out of 44 total presidential biog-
raphies contain the term representative. We can then calculate the inverse 
document frequency as:

20
44

log( ) = 0.788

The final value we’re looking for is the term frequency times the inverse 
document frequency: 3 × 0.788 = 2.365. Now consider the term Gettysburg. It 
may appear twice in Lincoln’s biography but never in any other, so the term 
frequency will be 2 and the inverse document frequency will be the following:

1
44

log( ) = 3.784

The vector element associated with Gettysburg will be the term frequency 
times the inverse document frequency, which is 2 × 3.784 = 7.568. The TFIDF 
value for each term should reflect its importance in a document. Soon, this 
will be important for our chatbot’s ability to determine user intent.

We don’t have to calculate TFIDF manually. We can use a function 
from the scikit-learn module:

vctrz = TfidfVectorizer(ngram_range = (1, 1),tokenizer = normalize, stop_words = 'english')

This line has created a TfidfVectorizer() function, which is capable of 
creating TFIDF vectors from sets of documents. To create the vectorizer, 
we have to specify an ngram_range. This tells the vectorizer what to treat as 
a term. We specified (1, 1), meaning that our vectorizer will treat only 
1-grams (individual words) as terms. If we had specified (1, 3), it would 
treat 1-grams (single words), 2-grams (two-word phrases), and 3-grams 
(three-word phrases) as terms and create a TFIDF element for each of 
them. We also specified a tokenizer, for which we specified the normalize() 
function we created before. Finally, we have to specify stop_words, the words 
that we want to filter out because they’re not informative. In English, stop 
words include the, and, of, and other extremely common words. By speci-
fying stop_words = 'english', we’re telling our vectorizer to filter out the 
built-in set of English stop words and vectorize only less common, more 
informative words.
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Now, let’s configure what our chatbot will be able to talk about. Here, 
it will be able to talk about the chapters of this book, so we’ll create a list 
that contains very simple descriptions of each chapter. In this context, each 
string will be one of our documents. 

alldocuments = ['Chapter 1. The algorithmic approach to problem solving, including Galileo and 
baseball.',
            'Chapter 2. Algorithms in history, including magic squares, Russian peasant 
multiplication, and Egyptian methods.',
            'Chapter 3. Optimization, including maximization, minimization, and the gradient 
ascent algorithm.',
            'Chapter 4. Sorting and searching, including merge sort, and algorithm runtime.',
            'Chapter 5. Pure math, including algorithms for continued fractions and random 
numbers and other mathematical ideas.',
            'Chapter 6. More advanced optimization, including simulated annealing and how to 
use it to solve the traveling salesman problem.',
            'Chapter 7. Geometry, the postmaster problem, and Voronoi triangulations.',
            'Chapter 8. Language, including how to insert spaces and predict phrase 
completions.',
            'Chapter 9. Machine learning, focused on decision trees and how to predict 
happiness and heart attacks.',
            'Chapter 10. Artificial intelligence, and using the minimax algorithm to win at 
dots and boxes.',
            'Chapter 11. Where to go and what to study next, and how to build a chatbot.']

We’ll continue by fitting our TFIDF vectorizer to these chapter descrip-
tions, which will do the document processing to get us ready to create 
TFIDF vectors whenever we wish. We don’t have to do this manually, since 
there’s a fit() method defined in the scikit-learn module:

vctrz.fit(alldocuments)

Now, we’ll create TFIDF vectors for our chapter descriptions and for a 
new query asking for a chapter about sorting and searching:

query = 'I want to read about how to search for items.'
tfidf_reports = vctrz.transform(alldocuments).todense()
tfidf_question = vctrz.transform([query]).todense()

Our new query is a natural English language text about searching. The 
next two lines use the built-in translate() and todense() methods to create 
the TFIDF vectors for the chapter descriptions and the query.

Now we have converted our chapter descriptions and query into 
numeric TFIDF vectors. Our simple chatbot will work by comparing the 
query TFIDF vector to the chapter description TFIDF vectors, concluding 
that the chapter the user is looking for is the one whose description vector 
most closely matches the query vector.

Vector Similarity
We’ll decide whether any two vectors are similar with a method called cosine 
similarity. If you’ve studied a lot of geometry, you’ll know that for any two 
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numeric vectors, we can calculate the angle between them. The rules of 
geometry enable us to calculate angles between vectors not only in two and 
three dimensions, but also in four, five, or any number of dimensions. If the 
vectors are very similar to each other, the angle between them will be quite 
small. If the vectors are very different, the angle will be large. It’s strange 
to think that we can compare English language texts by finding the “angle” 
between them, but this is precisely why we created our numeric TFIDF  
vectors—so that we can use numeric tools like angle comparison for data  
that doesn’t start out numeric.

In practice, it’s easier to calculate the cosine of the angle between two 
vectors than it is to calculate the angle itself. This is not a problem, since 
we can conclude that if the cosine of the angle between two vectors is large, 
then the angle itself is small and vice versa. In Python the scipy module con-
tains a submodule called spatial, which contains a function for calculating 
the cosines of angles between vectors. We can use the functionality in spatial 
to calculate cosines between each chapter description vector and query vec-
tor, by using a list comprehension:

row_similarities = [1 - spatial.distance.cosine(tfidf_reports[x],tfidf_question) for x in \ 
range(len(tfidf_reports)) ]

When we print out the row_similarities variable, we see the following 
vector:

[0.0, 0.0, 0.0, 0.3393118510377361, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

In this case, only the fourth element is greater than zero, meaning that 
only the fourth chapter description vector has any angular proximity to our 
query vector. In general, we can automatically find which row has the high-
est cosine similarity:

print(alldocuments[np.argmax(row_similarities)])

This gives us the chapter the chatbot thinks we’re looking for:

Chapter 4. Sorting and searching, including merge sort, and algorithm runtime.

Listing 11-1 puts the chatbot’s simple functionality into a function.

def chatbot(query,allreports):
    clf = TfidfVectorizer(ngram_range = (1, 1),tokenizer = normalize, stop_words = 'english')
    clf.fit(allreports)
    tfidf_reports = clf.transform(allreports).todense()
    tfidf_question = clf.transform([query]).todense()
    row_similarities = [1 - spatial.distance.cosine(tfidf_reports[x],tfidf_question) for x in \ 
range(len(tfidf_reports)) ]
    return(allreports[np.argmax(row_similarities)])

Listing 11-1: A simple chatbot function that takes a query and returns the document that’s most similar to it
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Listing 11-1 does not contain anything new; all of it is code that we’ve 
seen before. Now we can call the chatbot with a query about where to find 
something:

print(chatbot('Please tell me which chapter I can go to if I want to read about mathematics 
algorithms.',alldocuments))

The output will tell us to go to Chapter 5:

Chapter 5. Pure math, including algorithms for continued fractions and random numbers and other 
mathematical ideas.

Now that you’ve seen how the whole chatbot works, you can understand 
why we needed to do the normalization and vectorization. By normaliz-
ing and stemming words, we can make sure that the term mathematics will 
prompt the bot to return the Chapter 5 description, even though that exact 
word does not appear in it. By vectorizing, we enable the cosine similarity 
metric that tells us which chapter description is the best match.

We’ve completed our chatbot, which required stitching together a few 
different smallish algorithms (algorithms for normalizing, stemming, and 
numerically vectorizing text; an algorithm for calculating cosines of angles 
between vectors; and the overarching algorithm of providing chatbot answers 
based on query/document vector similarity). You may have noticed that 
we didn’t manually do many of the calculations—the actual calculation of 
TFIDF or cosines was done by modules that we imported. In practice, you 
often don’t need to truly understand the guts of an algorithm in order to 
import it and use it in your programs. This can be a blessing, in that it can 
accelerate our work and put amazingly sophisticated tools at our command 
when we need them. It can also be a curse because it causes people to misuse 
algorithms they don’t understand; for example, an article in Wired maga-
zine claimed that the misapplication of a particular financial algorithm (a 
method to use Gaussian copula functions to predict risks) was responsible 
for “kill[ing] Wall Street” and “swallow[ing] up trillions of dollars” and was a 
major cause of the Great Recession (https://www.wired.com/2009/02/wp-quant/). 
I encourage you to study the deep theory of algorithms even when the ease 
of importing a Python module makes such study seem unnecessary; it can 
always make you a better academic or practitioner.

This is perhaps the simplest possible chatbot, and it answers only ques-
tions related to chapters in this book. You could add so many enhance-
ments to improve it: make the chapter descriptions more specific and thus 
more likely to match a broad range of queries; find a vectorization method 
that performs better than TFIDF; add more documents so that it could 
answer more queries. But although our chatbot is not the most advanced, 
we can be proud of it because it’s ours and because we built it ourselves. If 
you can comfortably build a chatbot, you can consider yourself a competent 
designer and implementer of algorithms—congratulations for this culmi-
nating achievement in your journey through this book.

https://www.wired.com/2009/02/wp-quant/
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Becoming Better and Faster
You can do more with algorithms than you could when you started the 
book. But every serious adventurer will also want to be able to do things 
better and faster.

Many things can make you better at designing and implementing algo-
rithms. Think about how each algorithm we implemented in this book 
relied on some understanding of a non-algorithmic topic. Our baseball-
catching algorithm relies on an understanding of physics and even a little 
psychology. Russian peasant multiplication relies on an understanding of 
exponents and on deep properties of arithmetic, including binary notation. 
Chapter 7’s geometry algorithms rely on insights into how points, lines, and 
triangles relate and fit together. The deeper your understanding of the field 
you’re trying to write algorithms for, the easier it will be for you to design 
and implement algorithms. Thus, the way to get better at algorithms is easy: 
just understand everything perfectly.

Another natural next step for a budding algorithmic adventurer is to 
polish and repolish your raw programming skills. Remember that Chapter 8 
introduced list comprehensions as a Pythonic tool that enables us to write 
language algorithms that are concise and perform well. As you learn more 
programming languages and master their features, you’ll be able to write 
code that’s better organized, more compact, and more powerful. Even 
skilled programmers can benefit from going back to the basics and master-
ing fundamentals until they’re second nature. Many talented programmers 
write disorganized, badly documented, or inefficient code and think they 
can get away with it because it “works.” But remember that code doesn’t usu-
ally succeed on its own—it is almost always part of a broader program, some 
team effort or grand business project that relies on cooperation between 
people and over time. Because of this, even soft skills like planning, oral 
and written communication, negotiation, and team management can 
improve your chances of success in the world of algorithms.

If you enjoy creating perfectly optimal algorithms and pushing them to 
their highest efficiency, you’re in luck. For a huge number of computer sci-
ence problems, there is no known efficient algorithm that runs much faster 
than brute force. In the next section, we sketch a few of these problems and 
discuss what’s so hard about them. If you, dear adventurer, create an algo-
rithm that solves any of these problems quickly, you could have fame, fortune, 
and worldwide gratitude for the rest of your life. What are we waiting for? 
Let’s look at some of these challenges for the most courageous among us.

Algorithms for the Ambitious
Let’s consider a relatively simple problem related to chess. Chess is played 
on an 8×8 board, and two opponents take turns moving differently styled 
pieces. One piece, the queen, can move any number of squares along the 
row, column, or diagonal where it is placed. Usually, a player possesses only 
one queen, but it’s possible for a player to have up to nine queens in a stan-
dard chess game. If a player has more than one queen, it may be that two or 
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more queens “attack” each other—in other words, they are placed on the 
same row, column, or diagonal. The eight queens puzzle challenges us to place 
eight queens on a standard chessboard such that no pair of queens is on the 
same row, column, or diagonal. Figure 11-1 shows one solution to the eight 
queens puzzle.

Figure 11-1: A solution to the eight queens puzzle (source: Wikimedia Commons)

None of the queens on this board attacks any of the other queens. The 
easiest possible way to solve the eight queens puzzle is to simply memorize 
a solution, like the one in Figure 11-1, and repeat it whenever you’re asked 
to solve the puzzle. However, a couple of extra twists to the puzzle make 
memorization infeasible. One twist is to increase the number of queens and 
the size of the board. The n queens problem asks us to place n queens on an 
n×n chessboard such that no queen attacks any of the others; n could be any 
natural number, no matter how high. Another twist is the n queens comple-
tion problem: your opponent starts by placing some of the queens, maybe 
in places that will make it difficult for you to place the rest, and you have 
to place the rest of the n queens so that none attack any others. Can you 
design an algorithm that will run very quickly and solve this problem? If so, 
you could earn a million dollars (see “Solving the Deepest Mysteries” on 
page 212).

Figure 11-1 may remind you of sudoku, since it involves checking for 
the uniqueness of symbols in rows and columns. In sudoku, the goal is to 
fill in the numbers 1 through 9 such that each row, column, and 3×3 block 
contains exactly one instance of each number (Figure 11-2). Sudoku first 
gained popularity in Japan, and indeed a sudoku puzzle is reminiscent of 
the Japanese magic squares we explored in Chapter 2.
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Figure 11-2: An uncompleted sudoku grid (source: Wikimedia Commons)

It’s an interesting exercise to think about how to write an algorithm 
that could solve sudoku puzzles. The simplest, slowest possible algorithm 
would rely on brute force: just try every possible combination of numbers 
and repeatedly check whether they constitute a correct solution, repeat-
ing until the solution is found. This would work, but it lacks elegance, and 
it could take an extremely long time. It doesn’t seem intuitively right that 
filling in 81 numbers in a grid according to rules that anyone could eas-
ily follow should stretch the limits of our world’s computing resources. 
More sophisticated solutions could rely on logic to cut down the required 
runtime.

The n queens completion problem and sudoku share another important 
trait: solutions are very easy to check. That is, if I show you a chessboard with 
queens on it, it will probably take you only a few moments to check whether 
you’re looking at a solution to the n queens completion problem, and if I 
show you a grid of 81 numbers, you can easily tell whether you’re looking at  
a correct sudoku solution. The ease with which we can check solutions is, tragi-
cally, not matched by the ease of generating solutions—it can take hours to 
solve a difficult sudoku puzzle that then takes only seconds to verify. This gen-
eration/verification effort mismatch is common in many areas of life: I can 
tell with very little effort whether a meal is delicious, but creating a wonder-
ful meal takes a much greater investment of time and resources. Similarly, 
I can check whether a painting is beautiful in much less time than it takes 
to create a beautiful painting, and I can verify whether a plane can fly with 
much less effort than it takes to build a flying plane.

Problems that are difficult to solve algorithmically but whose solutions 
are easy to verify are extremely important in theoretical computer science, 
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and they are the deepest and most pressing mystery in the field. Especially 
courageous adventurers may dare to plunge into these mysteries—but 
beware the perils awaiting you there.

Solving the Deepest Mysteries
When we say that sudoku solutions are easy to verify but hard to generate, 
what we mean in more formal terms is that solutions can be verified in poly-
nomial time; in other words, the number of steps required for solution veri-
fication is some polynomial function of the size of the sudoku board. If you 
think back to Chapter 4 and our discussion of runtimes, you’ll remember 
that even though polynomials like x2 and x3 can grow fast, they are quite 
slow compared to exponential functions like ex. If we can verify an algorith-
mic solution to a problem in polynomial time, we regard that verification as 
easy, but if the generation of a solution takes exponential time, we regard it 
as hard.

There’s a formal name for the class of problems whose solutions can 
be verified in polynomial time: the NP complexity class. (Here, NP stands for 
nondeterministic polynomial time, for reasons that would require a long digres-
sion into theoretical computer science that would not be useful here.) NP 
is one of the two most fundamental complexity classes in computer science. 
The second is called P,  for polynomial time. The P complexity class of 
problems contains all problems whose solutions can be found by an algo-
rithm that runs in polynomial time. For P problems, we can find full solu-
tions in polynomial time, while for NP problems, we can verify solutions in 
polynomial time, but it may take exponential time to find those solutions.

We know that sudoku is an NP problem—it is easy to verify a proposed 
sudoku solution in polynomial time. Is sudoku also a P problem? That is, is 
there an algorithm that can solve any sudoku puzzle in polynomial time? 
No one has ever found one, and no one appears to be close to finding one, 
but we don’t feel certain that it’s impossible.

The list of problems that we know are in NP is extremely long. Some 
versions of the traveling salesman problem are in NP. So is the optimal solu-
tion to the Rubik’s cube, as well as important mathematical problems like 
integer linear programming. Just as with sudoku, we wonder whether these 
problems are also in P—can we find solutions for them in polynomial time? 
One way to phrase this question is, Does P = NP?

In 2000, the Clay Mathematics Institute published a list called the 
Millennium Prize Problems. It announced that any person who published a 
verified solution to one of the problems would receive a million dollars. The  
list was meant to be seven of the world’s most important problems related 
to mathematics, and the question of whether P = NP is one of them; no one 
has claimed its prize yet. Will one of the noble adventurers reading these 
words eventually break the Gordian knot and solve this most crucial of algo-
rithmic problems? I sincerely hope so and wish each of you luck, strength, 
and joy on the journey.
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If there is ever a solution, it will be a proof of one of the following two 
assertions: either that P = NP or that P ≠ NP. A proof that P = NP could 
be relatively simple, since all that would be required is a polynomial-time 
algorithmic solution to an NP-complete problem. NP-complete problems 
are a special type of NP problem defined by the feature that every single 
NP problem can be quickly reduced to an NP-complete problem; in other 
words, if you can solve one NP-complete problem, you can solve every NP 
problem. If you can solve any single NP-complete problem in polynomial 
time, you can solve every NP problem in polynomial time, which would 
prove that P = NP. As it happens, sudoku and the n-queens completion 
problem are both NP-complete. This means that finding a polynomial-time 
algorithmic solution to either of them would not only solve every existing 
NP problem but also earn you a million dollars and worldwide, lifelong 
fame (not to mention the power to beat everyone you know in friendly 
sudoku competitions).

A proof that P ≠ NP would probably not be as straightforward as a solu-
tion to sudoku. The notion that P ≠ NP means that there are NP problems 
that cannot be solved by any algorithm with polynomial runtime. Proving this 
amounts to proving a negative, and it is conceptually much harder to prove 
that something cannot exist than it is to point to an example of something. 
Making progress in a proof that P ≠ NP will require extended study in theo-
retical computer science beyond the scope of this book. Though this path is 
harder, it seems to be the consensus among researchers that P ≠ NP, and that 
if there is ever a resolution to the P versus NP question, it will probably be a 
proof that P ≠ NP.

The P versus NP question is not the only deep mystery related to algo-
rithms, although it is the most immediately lucrative one. Every aspect of the 
field of algorithm design has wide-open fields for adventurers to charge into. 
There are not only theoretical and academic questions, but also practical ones 
related to how to implement algorithmically sound practices in business con-
texts. Waste no time: remember what you have learned here and sally forth 
anon, carrying your new skills with you to the utmost bounds of knowledge  
and practice, on your lifelong algorithmic adventure. Friends, adieu.
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A
acceleration
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divide and conquer, 69
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minimax, 195–198
performing “by hand,” 14–18, 

20–21
perturb search, 112
refraining from using, 48–49
solving problems with, 10–11
tax rates, 39
using big O notation, 64–65
within algorithms, 17

Al-Khwarizmi, 5, 10
alpha–beta pruning algorithm, 199
analytic approach

Galilean model, 2–4
inner physicist, 5–6
solve-for-x strategy, 4–5

angle, tangent of, 8–9
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annealing, process of, 117
antidiagonal of square matrix, 26–27
append() method, RPM (Russian 

peasant multiplication), 18
arguments, magic squares, 31–34
artificial intelligence (AI), 185–186

adding enhancements, 199
drawing the board, 187–188
game trees and winning games, 

190–199
la pipopipette, 186–187
representing games, 188–189
scoring games, 189–190

asymptote, relationship to 
maximum, 39–40

B
Babylonian algorithm, 90
ball. See also the outfielder problem

horizontal position of, 7
plotting trajectory of, 1–2, 4, 7
tangent calculation, 8–9

ball_trajectory() function, 3–4
baseball, scientific features of, 6
bell curve, 95–96
between_spaces variable, creating, 154
big O notation

sleep sort’s runtime, 72
using, 64–65

billiard balls and randomness, 91
binary branching process, using 

with decision trees,  
166–167

binary expansion, 17
binary search, 73–75
bisect, geometric terminology, 130
bits, string of, 97–98
board, drawing for dots and boxes 

game, 187–189
bootstrapping, 91
Bowyer-Watson algorithm, 136. 

See also DT (Delaunay 
triangulation); 
triangulation

brain, “wetware” of, 5
branching process, using with 

decision trees, 166–167

brute force solution, using in 
TSP (traveling salesman 
problem), 107

Bush, Vannevar, 6

C
calculus, rules of, 38
centroid of triangle, finding, 

131–133
Chapman, Seville, 6
Chapman’s algorithm, 9–11. See also 

the outfielder problem
chatbot, building, 203–208
chess, solving eight queens  

puzzle, 209–212
Chesterton, G. K., 151
circles, drawing, 133
circumcenters

finding for triangles, 131–133
plotting, 145
relationship to triangles, 134

circumcircles
plotting, 145
relationship to triangles,  

132, 134
combinatorial explosion, using in 

TSP (traveling salesman 
problem), 108

compound words, dealing with, 
152–153. See also words

constructive methods of Euclid, 20
continued fractions. See also 

fractions to radicals
algorithm for generating, 

82–85
compressing and 

communicating Phi, 79–80
versus decimals, 86–88
overview, 78, 80–82
to radicals, 88

continued square roots, 88
corpus, 149, 160. See also imported 

corpus
cosine similarity, 206–208
Counter() function, using with  

n + 1-gram, 161
counting steps, 57–60
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D
decimals to continued  

fractions, 86–88
decision trees. See also AI (artificial 

intelligence) game trees; 
machine learning; random 
forests

adding depth to, 175–177
building, 167
calculating happiness  

levels, 170
choosing split points, 182
choosing splitting variables, 

173–175, 182
downloading datasets, 168
evaluating, 178–182
looking at data, 168–169
nodes, 167
out-of-sample observations, 180
overfitting, 181–182
overview, 165–166
prediction errors, 171–172
problem of overfitting, 179–181
pruning, 182, 199
in-sample observations, 180
simplifying, 181–182
split points, 171
splitting data, 169–173
test sets, 180
training sets, 180
underfitting, 181–182
using nested lists with, 176

Delaunay triangulation (DT).  
See also geometry

generating, 136–139
implementing, 139–143
overview, 134–136
purpose of, 136
returning from points, 142
to Voronoi, 143–147

derivative, calculating, 38
Devlin, Keith, 5–6
dictionary object, creating for 

chatbot, 203
Diehard tests for randomness, 

95–97
divide and conquer algorithm, 69

dogs, catching Frisbees, 6
dots and boxes game. See also games

drawing board for, 187–188
playing, 186–187
scoring, 190

doubling column, RPM (Russian 
peasant multiplication), 
14–20

down_left, Kurushima’s algorithm, 
28–29

drawgame() function, using with 
games, 188–189

drawing circles, 133
drawlattice() function, using with 

games, 188–189
DT (Delaunay triangulation). 

See also Bowyer-Watson 
algorithm; triangulation

generating, 136–139
implementing, 139–143
overview, 134–136
purpose of, 136
returning from points, 142
to Voronoi, 143–147

E
education and lifetime  

income, 42–45
Elements, 20
equilateral, geometric  

terminology, 130
ESS (European Social Survey), 

using with decision  
trees, 168

Euclid’s algorithm, 20–22, 84–85
exclusive OR operation, 98
exponential function, 60–61

F
False, Kurushima’s algorithm, 27
feedback shift register, 98
file-sorting method, 52–54. See also 

sorted filing cabinets
fillsquare() function, Kurushima’s 

algorithm, 31–32
finding words, 151–152
finditer() function, using with 

words, 152
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findnearest() function, using in 
TSP (traveling salesman 
problem), 109

float('nan') function, using with 
Kurushima’s algorithm, 24

floor() function, using for binary 
search, 73–74

for loop, using with words and 
spaces, 157

fractions to radicals, 88. See also 
continued fractions

Franklin, Benjamin, 126
Frisbee, trajectory vectors, 6
functions

inverting, 75
recursion, 22

G
Galilean model, 2–5
game trees. See also AI (artificial 

intelligence); decision 
trees; random forests

building, 192–195
and winning games, 190–192

games. See also dots and boxes game
choosing moves, 195–198
minimax algorithm, 195–198
representing, 188–189
scoring, 189–190
winning, 195–198

Gaussian normal curve, 96
gen_delaunay() function, passing x 

and y values to, 143
generate_tree() function, using with 

games, 194
genlines function, using with 

triangles, 129
genlines function, TSP (traveling 

salesman problem), 104
geometry. See also DT (Delaunay 

triangulation)
postmaster problem, 126–128
representing points, 128
tangent of angle, 8–9
terminology, 130
triangles, 128–134

get_number() function, using with 
continued fractions, 85

get_prediction() function, using with 
decision trees, 178–179

get_split() function, using with 
decision trees, 174–176

get_splitpoint() function, using with 
decision trees, 174

git bisect software, using for binary 
search, 75

global variables, defining for 
simulated annealing, 122

golden ratio, 78–79
gradient ascent, 35

climbing income hill, 44–45
implementing, 40–41
local extrema, 42–44
objections, 41–42
using, 49

gradient descent, 35, 47
Gravity’s Rainbow, 3
greedy algorithms, TSP (traveling 

salesman problem),  
112–113

guided search, using in TSP 
(traveling salesman 
problem), 112

H
half_double dataframe, RPM (Russian 

peasant multiplication), 18
halving column, RPM (Russian 

peasant multiplication), 
14–20

happiness levels, calculating with 
decision trees, 170

hill climbing, 47–48
howfull argument, Kurushima’s 

algorithm, 31–32

I
if statement

inserting pop() function into, 
66–67

using with words and  
spaces, 151

imported corpus, using to check for 
valid words, 154–155. See 
also corpus
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inner physicist theory, 5–6
in-sample observations, using with 

decision trees, 180
insert() function, using with bits, 98
insertion sort, 52–55

comparing to exponential 
function, 61

counting steps in, 63–64
step counter, 58

installing, matplotlib module, 3
integers, dividing to get  

quotient, 84
inverse_sin(0.9) function, using for 

binary search, 75
inverting functions, 75
irrational number, 79

J
Japanese magic squares. See also 

magic squares; squares
Kurushima’s algorithm in 

Python, 24–30
Luo Shu square in Python, 

22–23

K
Kepler, Johannes, 78
k-means machine-learning  

method, 56
k-NN machine-learning method, 56
Kurushima’s algorithm

function, 30–31
rules, 25–28

L
la pipopipette, 186–187
language algorithms

difficulty, 150
phrase completion, 159–163
space insertion, 150–158

lattice, using with la pipopipette, 
186–187

LCGs (linear congruential 
generators), 92–93

left and right variables, Python, 66
Leibniz, Gottfried Wilhelm, 

130–131

LFSRs (linear feedback shift 
registers), 97–99

lifetime income and education, 
42–45

lines of sight, plotting for thrown 
ball, 7–8

list comprehensions, 149, 156
list indexing syntax, Python, 68–69
lists, sorting, 153
loc functionality, RPM (Russian 

peasant multiplication), 19
local extrema, problem, 42–45
loops, RPM (Russian peasant 

multiplication), 18
lower bound, defining for binary 

search, 73
lower() method, using with  

chatbot, 203
Lucas, Édouard, 186
Luo Shu square, creating in 

Python, 22–23

M
machine learning. See also decision 

trees
overview, 165
random forests, 182–183

machine-learning methods, 
k-means clustering and 
k-NN, 56

magic eye, 147
magic squares, 22–23. See also 

Japanese magic squares; 
squares

arguments, 31–34
Kurushima’s algorithm, 30–31
of odd dimension, 24
patterns, 34
“walk” through, 28

The Math Instinct: Why You’re a 
Mathematical Genius (Along 
with Lobsters, Birds, Cats, and 
Dogs), 5–6

math library, Python, 73–74
mathematical physics, 

interpretation of, 92
math.floor(), RPM (Russian peasant 

multiplication), 18
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matplotlib module
setting tax rates, 36–37
using with dots and boxes 

game, 187–188
matplotlib module, installing, 3
max() function, using with numpy, 162
maxima and minima, 35
maximization and minimization, 

45–48
maximum

and asymptote approach, 
39–40

education and lifetime income, 
44–45

and minimum of step values, 
60–61

revenue, 39
solving first-order  

conditions, 42
taxation/revenue curve, 41–42

maxitin argument, adding, 122
merging to sorting, 65, 68–70. See 

also sorting
Mersenne Twister PRNG, 99
metaheuristics, metaphor based, 

117–118
Mikami, Yoshio, 22
Millennium Prize Problems, 212
minimax algorithm

using to make decisions, 199
using to win games, 195–198

minimax() function, calling, 198
modulo (%) operator

Euclid’s algorithm, 21
Kurushima’s algorithm, 27–28
RPM (Russian peasant 

multiplication), 19
rules, 32

Monte Carlo methods, 199
mystery number and continued 

fraction, 81

N
n + 1-grams, finding, 161–163
n queens completion problem, 

solving for chess, 210–211
nan entries, filling in, 25–28, 30–31
Navier-Stokes equations, 5

nearest neighbor algorithm, 
TSP (traveling salesman 
problem), 108–110

nested lists, using with decision 
trees, 176

nested radicals, 88
next_random() function, 93
n-gram, tokenizing and getting, 

159–160
Norvig, Peter, 160
NP (nondeterministic polynomial) 

complexity class, 212–213
numbered file, inserting, 54
numpy module

importing, 60
using to select phrases, 162
using with decision trees, 

180–181

O
optimization, 101–102. See also 

simulated annealing; 
TSP (traveling salesman 
problem)

the outfielder problem, 1–2, 6–9. 
See also ball; Chapman’s 
algorithm

out-of-sample observations, using 
with decision trees, 180

overfitting decision trees, 181–182
overlapping sums test, 95–96

P
P complexity class of problems, 

212–213
pandas module, using in Python, 19
percentile, using with decision 

trees, 172–173
perpendicular, geometric 

terminology, 130
perturb() function

modifying, 116
showing end of, 121
updating, 119
using for simulated  

annealing, 123
using in TSP (traveling salesman 

problem), 111–112
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perturb search algorithm, 112. See 
also simulated annealing

phi
compressing and 

communicating, 79–80
and golden ratio, 78

phrase completion, 159–163
plot() function, using with dots and 

boxes game, 187–188
plot_triangle() function

defining, 129
improving, 133–134

plotitinerary() function, using in 
TSP (traveling salesman 
problem), 105

plotting capabilities, Galilean 
model, 3

.png file, saving to, 129–130
points, representing, 128–130
points_to_triangle() function

defining, 128
using in triangulation, 134

polynomial, Galilean model, 3
polynomial time, verifying 

solutions in, 212
pop() method

inserting into if statements, 
66–67

using with bits, 98
pop() method, sorting via  

insertion, 55
postmaster problem, 126–128
potential words. See also words

checking for, 153–154
finding halves of, 156–158

prediction errors, decision trees, 
171–172

print(cities) function, TSP 
(traveling salesman 
problem), 103

print(lines) function, TSP (traveling 
salesman problem), 104

print(square) function, using with 
Kurushima’s algorithm, 
24–25

PRNGs (pseudorandom number 
generators), 92–99

problems, solving with algorithms, 
10–11

Project Gutenberg, 160
pruning decision trees, 182, 199
pseudorandomness, 92–93
Pynchon, Thomas, 3
Pythagorean theorem

using, 105
using with triangles, 130
using in TSP (traveling 

salesman problem),  
108–109

Python
creating Luo Shu square, 22–23
Euclid’s algorithm, 20–22
feedback shift register, 98
Galilean model, 3
implementing RPM (Russian 

peasant multiplication), 
18–20

Kurushima’s algorithm, 24
left and right variables, 66
list indexing syntax, 68
math library, 73–74
ordered pairs in, 152
overlapping sums test, 95–96
pandas module, 19
random module, 58–59
random.choice() function, 28
rules for Kurushima’s 

algorithm, 27–28, 30–31
square roots in, 90–91
timeit module, 57
using tuples with words and 

spaces, 152

Q
quotient, getting by dividing 

integers, 84

R
radicals and fractions, 88
radius, returning for triangle, 

132–133
Ramanujan, Srinivasa, 88
random forests, 182–183. See also 

decision trees; game trees



222   Index

random model, Python, 58–59
random number generators

judging PRNGs 
(pseudorandom number 
generators), 93–95

LCDs (linear congruential 
generators), 92–93

LFSRs (linear feedback shift 
registers), 97–99

overview, 91
random.choice() function, Python, 28
randomness

Diehard tests for, 95–97
possibility of, 91–92

random.seed() function, 59
recursion

of functions, 22
implementing merge sort  

with, 69
using with Euclid’s algorithm, 85

re.finditer() function, using with 
words, 152

reindex() method, using with 
decision trees, 181

remove() function, using with words 
and spaces, 155

replace() function, using with words 
and spaces, 155

resetthresh variable, adding, 122
revenue

maximum, 39
showing for tax rates, 36–37

right and left variables, Python, 66
RPM (Russian peasant 

multiplication), 13–20
rules, applying with Kurushima’s 

algorithm, 27, 30–31

S
science, laws of, 130–131
scoring games, 189–190
search suggestions, strategy for 

generating, 160, 162–163
searching versus sorting, 72–75
Shakespeare’s works, accessing, 

160–161, 163
siman() function, using for simulated 

annealing, 122–123

Simmons, Joseph, 179
simulated annealing, 115–124. See 

also optimization; perturb 
search; TSP (traveling 
salesman problem)

sleep sort, 70–72. See also sorting
Smith, David Eugene, 22
solve-for-x strategy, 4–5, 10–11
sorted filing cabinets, merging, 62, 

64–65. See also file-sorting 
method

sorting. See also merging to sorting; 
sleep sort

lists, 153
via insertion, 54–55
to searching, 72–75

space insertion
checking for potential words, 

153–154
checking for valid words, 

154–156
dealing with compound words, 

152–153
defining word lists, 151–152
finding halves of potential 

words, 156–158
finding words, 151–152
overview, 150–151

spaces
getting substrings between, 

153–154
inserting into texts, 158
words ending with, 156

split points, choosing for decision 
trees, 171, 182

splitting variables, choosing for 
decision trees, 182

square brackets ([])
using with list  

comprehension, 152
using with loc functionality, 19

square matrix, antidiagonal of, 26–27
square roots, 89–91
squares, filling in, 30–34. See also 

Japanese magic squares; 
magic squares

start() function, using with  
words, 153
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statistical methods, bootstrapping 
as, 91

steps
counting in insertion sort, 

57–60, 63–64
exponential growth, 60–61

stochastic gradient ascent, 45
strings, splitting into words,  

159–160
substrings, getting between spaces, 

153–154
sudoku puzzles, solving, 211–212

T
tangent of angle, 8–9
tax rates, setting, 36–41
taxation/revenue curve, gradient 

ascent, 41
tax/revenue curve, flipping, 46–47
temperature function, TSP 

(traveling salesman 
problem), 113–115

test sets, using with decision  
trees, 180

text normalization, using with 
chatbot, 203

text vectorization, 204–206
TFIDF (term frequency-inverse 

document frequency) 
method, 204–205, 207–208

theta, applying to thrown ball, 8–9
thinking with your neck, 6–9
time, measuring precisely, 57
timeit module, Python, 57
Titanic lifeboat example, using 

sleep sort with, 71–72
tokenization, performing with 

chatbot, 204
tokenizing n-grams, 159–160
training sets, using with decision 

trees, 180
translate() method, using with 

chatbot, 203–204
triage and decision trees, 166
triangles

centroid, 131–133
creating for postmaster 

problem, 128–134

finding circumcenter of, 
131–133

plotting, 129, 145–146
replacing, 140–143

triangulation. See also Bowyer-
Watson algorithm; DT 
(Delaunay triangulation)

defined, 134
of seven points, 135

True, Kurushima’s algorithm, 27
TSP (traveling salesman problem). 

See also optimization; 
simulated annealing

greedy algorithms, 112–113
improving, 110–112
nearest neighbor algorithm, 

108–110
overview, 102–103
versus postmaster problem, 127
setting up, 103–108
temperature function, 113–115

tuples, using with words and  
spaces, 152

U
underfitting decision trees, 181–182
up_right, Kurushima’s algorithm, 

28–29
upper bound, defining for binary 

search, 73

V
vector similarity, determining, 

206–208
vertex, geometric terminology, 130
Voronoi diagram

generating, 143–147
for postmaster problem, 128

W
while loop, Kurushima’s  

algorithm, 31
while loop

using for binary search, 74
using with bits, 99
using with continued  

fractions, 85
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using with merge sort, 67
using with square roots, 90–91

while loop, RPM (Russian peasant 
multiplication), 18

winning games, 195–198
word list, defining, 151–152
words. See also compound words; 

potential words
checking validity with imported 

corpus, 154–156

ending with spaces, 156
finding, 151–152
tokenizing, 159–160

X
XOR operation, 98
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in Python 3, and how to measure and optimize their 
performance.
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