
B R A D F O R D T U C K F I E L D

D I V E I N T O
A L G O R I T H M S

A P Y T H O N I C A D V E N T U R E

F O R T H E I N T R E P I D B E G I N N E R

D I V E I N T O
A L G O R I T H M S

A P y t h o n i c A d v e n t u r e f o r
t h e I n t r e p i d B e g i n n e r

Bradford Tuckf ie ld

DIVE INTO ALGORITHMS. Copyright © 2021 by Bradford Tuckfield

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-71850-068-6 (print)
ISBN-13: 978-1-71850-069-3 (ebook)

Publisher: William Pollock
Execuitve Editor: Barbara Yien
Production Editors: Maureen Forys, Happenstance Type-O-Rama and Laurel Chun
Developmental Editor: Alex Freed
Cover Design: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Alok Malik
Copyeditor: Scout Festa
Compositor: Jeff Lytle, Happenstance Type-O-Rama
Proofreader: Rachel Monaghan
Illustrator: Jeff Wilson, Happenstance Type-O-Rama
Indexer: Valerie Perry

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Tuckfield, Bradford, author.
Title: Dive into algorithms / Bradford Tuckfield.
Description: San Francisco : No Starch Press, [2020] | Includes index.
Identifiers: LCCN 2020026327 (print) | LCCN 2020026328 (ebook) | ISBN
 9781718500686 (paperback) | ISBN 1718500688 (paperback) | ISBN
 9781718500693 (ebook)
Subjects: LCSH: Computer algorithms. | Computer programming.
Classification: LCC QA76.9.A43 T83 2020 (print) | LCC QA76.9.A43 (ebook)
 | DDC 005.13--dc23
LC record available at https://lccn.loc.gov/2020026327
LC ebook record available at https://lccn.loc.gov/2020026328

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

mailto:info@nostarch.com
http://www.nostarch.com
https://lccn.loc.gov/2020026327
https://lccn.loc.gov/2020026328

Dedicated to my parents, David and Becky
Tuckfield, for believing in me and for

teaching me la pipopipette.

About the Author
Bradford Tuckfield is a data scientist and writer. He runs a data science con-
sulting firm called Kmbara (https://kmbara.com/) and a fiction website called
Dreamtigers (http://thedreamtigers.com/).

About the Technical Reviewer
Alok Malik is a data scientist based in New Delhi, India. He works on devel-
oping deep learning models in both natural language processing and com-
puter vision with Python. He has developed and deployed solutions such as
language models, image and text classifiers, language translators, speech-
to-text models, named entity recognizers, and object detectors. He has also
co-authored a book on machine learning. In his free time he likes to read
about finance, do MOOCs, and play video games on his console.

https://kmbara.com/
http://thedreamtigers.com/

B R I E F C O N T E N T S

Acknowledgments . xiii

Introduction . xv

Chapter 1: Problem-Solving With Algorithms . 1

Chapter 2: Algorithms in History . 13

Chapter 3: Maximizing and Minimizing . 35

Chapter 4: Sorting and Searching . 51

Chapter 5: Pure Math . 77

Chapter 6: Advanced Optimization . 101

Chapter 7: Geometry . 125

Chapter 8: Language . 149

Chapter 9: Machine Learning . 165

Chapter 10: Artificial Intelligence . 185

Chapter 11: Forging Ahead . 201

Index . 215

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS xiii

INTRODUCTION xv
Who Is This Book For? . xvii
About This Book . .xviii
Setting Up the Environment . xix

Install Python on Windows . xix
Install Python on macOS . xx
Install Python on Linux . xx
Installing Third-Party Modules . xxi

Summary . xxi

1
PROBLEM-SOLVING WITH ALGORITHMS 1
The Analytic Approach . 2

The Galilean Model . 2
The Solve-for-x Strategy . 4
The Inner Physicist . 5

The Algorithmic Approach . 6
Thinking with Your Neck . 6
Applying Chapman’s Algorithm . 9
Solving Problems with Algorithms . 10

Summary . 12

2
ALGORITHMS IN HISTORY 13
Russian Peasant Multiplication . 14

Doing RPM by Hand . 14
Implementing RPM in Python . 18

Euclid’s Algorithm . 20
Doing Euclid’s Algorithm by Hand . 20
Implementing Euclid’s Algorithm in Python . 21

Japanese Magic Squares . 22
Creating the Luo Shu Square in Python . 22
Implementing Kurushima’s Algorithm in Python . 24

Summary . 34

3
MAXIMIZING AND MINIMIZING 35
Setting Tax Rates . 36

Steps in the Right Direction . 36
Turning the Steps into an Algorithm . 39

Objections to Gradient Ascent . 41

x Contents in Detail

The Problem of Local Extrema . 42
Education and Lifetime Income . 42
Climbing the Education Hill—the Right Way . 44

From Maximization to Minimization . 45
Hill Climbing in General . 47
When Not to Use an Algorithm . 48
Summary . 50

4
SORTING AND SEARCHING 51
Insertion Sort . 52

Putting the Insertion in Insertion Sort . 52
Sorting via Insertion . 54

Measuring Algorithm Efficiency . 55
Why Aim for Efficiency? . 56
Measuring Time Precisely . 57
Counting Steps . 57
Comparing to Well-Known Functions . 60
Adding Even More Theoretical Precision . 63
Using Big O Notation . 64

Merge Sort . 65
Merging . 66
From Merging to Sorting . 68

Sleep Sort . 70
From Sorting to Searching . 72

Binary Search . 73
Applications of Binary Search . 75

Summary . 76

5
PURE MATH 77
Continued Fractions . 78

Compressing and Communicating Phi . 79
More about Continued Fractions . 80
An Algorithm for Generating Continued Fractions . 82
From Decimals to Continued Fractions . 86
From Fractions to Radicals . 88

Square Roots . 89
The Babylonian Algorithm . 89
Square Roots in Python . 90

Random Number Generators . 91
The Possibility of Randomness . 91
Linear Congruential Generators . 92
Judging a PRNG . 93
The Diehard Tests for Randomness . 95
Linear Feedback Shift Registers . 97

Summary . 99

Contents in Detail xi

6
ADVANCED OPTIMIZATION 101
Life of a Salesman . 102

Setting Up the Problem . 103
Brains vs . Brawn . 106
The Nearest Neighbor Algorithm . 108
Implementing Nearest Neighbor Search . 108
Checking for Further Improvements . 110
Algorithms for the Avaricious . 112
Introducing the Temperature Function . 113

Simulated Annealing . 115
Tuning Our Algorithm . 118
Avoiding Major Setbacks . 120
Allowing Resets . 121
Testing Our Performance . 122

Summary . 124

7
GEOMETRY 125
The Postmaster Problem . 126
Triangles 101 . 128

Advanced Graduate-Level Triangle Studies . 130
Finding the Circumcenter . 131
Increasing Our Plotting Capabilities . 133

Delaunay Triangulation . 134
Incrementally Generating Delaunay Triangulations 136
Implementing Delaunay Triangulations . 139

From Delaunay to Voronoi . 143
Summary . 147

8
LANGUAGE 149
Why Language Algorithms Are Hard . 150
Space Insertion . 150

Defining a Word List and Finding Words . 151
Dealing with Compound Words . 152
Checking Between Existing Spaces for Potential Words 153
Using an Imported Corpus to Check for Valid Words 154
Finding First and Second Halves of Potential Words 156

Phrase Completion . 159
Tokenizing and Getting N-grams . 159
Our Strategy . 160
Finding Candidate n + 1-grams . 161
Selecting a Phrase Based on Frequency . 162

Summary . 163

xii Contents in Detail

9
MACHINE LEARNING 165
Decision Trees . 165
Building a Decision Tree . 167

Downloading Our Dataset . 168
Looking at the Data . 168
Splitting Our Data . 169
Smarter Splitting . 171
Choosing Splitting Variables . 173
Adding Depth . 175

Evaluating Our Decision Tree . 178
The Problem of Overfitting . 179
Improvements and Refinements . 181

Random Forests . 182
Summary . 183

10
ARTIFICIAL INTELLIGENCE 185
La Pipopipette . 186
Drawing the Board . 187
Representing Games . 188
Scoring Games . 189
Game Trees and How to Win a Game . 190

Building Our Tree . 192
Winning a Game . 195
Adding Enhancements . 199

Summary . 200

11
FORGING AHEAD 201
Doing More with Algorithms . 202
Building a Chatbot . 203

Text Vectorization . 204
Vector Similarity . 206

Becoming Better and Faster . 209
Algorithms for the Ambitious . 209
Solving the Deepest Mysteries . 212

INDEX 215

A C K N O W L E D G M E N T S

“A word is not the same with one writer as it is with another. One tears it
from his guts. The other pulls it out of his overcoat pocket.” This is how
Charles Peguy described writing individual words. The same thing is true
of chapters and whole books. At times, it felt like I was pulling this book
out of my overcoat pocket. At other times, it felt like I was tearing it from
my guts. It seems appropriate to acknowledge everyone who contributed to
the long process, either by loaning me an overcoat or by helping me clean
up my spilled guts.

Many kind people helped me on the long path I took to gain the expe-
rience and skills required to write this book. My parents, David and Becky
Tuckfield, gave me so many gifts, starting with life and education, and con-
tinued to believe in me, encourage me, and help me in many other ways too
numerous to list here. Scott Robertson gave me my first job writing code,
even though I was unqualified and not very good. Randy Jenson gave me my
first data science job, again despite my inexperience and limitations. Kumar
Kashyap gave me my first chance to lead a development team to implement
algorithms. David Zou was the first person to pay me for writing an article
($10 minus PayPal fees for 10 short movie reviews), and that felt so good, it
put me on a path to writing more. Aditya Date was the first person to sug-
gest that I write a book and gave me my first chance to do so.

I also received encouragement from many teachers and mentors. David
Cardon gave me my first chance to collaborate on academic research,
and taught me many things during that process. Bryan Skelton and

xiv Acknowledgments

Leonard Woo showed me examples of what I wanted to grow up to be. Wes
Hutchinson taught me crucial algorithms, like k-means clustering, and
helped me better understand how algorithms work. Chad Emmett taught
me how to think about history and culture, and Chapter 2 is dedicated to
him. Uri Simonsohn showed me how to think about data.

Some people helped to make the process of writing this book a joy.
Seshu Edala helped me adjust my work schedule to be able to write, and
provided constant encouragement. Alex Freed was a joy to work with dur-
ing the editing process. Jennifer Eagar, via Venmo transfer months before
initial publication, unofficially became the first person to buy a copy of the
book; that was appreciated during a difficult time. Hlaing Hlaing Tun was
supportive, helpful, sweet, and encouraging at every step.

I cannot repay all of these debts of gratitude, but at least I can say thank
you. Thank you!

Algorithms are everywhere. You have
probably executed a few already today. In

this book, you will read about dozens of
algorithms: some simple, some complex, some

famous, some unknown, all interesting, and all worth
learning. The first algorithm of the book is also the
most delicious—it generates a berry granola parfait,
and it’s shown in its entirety in Figure 1. You may
be accustomed to calling this type of algorithm a
“recipe,” but it fits Donald Knuth’s definition of an
algorithm: a finite set of rules that gives a sequence of
operations for solving a specific type of problem.

I N T R O D U C T I O N

xvi Introduction

Figure 1: An algorithm: a finite set of rules that gives a sequence of operations
for solving a specific type of problem

Parfait-making is not the only domain of life governed by algorithms.
Every year, the US government requires each adult citizen to execute an
algorithm, and strives to imprison those who fail to do so correctly. In
2017, millions of Americans fulfilled this duty by completing the algorithm
shown in Figure 2, which is taken from a form called 1040-EZ.

Figure 2: The instructions for filing taxes fit the definition of an algorithm.

How is it that taxes and parfaits can have anything in common? Taxes
are inevitable, numeric, difficult, and universally disliked. Parfaits are infre-
quent, artistic, effortless, and adored without exception. The only trait they
share is that people prepare both by following algorithms.

In addition to defining algorithm, the great computer scientist Donald
Knuth noted that it is nearly synonymous with recipe, procedure, and rig-
marole. In the case of filing taxes via the pictured 1040-EZ form, we have
12 steps (a finite list) that specify operations (like addition in step 4 and

Introduction xvii

subtraction in step 6) to solve a specific type of problem: wanting to avoid
being imprisoned for tax evasion. In the case of making a parfait, we have
six finite steps that specify operations (like placing in step 1 and covering in
step 2) to solve a specific type of problem: wanting to have a parfait in your
hand or mouth.

As you learn more about algorithms, you will begin to see them every-
where and come to appreciate just how powerful they can be. In Chapter 1,
we will discuss the remarkable human ability to catch a ball, and find out
the details of the algorithm in the human subconscious that enables us to
do so. Later, we will talk about algorithms for debugging code, deciding
how much to eat at a buffet, maximizing revenue, sorting lists, scheduling
tasks, proofreading text, delivering mail, and winning games like chess and
sudoku. Along the way, we will learn to judge algorithms according to sev-
eral attributes that professionals believe are important for them to possess.
And we will begin to get a sense of the craftsmanship or even, dare we say,
the art of algorithms, which provides scope for creativity and personality in
an otherwise precise and quantitative endeavor.

Who Is This Book For?
This book provides a friendly introduction to algorithms, with accompany-
ing Python code. To get the greatest possible benefit from it, you should
have some experience with the following:

Programming/coding. Every major example in the book is illustrated
with Python code. We strive to provide walkthroughs and explana-
tions of every code snippet to make the book digestible for someone
with no Python experience and not much programming experience.
Nevertheless, someone who has at least some basic understanding of
the fundamentals of programming—such as variable assignment, for
loops, if/then statements, and function calls—will be the most prepared
to benefit.

High school math. Algorithms are often used to accomplish many of
the same goals as math, like solving equations, optimizing, and calcu-
lating values. Algorithms also apply many of the same principles that
are associated with mathematical thinking, like logic and the need for
precise definitions. Some of our discussions veer into mathematical
territory, including algebra, the Pythagorean theorem, pi, and the teen-
siest bit of very basic calculus. We strive to avoid abstruseness and we
don’t venture beyond the math taught in American high schools.

Anyone who feels comfortable with these prerequisites should be able
to master all the content in this book. It was written with the following
groups in mind:

Students. This book is suitable for an introductory class on algo-
rithms, computer science, or programming at the high school or under-
graduate level.

xviii Introduction

Professionals. Several types of professionals could gain valuable skills
from this book, including developers or engineers who want to gain
familiarity with Python, and developers who want to learn more about
the foundations of computer science and how to improve code by think-
ing algorithmically.

Interested amateurs. The true target audience of this book is inter-
ested amateurs. Algorithms touch nearly every part of life, so everyone
should be able to find at least something in this book that enhances
their appreciation of the world around them.

About This Book
This book does not cover every aspect of every extant algorithm; it’s meant
only as an introduction. After reading it, you will have a solid grasp of
what an algorithm is, know how to write code to implement important
algorithms, and understand how to judge and optimize algorithms’ perfor-
mance. You will also be familiar with many of the most popular algorithms
professionals use today. The chapters are organized as follows:

Chapter 1: Problem-Solving with Algorithms, in which we tackle the
problem of how to catch a ball, find evidence for a subconscious algo-
rithm governing human behavior, and discuss what that teaches us
about the utility of algorithms and how to design them.

Chapter 2: Algorithms in History, in which we travel around the world
and through history to find out how ancient Egyptians and Russian
peasants multiplied numbers, how the ancient Greeks found greatest
common divisors, and how medieval Japanese scholars created magic
squares.

Chapter 3: Maximizing and Minimizing, in which we introduce gradi-
ent ascent and gradient descent. These simple methods for finding the
maxima and minima of functions are used for optimization, an impor-
tant goal of many algorithms.

Chapter 4: Sorting and Searching, in which we present fundamental
algorithms for sorting lists and searching for elements within them. We
also introduce how to measure the efficiency and speed of algorithms.

Chapter 5: Pure Math, in which we concern ourselves with purely
mathematical algorithms, including those for generating continued
fractions, calculating square roots, and generating pseudorandom
numbers.

Chapter 6: Advanced Optimization, in which we cover an advanced
method for finding optimal solutions: simulated annealing. We also
introduce the traveling salesman problem, a standard problem in
advanced computer science.

Chapter 7: Geometry, in which we go over how to generate Voronoi dia-
grams, which can be useful in a variety of geometric applications.

Introduction xix

Chapter 8: Language, in which we discuss how to intelligently add
spaces to a text that’s missing them, and how to intelligently suggest the
next words in phrases.

Chapter 9: Machine Learning, in which we discuss decision trees, a
fundamental machine learning method.

Chapter 10: Artificial Intelligence, in which we jump to an ambitious
project: implementing an algorithm that can play games against us—
and maybe even win. We start with a simple game, dots and boxes, and
discuss how we could improve performance.

Chapter 11: Forging Ahead, in which talk about how to progress to
more advanced work related to algorithms. We discuss how to build
a chatbot, and how to win a million dollars by creating a sudoku
algorithm.

Setting Up the Environment
We’ll implement the algorithms described in this book by using the Python
language. Python is free and open source, and it runs on every major
platform. You can use the following steps to install Python on Windows,
macOS, and Linux.

Install Python on Windows
To install Python on Windows, follow these steps:

1. Open the page dedicated to the latest version of Python for Windows
(make sure you include the final slash): https://www.python.org/downloads/
windows/.

2. Click the link for the Python release you want to download. To down-
load the most recent release, click the link Latest Python 3 Release
- 3.X.Y, where 3.X.Y is the latest version number, like 3.8.3. The code in
this book was tested on both Python 3.6 and Python 3.8. If you’re inter-
ested in downloading an older version, scroll down on this page to the
Stable Releases section to find a release you prefer.

3. The link you clicked in step 2 takes you to a page dedicated to your
chosen Python release. In the Files section, click the Windows x86-64
executable installer link.

4. The link in step 3 downloads a .exe file to your computer. This is an
installer file; double-click it to open it. It will execute the installation
process automatically. Check the box Add Python 3.X to PATH where
X is the release number of the installer you downloaded, like 8. After
that, click Install Now and choose the default options.

5. When you see the “Setup was successful” message, click Close to com-
plete the installation process.

https://www.python.org/downloads/windows
https://www.python.org/downloads/windows

xx Introduction

There is now a new application on your computer. Its name is Python 3.X,
where X is the version of Python 3 that you installed. In the Windows search
bar, type Python. When the application appears, click it to open a Python con-
sole. You can enter Python commands in this console, and they’ll run there.

Install Python on macOS
To install Python on macOS follow these steps:

1. Open the page dedicated to the latest version of Python for macOS
(make sure you include the final slash): https://www.python.org/downloads/
mac-osx/.

2. Click the link for the Python release you want to download. To down-
load the most recent release, click the link Latest Python 3 Release
- 3.X.Y, where 3.X.Y is the latest version number, like 3.8.3. The code in
this book was tested on both Python 3.6 and Python 3.8. If you’re inter-
ested in downloading an older version, scroll down on this page to the
Stable Releases section to find a release you prefer.

3. The link you clicked in step 2 takes you to a page dedicated to the latest
Python release. In the Files section, click the macOS 64-bit installer link.

4. The link in step 3 downloads a .pkg file to your computer. This is an
installer file; double-click it to open it. It will execute the installation
process automatically. Choose the default options.

5. The installer will create a folder on your computer called Python 3.X,
where X is the number of the Python release you installed. In this folder,
double-click the icon labeled IDLE. This will open the Python 3.X.Y
Shell, where 3.X.Y is the latest version number. This is a Python console
where you can run any Python commands.

Install Python on Linux
To install Python on Linux follow these steps:

1. Determine which package manager your version of Linux uses. Two
common examples of package managers are yum and apt-get.

2. Open the Linux console (also called the terminal), and execute the fol-
lowing two commands:

> sudo apt-get update
> sudo apt-get install python3.8

If you are using yum or some other package manager, replace both
instances of apt-get in these two lines with yum or the name of your
package manager. Likewise, if you want to install an older version
of Python, replace 3.8 (the latest version number at the time of this

https://www.python.org/downloads/mac-osx
https://www.python.org/downloads/mac-osx

Introduction xxi

writing) with any other release number, like 3.6, one of the versions
used to test the code in this book. To see what the latest version of
Python is, go to https://www.python.org/downloads/source/. There, you
will see a Latest Python 3 Release - Python 3.X.Y link, where 3.X.Y is
a release number; use the first two digits in the installation command
just shown.

3. Run Python by executing the following command in the Linux console:

python3

The Python console opens in the Linux console window. You can enter
Python commands here.

Installing Third-Party Modules
Some of the code we’ll introduce in this book will rely on Python modules
that are not part of the core Python software that you downloaded from
Python’s official website. To install third-party modules on your computer,
follow the instructions at http://automatetheboringstuff.com/2e/appendixa/.

Summary
Our study of algorithms will take us around the world and many centuries
back through history. We’ll explore innovations from ancient Egypt, Babylon,
Periclean Athens, Baghdad, medieval Europe, Edo Japan, and the British Raj,
all the way up to our remarkable present day and its breathtaking technology.
We’ll be pushed to find new ways around problems and through constraints
that initially seem impossible to confront. In doing so, we’ll connect not only
to the pioneers of ancient science but also to anyone today who uses a com-
puter or catches a ball, to generations of algorithm users and creators yet
unborn who will build on what we leave to them in faraway times. This book
is the beginning of your adventure with algorithms.

https://www.python.org/downloads/source/
http://automatetheboringstuff.com/2e/appendixa/

The act of catching a ball is remarkable. A
ball may start so far away that it seems only

a speck on the horizon. It may be in the air
for only a few short seconds or less. The ball will

meet air resistance, wind, and of course, gravity, mov-
ing in something like a parabolic arc. And each time
a ball is thrown, it is sent with a different force, at a
different angle, and in a different environment with different conditions.
So how is it that the moment a batter hits a baseball, an outfielder 300 feet
away seems to immediately know where to run in order to catch it before it
hits the ground?

This question is called the outfielder problem, and it’s still being dis-
cussed in scholarly journals today. We’re starting with the outfielder
problem because it has two very different solutions: an analytic solution
and an algorithmic solution. Comparing these solutions will provide a
vivid illustration of what an algorithm is and how it’s different from other
approaches to problem-solving. Additionally, the outfielder problem will

1
P R O B L E M - S O L V I N G
W I T H A L G O R I T H M S

2 Chapter 1

help us visualize a field that is occasionally abstract—you probably have
some experience throwing and catching something, and this experience
can help you understand the theory behind your practice.

Before we can really understand how a human knows exactly where a
ball will land, it will help to understand how a machine does it. We’ll start
by looking at an analytic solution to the outfielder problem. This solution is
mathematically precise and easy for computers to execute instantaneously,
and some version of it is usually taught in introductory physics classes. It
would enable a sufficiently agile robot to play outfield for a baseball team.

However, humans can’t easily run analytic equations in their heads, and
certainly not as quickly as computers can. A solution that’s better suited to
human brains is an algorithmic solution, which we’ll use to explore what an
algorithm is and what its strengths are compared to other problem-solving
solutions. Moreover, the algorithmic solution will show us that algorithms
are natural to human thought processes and don’t need to be intimidating.
The outfielder problem is meant to introduce a new way to solve problems:
the algorithmic approach.

The Analytic Approach
To solve this problem analytically, we have to go back a few centuries to an
early model of motion.

The Galilean Model
The equations most commonly used to model a ball’s movement date back
to Galileo, who centuries ago formulated polynomials that capture accelera-
tion, speed, and distance. If we ignore wind and air resistance and assume
the ball starts at ground level, Galileo’s model says that the horizontal posi-
tion of a thrown ball at time t will be given by the formula

x = v1t

where v1 represents the starting speed of the ball in the x (horizontal)
direction. Moreover, the height of a thrown ball (y), according to Galileo,
can be calculated at time t as

y = v2t +
2

at 2

where v2 represents the starting speed of the ball in the y (vertical) direc-
tion, and a represents the constant downward acceleration due to gravity
(which will be about –9.81 if we are working in metric units). When we

Problem-Solving With Algorithms 3

substitute the first equation into the second equation, we find that the
height of a thrown ball (y) relates to the horizontal position of the ball
(x) as follows:

y =
2v1

2

ax2

v1

v2 x +

We can use Galileo’s equations to model a hypothetical ball’s trajec-
tory in Python using the function in Listing 1-1. The specific polynomial in
Listing 1-1 is appropriate for a ball whose initial horizontal speed is about
0.99 meters per second, and whose initial vertical speed is about 9.9 meters
per second. You can feel free to try other values for v1 and v2 to model any
type of throw that interests you.

def ball_trajectory(x):
 location = 10*x - 5*(x**2)
 return(location)

Listing 1-1: A function for calculating the trajectory of a ball

We can plot the function in Listing 1-1 in Python to see what, approxi-
mately, a ball’s trajectory should look like (ignoring air resistance and other
negligible factors). We’ll import some plotting capabilities from a module
called matplotlib in the first line. The matplotlib module is one of many
third-party modules we’ll import in code throughout this book. Before you
use a third-party module, you’ll have to install it. You can install matplotlib
and any other third-party modules by following the instructions at http://
automatetheboringstuff.com/2e/appendixa/.

import matplotlib.pyplot as plt
xs = [x/100 for x in list(range(201))]
ys = [ball_trajectory(x) for x in xs]
plt.plot(xs,ys)
plt.title('The Trajectory of a Thrown Ball')
plt.xlabel('Horizontal Position of Ball')
plt.ylabel('Vertical Position of Ball')
plt.axhline(y = 0)
plt.show()

Listing 1-2: Plotting a hypothetical ball trajectory between the moment it is thrown
(at x = 0) and when it hits the ground again (at x = 2)

The output (Figure 1-1) is a nice plot that shows the path our hypo-
thetical ball is expected to follow through space. This pretty curved path is
similar for every moving projectile that’s influenced by gravity and has been
poetically called Gravity’s Rainbow by the novelist Thomas Pynchon.

Not all balls will follow this exact path, but this is one possible path
that a ball could follow. The ball starts at 0, and it goes up and then down
exactly like we are used to seeing balls go up and down, from the left of our
field of view to the right.

http://automatetheboringstuff.com/2e/appendixa/
http://automatetheboringstuff.com/2e/appendixa/

4 Chapter 1

Figure 1-1: The trajectory of a hypothetical thrown ball

The Solve-for-x Strategy
Now that we have an equation for the ball’s position, we can solve that
equation for anything that interests us: where the ball will reach its highest
point, for example, or where it will get to ground level again, which is the
one thing that an outfielder needs to know in order to catch it. Students
in physics classes all over the world are taught how to find these solutions,
and if we wanted to teach a robot to play outfield, it would be very natural
to teach the robot these equations as well. The method for solving for the
ball’s final location is as simple as taking the ball_trajectory() function we
started with and setting it equal to 0:

0 = 10x – 5x 2

Then, we can solve this for x, using the quadratic formula taught to
teenagers everywhere:

x =
2a
b2 – 4ac–b ±

In this case, we find that x = 0 and x = 2 are the solutions. The first solu-
tion, x = 0, is where the ball started, where it was thrown by the pitcher or
hit by the batter. The second solution, x = 2, is where the ball returns to the
ground again after its flight.

The strategy we just used is a relatively simple one. Let’s call it the solve-for-x
strategy. We write down an equation that describes a situation, and then solve
that equation for the variable we’re interested in. The solve-for-x strategy is

Problem-Solving With Algorithms 5

extremely common in the hard sciences, at both the high school and college lev-
els. Students are asked to solve for: a ball’s expected destination, the ideal level
of economic production, the proportion of a chemical that should be used in an
experiment, or any number of other things.

The solve-for-x strategy is extremely powerful. If, for example, an army
observed an enemy force fire a projectile weapon (say, a missile), they could
quickly plug Galileo’s equation into their calculators and nearly instanta-
neously find where the missile was expected to land, and evade it or inter-
cept it accordingly. It could be done for free on a consumer-level laptop
running Python. If a robot were playing outfield in a baseball game, it
could do the same to catch a ball without breaking a sweat.

The solve-for-x strategy is easy in this case because we already know
the equation that needs to be solved and the method to solve it. We owe the
equation for a thrown ball to Galileo, as mentioned. We owe the quadratic
formula to the great Muhammad ibn Musa al-Khwarizmi, who was the first
to specify a fully general solution of the quadratic equation.

Al-Khwarizmi was a ninth-century polymath who contributed to astron-
omy, cartography, and trigonometry, besides giving us the word algebra and
the method it refers to. He’s one of the important figures who has enabled
us to take the journey of this book. Since we live after giants like Galileo and
al-Khwarizmi, we don’t need to suffer through the difficult part of deriving
their equations—we just have to memorize them and use them appropriately.

The Inner Physicist
Using Galileo’s and al-Khwarizmi’s equations and a solve-for-x strategy, a
sophisticated machine can catch a ball or intercept a missile. But it seems
reasonable to assume that most baseball players don’t start writing out
equations as soon as they see a ball go into the air. Reliable observers have
reported that professional baseball spring training programs consist of
a great deal of time running around and playing, and considerably less
time gathered around a whiteboard deriving the Navier-Stokes equations.
Solving the mystery of where a ball will land doesn’t provide a clear-cut
answer to the outfielder problem—that is, how a human can instinctively
know where a ball will land without plugging it into a computer program.

Or maybe it does. The glibbest possible solution to the outfielder prob-
lem is to assert that if computers are solving Galilean quadratics to deter-
mine where balls will land, then so are humans. We’ll call this solution the
inner physicist theory. According to this theory, the “wetware” of our brains is
able to set up and solve quadratic equations, or else draw plots and extrapo-
late their lines, all far beneath the level of our consciousness. Each of us, in
other words, has an “inner physicist” deep in our brains who can calculate
exact solutions to difficult math problems in seconds and deliver the solu-
tions to our muscles, which can then find their way to the ball, bringing our
bodies and mitts along. Our subconscious might be able to do this even if
we’ve never taken a physics class or solved for x.

The inner physicist theory is not without its proponents. Notably, the
well-known mathematician Keith Devlin published a book in 2006 called
The Math Instinct: Why You’re a Mathematical Genius (Along with Lobsters, Birds,

6 Chapter 1

Cats, and Dogs). The book’s cover shows a dog jumping to catch a Frisbee,
with arrows tracing the respective trajectory vectors of the Frisbee and the
dog, implying that the dog is able to perform the intricate calculations that
would be required to make those vectors meet.

The manifest ability of dogs to catch Frisbees and humans to catch base-
balls seems to be a point in favor of the inner physicist theory. The subcon-
scious is a mysterious and powerful thing, whose depths we have yet to fully
plumb. So why couldn’t it solve some high school–level equations now and
then? More pressingly, the inner physicist theory is difficult to refute because
it’s hard to think of alternatives to it: if dogs can’t solve partial differential
equations to catch Frisbees, then how do they catch them anyway? They take
great leaps into the air and catch erratically moving Frisbees in their jaws like
it’s nothing. If they aren’t solving some physics problem in their brains, then
how else could they (and we) possibly know how to precisely intercept a ball?

As recently as 1967, no one had a good answer. That year, the engineer
Vannevar Bush wrote a book in which he described the scientific features of
baseball as he understood them, and he was unable to provide any explana-
tion for how outfielders know where to run to catch fly balls. Luckily for us,
the physicist Seville Chapman read Bush’s book and was inspired to pro-
pose a theory of his own the very next year.

The Algorithmic Approach
Chapman, true scientist that he was, was not satisfied with a mystical and
unverified trust in the human subconscious, and he wanted a more con-
crete explanation for outfielders’ powers. This is what he discovered.

Thinking with Your Neck
Chapman began to tackle the outfielder problem by noting the information
available to someone catching a ball. Though it’s difficult for humans to
estimate an exact velocity or the trajectory of a parabolic arc, he thought we
would have an easier time observing angles. If someone throws or hits a ball
from the ground and the ground is flat and even, then the outfielder will
see the ball start at close to eye level. Imagine an angle formed by two lines:
the ground, and the line between the outfielder’s eyes and the ball. The
moment the ball is hit by the batter, this angle will be (roughly) 0 degrees.
After the ball has been in flight for a brief moment, it will be higher than
the ground, so the angle between the ground and the outfielder’s line of
sight with the ball will have increased. Even if the outfielder has not studied
geometry, they will have a “feel” for this angle—for example, by feeling how
far back they have to tilt their neck to see the ball.

If we suppose that the outfielder is standing where the ball will eventu-
ally land, at x = 2, we can get a sense of the way the angle of the outfielder’s
line of sight with the ball increases by plotting a line of sight from early in
the ball’s trajectory. The following line of code creates a line segment for the

Problem-Solving With Algorithms 7

plot we drew in Listing 1-2, and it is meant to be run in the same Python ses-
sion. This line segment represents the line between the outfielder’s eyes and
the ball after the ball has traveled 0.1 meters horizontally.

xs2 = [0.1,2]
ys2 = [ball_trajectory(0.1),0]

We can plot this line of sight along with other lines of sight to see how
the angle continues to increase over the course of the ball’s trajectory. The
following lines of code add more line segments to the same plot we drew in
Listing 1-2. These line segments represent the line between the outfielder’s
eyes and the ball at two more points in the ball’s journey: the points when
the ball has traveled 0.1, 0.2, and 0.3 meters horizontally. After creating all
of these line segments, we will plot them all together.

xs3 = [0.2,2]
ys3 = [ball_trajectory(0.2),0]
xs4 = [0.3,2]
ys4 = [ball_trajectory(0.3),0]
plt.title('The Trajectory of a Thrown Ball - with Lines of Sight')
plt.xlabel('Horizontal Position of Ball')
plt.ylabel('Vertical Position of Ball')
plt.plot(xs,ys,xs2,ys2,xs3,ys3,xs4,ys4)
plt.show()

The resulting plot shows several lines of sight that form continuously
increasing angles with the ground (Figure 1-2).

Figure 1-2: The trajectory of a hypothetical thrown ball, with line segments representing
the outfielder looking at the ball as it travels

8 Chapter 1

As the ball progresses through its flight, the angle of the outfielder’s
line of sight continues to increase, and the outfielder has to keep tipping
their head back until they make the catch. Let’s call the angle between the
ground and the outfielder’s line of sight with the ball theta. We assume that
the outfielder is standing at the ball’s eventual destination (x = 2). Recall
from high school geometry class that the tangent of an angle in a right tri-
angle is the ratio of the length of the side that’s opposite the angle and the
length of the side that’s adjacent to the angle (and is not the hypotenuse).
In this case, the tangent of theta is the ratio of the height of the ball to its
horizontal distance from the outfielder. We can plot the sides whose ratio
constitutes the tangent with the following Python code:

xs5 = [0.3,0.3]
ys5 = [0,ball_trajectory(0.3)]
xs6 = [0.3,2]
ys6 = [0,0]
plt.title('The Trajectory of a Thrown Ball - Tangent Calculation')
plt.xlabel('Horizontal Position of Ball')
plt.ylabel('Vertical Position of Ball')
plt.plot(xs,ys,xs4,ys4,xs5,ys5,xs6,ys6)
plt.text(0.31,ball_trajectory(0.3)/2,'A',fontsize = 16)
plt.text((0.3 + 2)/2,0.05,'B',fontsize = 16)
plt.show()

The resulting plot is shown in Figure 1-3.

Figure 1-3: The trajectory of a hypothetical thrown ball, with a line segment representing
the outfielder looking at the ball as it travels, and line segments A and B showing the
lengths whose ratio constitutes the tangent we are interested in

Problem-Solving With Algorithms 9

We calculate the tangent by taking the ratio of the length of the side
labeled A and the length of the side labeled B. The equation for the height
A will be 10x – 5x2, while the equation for the length of B will be 2 – x. So
the following equation implicitly describes the ball’s angle theta at each
moment of its flight:

tan(θ) = = 5x
2 – x

10x – 5x 2

The overall situation is complex: a ball is hit far away and quickly shoots
through a parabolic curve whose end is hard to immediately estimate. But
in this complex situation, Chapman has found this simple relationship: that
when the outfielder is standing in the right location, the tangent of theta grows
at a simple, constant rate. The kernel of Chapman’s breakthrough is that
the tangent of theta, the ball’s angle with the ground, grows linearly over
time. Since Chapman found that simple relationship in the weeds of the
outfielder problem, he was able to develop an elegant algorithmic solution
to it.

His solution depends on the fact that if something—in this case, the
tangent of theta—grows at a constant rate, it has zero acceleration. So if you
are standing exactly where a ball is headed, you’ll observe an angle whose
tangent experiences zero acceleration. By contrast, if you are standing too
close to the ball’s initial position, you’ll observe positive acceleration. If you
are standing too far from the ball’s initial position, you’ll observe negative
acceleration. (You are encouraged to verify the messy calculus behind these
truths if you so desire.) This means that an outfielder can know where they
need to go by feeling how steadily they have to tilt back their head as they
look at the ball rising—thinking, so to speak, with their neck.

Applying Chapman’s Algorithm
Robots don’t necessarily have necks, and so a method for “thinking with
one’s neck” may not be helpful for a robot outfielder. Remember that they
can solve quadratic equations directly and instantaneously to find where
to go to catch a ball, without worrying about the acceleration of the tan-
gent of theta. But for humans, Chapman’s neck-thinking method could be
extremely useful. In order to get to the ball’s eventual destination, a human
outfielder could follow this relatively simple process:

 1. Observe the acceleration of the tangent of the angle between the
ground and your line of sight with the ball.

 2. If the acceleration is positive, step backward.

 3. If the acceleration is negative, step forward.

 4. Repeat steps 1–3 until the ball is directly in front of your face.

 5. Catch it.

10 Chapter 1

One serious objection to Chapman’s five-step method is that outfield-
ers following this process seem to have to calculate the tangents of angles
on the fly, meaning we’re replacing an inner physicist theory with an “inner
geometer theory” in which baseball players can instantaneously, and sub-
consciously, take tangents.

One potential resolution to this objection is that for many angles,
tan(theta) is approximately equal to theta, so rather than observing the
acceleration of a tangent, outfielders can merely observe the acceleration
of an angle. If the acceleration of an angle can be estimated by the felt
acceleration of the neck joints that crick as the neck moves back to observe
the ball, and if an angle is a reasonable approximation for its tangent, then
we don’t need to assume any great subconscious mathematical or geometri-
cal powers on the part of outfielders—only the physical skill of being accu-
rately attuned to subtle sensory inputs.

By making an acceleration estimate the only difficult part of the pro-
cess, we have obtained a potential solution to the outfielder problem that
has much more psychological plausibility than the inner physicist’s theory
of subconsciously extrapolated parabolas. Of course, the psychological
appeal of the solution doesn’t mean that it can be used only by humans.
A robot outfielder could also be programmed to follow Chapman’s five-
step process, and it might even perform better at catching the ball if it did
so, because, for example, Chapman’s process enables those who use it to
dynamically respond to changes due to wind or bounces.

Besides psychological plausibility, there’s one more crucial feature that
the five-step process implied by Chapman’s insight possesses: it doesn’t rely
on a solve-for-x strategy or any explicit equation at all. Instead, it proposes
successive iterations of easy observations and small, gradual steps to reach
a well-defined goal. In other words, the process that we have inferred from
Chapman’s theory is an algorithm.

Solving Problems with Algorithms
The word algorithm came from the name of the great al-Khwarizmi, men-
tioned earlier. It’s not an easy word to define, not least because its accepted
definition has changed over time. Stated simply, an algorithm is just a set
of instructions that produce a well-defined outcome. This is a broad defini-
tion; as we saw in the Introduction, tax forms and recipes for parfaits could
rightly be considered algorithms.

Chapman’s ball-catching process, or Chapman’s algorithm as we may
want to call it, is arguably even more algorithm-like than a recipe for a par-
fait, because it contains a looping structure in which small steps are taken
repeatedly until a definite condition is reached. This is a common algorith-
mic structure you’ll see throughout this book.

Chapman proposed an algorithmic solution to the outfielder problem
because a solve-for-x solution was not plausible (outfielders often don’t
know the relevant equations). In general, algorithms are most useful when
the solve-for-x strategy fails. Sometimes we don’t know the right equations

Problem-Solving With Algorithms 11

to use, but more often there is no equation that could fully describe a
situation, the equation is impossible to solve, or we face time or space con-
straints. Algorithms exist at the edge of what is possible, and every time an
algorithm is created or improved, we push the frontier of efficiency and
knowledge out a little further.

Today, there is a common perception that algorithms are difficult, esoteric,
mysterious, and strictly mathematical and that they require years of study to
understand. The way our education system is structured today, we begin teach-
ing children the solve-for-x strategy as early as possible, and we explicitly
teach algorithms only at the college or graduate school levels, if at all. For
many students, it takes years to master the solve-for-x strategy, and it always
feels unnatural to them. People who have had this experience may assume
that algorithms will feel just as unnatural, and will also be more difficult to
understand because they are more “advanced.”

However, the lesson I take from Chapman’s algorithm is that we have
gotten it all exactly backward. During recess, students learn and perfect
their performance of dozens of algorithms, for catching, throwing, kick-
ing, running, and moving. There are probably also much more complex
algorithms, which have not been fully delineated, that govern the operation
of the social world of recess: the talking, status seeking, gossiping, alliance
formation, and friendship cultivation. When we end recess time and start
math class, we take students out of a world of algorithm exploration and
push them to learn an unnatural and mechanistic process of solving for x,
a process that is not a natural part of human development and is not even
the most powerful method for solving analytical problems. Only if students
progress to advanced math and computer science do they return to the nat-
ural world of algorithms and the powerful processes that they were uncon-
sciously and joyfully mastering at recess.

This book is meant to be an intellectual recess for the curious—a recess
in the sense that a young student means it: the beginning of all important
activity, the end of all drudgery, and the continuation of cheerful explora-
tion with friends. If you have any feeling of trepidation about algorithms,
remind yourself that we humans are naturally algorithmic, and if you can
catch a ball or bake a cake, you can master an algorithm.

In the remainder of this book, we explore many different algorithms.
Some will sort lists or calculate numbers. Others will enable natural language
processing and artificial intelligence. I encourage you to bear in mind that
algorithms don’t grow on trees. Each algorithm, before it became mainstream
and was packaged for general consumption in this book, was discovered or
created by someone like Chapman, who woke up one day in a world in which
his algorithm didn’t exist and went to sleep at the end of that day in a world in
which it did. I encourage you to try to get in the mindset of these heroic dis-
coverers. That is, I encourage you to approach an algorithm not only as a tool
to be used but also as a formidable problem that was solved. The world of algo-
rithms is not yet close to being fully mapped—many remain to be discovered
and perfected, and I earnestly hope that you can be a part of that discovery
process.

12 Chapter 1

Summary
In this chapter, you saw two approaches to solving a problem: the analytic
one and the algorithmic one. By solving the outfield problem two ways, we
explored the differences between these approaches, ultimately arriving
at Chapman’s algorithm. Chapman found a simple pattern in a complex
situation (the constant acceleration of the tangent of theta) and used it to
develop the idea of an iterative, looping process that requires only one sim-
ple input (the feeling of acceleration in a craning neck) and leads to a defi-
nite goal (catching a ball). When you seek to develop and use algorithms in
your own work, you can try to emulate Chapman’s example.

In the next chapter, we look at some examples of algorithms in history.
These examples should deepen your appreciation of algorithms, including
what they are and how they work. We’ll talk about algorithms from ancient
Egypt, ancient Greece, and Imperial Japan. Every new algorithm you learn
can be an addition to the “toolbox” of algorithms that you can rely on when
you eventually advance to the point at which you can design and perfect
your own.

Most people associate algorithms with com-
puters. This is not unreasonable; computer

operating systems use many sophisticated
algorithms, and programming is well suited to

implementing all sorts of algorithms precisely. But
algorithms are more fundamental than the computer
architecture we implement them on. As mentioned
in Chapter 1, the word algorithm dates back about a
millennium, and algorithms have been described in
ancient records going back much further than that.
Even outside of written records, there is abundant evidence for the use of
complex algorithms in the ancient world—in, for example, their construc-
tion methods.

This chapter presents several algorithms of antique provenance. They
show great ingenuity and insight, especially considering that they had to be
invented and verified without the aid of computers. We start by discussing

2
A L G O R I T H M S I N H I S T O R Y

14 Chapter 2

Russian peasant multiplication, a method for arithmetic that, despite the
name, might be Egyptian and might not actually be associated with peas-
ants. We continue by covering Euclid’s algorithm, an important “classic”
algorithm for finding greatest common divisors. Finally, we cover an algo-
rithm from Japan that generates magic squares.

Russian Peasant Multiplication
Many people remember learning the multiplication table as a particularly
painful part of their education. Young children ask their parents why learn-
ing the multiplication table is necessary, and parents usually respond that
they can’t multiply without knowing it. How wrong they are. Russian peasant
multiplication (RPM) is a method that enables people to multiply large num-
bers without knowing most of the multiplication table.

RPM’s origins are unclear. An ancient Egyptian scroll called the Rhind
papyrus contains a version of this algorithm, and some historians have pro-
posed (mostly unconvincing) conjectures about how the method could have
spread from ancient Egyptian scholars to the peasants of the vast Russian
hinterlands. Regardless of the details of its history, RPM is an interesting
algorithm.

Doing RPM by Hand
Consider the task of multiplying 89 by 18. Russian peasant multiplication
proceeds as follows. First, create two columns next to each other. The first
column is called the halving column and starts with 89. The second column
is the doubling column and starts with 18 (Table 2-1).

Table 2-1: Halving/Doubling Table, Part 1

Halving Doubling

89 18

We’ll fill out the halving column first. Each row of the halving column
takes the previous entry and divides it by 2, ignoring the remainder. For
example, 89 divided by 2 is 44 remainder 1, so we write 44 in the second
row of the halving column (Table 2-2).

Table 2-2: Halving/Doubling Table, Part 2

Halving Doubling

89 18

44

We continue dividing by 2 until we reach 1, dropping the remainder
every time and writing the result in the next row. As we continue, we find

Algorithms in History 15

that 44 divided by 2 is 22, then half of that is 11, then half of that (dropping
the remainder) is 5, then 2, then 1. After writing these in the halving col-
umn, we have Table 2-3.

Table 2-3: Halving/Doubling Table, Part 3

Halving Doubling

89 18

44

22

11

5

2

1

We’ve completed the halving column. As the name suggests, each entry in
the doubling column will be double the previous entry. So since 18 × 2 is 36,
36 is the second entry in the doubling column (Table 2-4).

Table 2-4: Halving/Doubling Table, Part 4

Halving Doubling

89 18

44 36

22

11

5

2

1

We continue to add entries to the doubling column by following the
same rule: just double the previous entry. We do this until the doubling col-
umn has as many entries as the halving column (Table 2-5).

Table 2-5: Halving/Doubling Table, Part 5

Halving Doubling

89 18

44 36

22 72

11 144

5 288

2 576

1 1,152

16 Chapter 2

The next step is to cross out or remove every row in which the halving
column contains an even number. The result is shown in Table 2-6.

Table 2-6: Halving/Doubling Table, Part 6

Halving Doubling

89 18

11 144

5 288

1 1,152

The final step is to take the sum of the remaining entries in the dou-
bling column. The result is 18 + 144 + 288 + 1,152 = 1,602. You can check
with a calculator that this is correct: 89 × 18 = 1,602. We have accomplished
multiplication through halving, doubling, and addition, all without needing
to memorize most of the tedious multiplication table that young children so
despise.

To see why this method works, try rewriting the doubling column in
terms of 18, the number we are trying to multiply (Table 2-7).

Table 2-7: Halving/Doubling Table, Part 7

Halving Doubling

89 18 × 1

44 18 × 2

22 18 × 4

11 18 × 8

5 18 × 16

2 18 × 32

1 18 × 64

The doubling column is now written in terms of 1, 2, 4, 8, and so on to 64.
These are powers of 2, and we can also write them as 20, 21, 22, and so on.
When we take our final sum (adding together the doubling rows with odd
entries in the halving column), we’re really finding this sum:

18 × 20 + 18 × 23 + 18 × 24 + 18 × 26 = 18 × (20 + 23 + 24 + 26) = 18 × 89

The fact that RPM works hinges on the fact that

(20 + 23 + 24 + 26) = 89

If you look closely enough at the halving column, you can get a sense
for why the preceding equation is true. We can also write this column in
terms of powers of 2 (Table 2-8). When we do so, it’s easier to start at the
lowest entry and work upward. Remember that 20 is 1 and 21 is 2. In every

Algorithms in History 17

row, we multiply by 21, and in the rows where the halving number is odd, we
also add 20. You can see the expression start to resemble our equation more
and more as you rise through the rows. By the time we reach the top of the
table, we have an expression that simplifies to exactly 26 + 24 + 23 + 20.

Table 2-8: Halving/Doubling Table, Part 8

Halving Doubling

(25 + 23 + 22) × 21 + 20 = 26 + 24 + 23 + 20 18 × 20

(24 + 22 + 21) × 21 = 25 + 23 + 22 18 × 21

(23 + 21 + 20) × 21 = 24 + 22 + 21 18 × 22

(22 + 20) × 21 + 20 = 23 + 21 + 20 18 × 23

21 × 21 + 20 = 22 + 20 18 × 24

20 × 21 = 21 18 × 25

20 18 × 26

If you number the rows of the halving column starting with the top
row as row 0, then 1, 2, and all the way to the bottom row as row 6, you can
see that the rows with odd values in the halving column are rows 0, 3, 4,
and 6. Now notice the crucial pattern: those row numbers are exactly the
exponents in the expression for 89 that we found: 26 + 24 + 23 + 20. This is
not a coincidence; the way we constructed the halving column means that
the odd entries will always have row numbers that are the exponents in a
sum of powers of 2 equaling our original number. When we take a sum of
the doubling entries with those indices, we’re summing up 18 multiplied by
powers of 2 that sum to exactly 89, so we’ll get 89 × 18 as our result.

The reason this works is that really, RPM is an algorithm within an
algorithm. The halving column itself is an implementation of an algorithm
that finds the sum of powers of 2 that equals the number at the top of the
column. This sum of powers of 2 is also called the binary expansion of 89.
Binary is an alternative way to write numbers using only 0s and 1s, and it
has become extremely important in recent decades because computers
store information in binary. We can write 89 in binary as 1011001, with 1s
in the zeroth, third, fourth, and sixth places (counting from the right), the
same as the odd rows of the halving column, and also the same as the expo-
nents in our equation. We can interpret the 1s and 0s in a binary represen-
tation as coefficients in a sum of powers of 2. For example, if we write 100,
we interpret it in binary as

1 × 22 + 0 × 21 + 0 × 20

or what we would usually write as 4. If we write 1001, we interpret it in
binary as

1 × 23 + 0 ×22 + 0 × 21 + 1 × 20

18 Chapter 2

or what we would usually write as 9. After running this mini-algorithm to
get the binary expansion of 89, we are poised to easily run the full algo-
rithm and complete the multiplication process.

Implementing RPM in Python
It’s relatively simple to implement RPM in Python. Let’s say that we want to
multiply two numbers that we will call n1 and n2. First, let’s open a Python
script and define these variables:

n1 = 89
n2 = 18

Next, we’ll start our halving column. Just as described, the halving col-
umn begins with one of the numbers we want to multiply:

halving = [n1]

The next entry will be halving[0]/2, ignoring the remainder. In Python,
we can use the math.floor() function to accomplish this. This function just
takes the closest integer less than a given number. For example, the second
row of the halving column can be calculated as follows:

import math
print(math.floor(halving[0]/2))

If you run this in Python, you’ll see that the answer is 44.
We can loop through each row of the halving column, and in each iter-

ation of our loop, we will find the next entry in the halving column in the
same way, stopping when we reach 1:

while(min(halving) > 1):
 halving.append(math.floor(min(halving)/2))

This loop uses the append() method for concatenation. At each iteration
of the while loop, it concatenates the halving vector with half of its last value,
using the math.floor() function to ignore the remainder.

For the doubling column, we can do the same: start with 18, and then
continue through a loop. In each iteration of the loop, we’ll add double the
previous entry to the doubling column, and we’ll stop after this column is
the same length as the halving column:

doubling = [n2]
while(len(doubling) < len(halving)):
 doubling.append(max(doubling) * 2)

Finally, let’s put these two columns together in a dataframe called
half_double:

import pandas as pd
half_double = pd.DataFrame(zip(halving,doubling))

Algorithms in History 19

We imported the Python module called pandas here. This module
enables us to work with tables easily. In this case, we used the zip com-
mand, which, as suggested by its name, joins halving and doubling together
like a zipper joins two sides of a garment together. The two sets of num-
bers, halving and doubling, start as independent lists, and after being zipped
together and converted into a pandas dataframe, are stored in a table as two
aligned columns, as shown in Table 2-5. Since they’re aligned and zipped
together, we can refer to any row of Table 2-5, such as the third row, and
get the full row, including the elements from both halving and doubling (22
and 72). Being able to refer to and work with these rows will make it easy
to remove the rows we don’t want, like we did to Table 2-5 to convert it to
Table 2-6.

Now we need to remove the rows whose entries in the halving column
are even. We can test for evenness using the % (modulo) operator in Python,
which returns a remainder after division. If a number x is odd, then x%2 will
be 1. The following line will keep only the rows of the table whose entry in
the halving column is odd:

half_double = half_double.loc[half_double[0]%2 == 1,:]

In this case, we use the loc functionality in the pandas module to select
only the rows we want. When we use loc, we specify which rows and columns
we want to select in the square brackets ([]) that follow it. Inside the square
brackets, we specify which rows and columns we want in order, separated by
a comma: the format is [row, column]. For example, if we wanted the row with
index 4 and the column with index 1, we could write half_double.loc[4,1]. In
this case, we will do more than just specify indices. We will express a logical
pattern for which rows we want: we want all rows where halving is odd. We
specify the halving column in our logic with half_double[0], since it’s the col-
umn with index 0. We specify oddness with %2 == 1. Finally, we specify that
we want all columns after the comma by writing a colon, which is a shortcut
indicating that we want every column.

Finally, we simply take the sum of the remaining doubling entries:

answer = sum(half_double.loc[:,1])

Here, we are using loc again. We specify inside the square brackets
that we want every row by using the colon shortcut. We specify that we want
doubling, the column with index 1, after the comma. Note that the 89 × 18
example we worked through could be done more quickly and easily if we
instead calculated 18 × 89—that is, if we put 18 in the halving column and
89 in the doubling column. I encourage you to try this to see the improve-
ment. In general, RPM is faster if the smaller multiplicand is placed in the
halving column and the larger one in the doubling column.

To someone who has already memorized the multiplication table, RPM
may seem pointless. But besides its historical charm, RPM is worth learn-
ing for a few reasons. First, it shows that even something as dry as multi-
plying numbers can be done in multiple ways and is amenable to creative

20 Chapter 2

approaches. Just because you’ve learned one algorithm for something
doesn’t mean that it’s the only, or the best, algorithm for the purpose—
keep your mind open to new and potentially better ways of doing things.

RPM may be slow, but it requires less memorization up front because it
doesn’t require knowledge of most of the multiplication table. Sometimes
it can be very useful to sacrifice a little speed for the sake of low memory
requirements, and this speed/memory tradeoff is an important con-
sideration in many situations where we’re designing and implementing
algorithms.

Like many of the best algorithms, RPM also brings into focus relation-
ships between apparently disparate ideas. Binary expansions may seem
like just a curiosity, of interest to transistor engineers but not useful to a
layperson or even a professional programmer. But RPM shows a deep con-
nection between the binary expansion of a number and a convenient way to
multiply with only minimal knowledge of the multiplication table. This is
another reason to always keep learning: you never know when some appar-
ently useless factoid may form the basis for a powerful algorithm.

Euclid’s Algorithm
The ancient Greeks gave many gifts to humanity. One of their greatest was
theoretical geometry, which was rigorously compiled by the great Euclid in
his 13 books called the Elements. Most of Euclid’s mathematical writing is
in a theorem/proof style, in which a proposition is deduced logically from
simpler assumptions. Some of his work is also constructive, meaning that it
provides a method for using simple tools to draw or create a useful figure,
like a square with a particular area or a tangent to a curve. Though the word
had not been coined yet, Euclid’s constructive methods were algorithms, and
some of the ideas behind his algorithms can still be useful today.

Doing Euclid’s Algorithm by Hand
Euclid’s most famous algorithm is commonly known as Euclid’s algorithm,
though it is only one of many that he wrote about. Euclid’s algorithm is
a method for finding the greatest common divisor of two numbers. It is
simple and elegant and takes only a few lines to implement in Python.

We begin with two natural (whole) numbers: let’s call them a and b.
Let’s say that a is larger than b (if it’s not, just rename a to b and rename b
to a, and then a will be larger). If we divide a/b, we’ll get an integer quotient
and an integer remainder. Let’s call the quotient q1, and the remainder c.
We can write this as follows:

a = q1 × b + c

For example, if we say that a = 105 and b = 33, we find that 105/33 is 3,
remainder 6. Notice that the remainder c will always be smaller than both
a and b—that’s how remainders work. The next step of the process is to

Algorithms in History 21

forget about a, and focus on b and c. Just like before, we say that b is larger
than c. We then find the quotient and remainder when dividing b/c. If we
say that b/c is q2, with remainder d, we can write our result as follows:

b = q2 × c + d

Again, d will be smaller than both b and c, since it’s a remainder. If you
look at our two equations here, you can start to see a pattern: we’re work-
ing our way through the alphabet, shifting terms to the left every time. We
started with a, b, and c, and then we had b, c, and d. You can see this pattern
continue in our next step, in which we divide c/d, and call the quotient q3
and the remainder e.

c = q3 × d + e

We can continue this process, proceeding as far as we need through the
alphabet, until the remainder is equal to zero. Remember that remainders
are always smaller than the numbers that were divided to get them, so c is
smaller than a and b, d is smaller than b and c, e is smaller than c and d, and
so on. This means that at every step, we’re working with smaller and smaller
integers, so we must eventually get to zero. When we get a zero remainder,
we stop the process, and we know that the last nonzero remainder is the
greatest common divisor. For example, if we find that e is zero, then d is
the greatest common divisor of our original two numbers.

Implementing Euclid’s Algorithm in Python
We can implement this algorithm in Python quite easily, as shown in
Listing 2-1.

def gcd(x,y):
 larger = max(x,y)
 smaller = min(x,y)

 remainder = larger % smaller

 if(remainder == 0):
 return(smaller)

 if(remainder != 0):

1 return(gcd(smaller,remainder))

Listing 2-1: Implementing Euclid’s algorithm using recursion

The first thing to notice is that we don’t need any of the q1, q2, q3 . . .
quotients. We need only the remainders, the successive letters of the alpha-
bet. Remainders are easy to get in Python: we can use the % operator from
the previous section. We can write a function that takes the remainder after
division for any two numbers. If the remainder is zero, then the greatest
common divisor is the smaller of the two inputs. If the remainder is not
zero, we use the smaller of the two inputs and the remainder as inputs into
the same function.

22 Chapter 2

Notice that this function calls itself if the remainder is nonzero 1. The
act of a function calling itself is known as recursion. Recursion can seem
intimidating or confusing at first; a function that calls itself may seem
paradoxical, like a snake that can eat itself or a person trying to fly by pull-
ing on their own bootstraps. But don’t be scared. If you’re unfamiliar with
recursion, one of the best things to do is start with a concrete example, like
finding the greatest common divisor of 105 and 33, and follow each step of
the code as if you are the computer. You will see that in this example, recur-
sion is just a concise way to express the steps we listed in “Doing Euclid’s
Algorithm by Hand” on page 20. There is always a danger with recursion
that you create an infinite recursion—that a function calls itself, and while
calling itself, calls itself again, and nothing ever causes the function to end,
so it attempts to call itself endlessly, which is a problem because we need the
program to terminate in order to get the final answer. In this case, we can
feel safe because at each step we are getting smaller and smaller remainders
that will eventually go down to zero and enable us to exit the function.

Euclid’s algorithm is short and sweet and useful. I encourage you to cre-
ate an even more concise implementation of it in Python.

Japanese Magic Squares
The history of Japanese mathematics is particularly fascinating. In A History
of Japanese Mathematics, originally published in 1914, the historians David
Eugene Smith and Yoshio Mikami wrote that Japanese math had histori-
cally possessed a “genius for taking infinite pains” and “ingenuity in untan-
gling minute knots and thousands of them.” On the one hand, mathematics
uncovers absolute truths that should not vary between times and cultures.
On the other hand, the types of problems that distinct groups tend to focus
on and their idiosyncratic approaches to them, not to mention differences
in notation and communication, provide great scope for noteworthy cul-
tural differences, even in a field as austere as math.

Creating the Luo Shu Square in Python
Japanese mathematicians had a fondness for geometry, and many of their
ancient manuscripts pose and solve problems related to finding the areas of
exotic shapes like circles inscribed within ellipses and Japanese hand fans.
Another steady area of focus for Japanese mathematicians throughout sev-
eral centuries was the study of magic squares.

A magic square is an array of unique, consecutive natural numbers such
that all rows, all columns, and both of the main diagonals have the same
sum. Magic squares can be any size. Table 2-9 shows an example of a 3×3
magic square.

Algorithms in History 23

Table 2-9: The Luo Shu Square

4 9 2

3 5 7

8 1 6

In this square, each row, each column, and both main diagonals sum
to 15. This is more than just a random example—it’s the famous Luo Shu
square. According to an ancient Chinese legend, this magic square was first
seen inscribed on the back of a magical turtle who came out of a river in
response to the prayers and sacrifices of a suffering people. In addition
to the definitional pattern that each row, column, and diagonal sums to
15, there are a few other patterns. For example, the outer ring of numbers
alternates between even and odd numbers, and the consecutive numbers 4,
5, and 6 appear in the main diagonal.

The legend of the sudden appearance of this simple but fascinat-
ing square as a gift from the gods is fitting for the study of algorithms.
Algorithms are often easy to verify and use, but they can be difficult to
design from scratch. Especially elegant algorithms, when we have the good
luck to invent one, seem revelatory, as if they have come out of nowhere as
a gift from the gods inscribed on the back of a magical turtle. If you doubt
this, try to create an 11×11 magic square from scratch, or try to discover a
general-purpose algorithm for generating new magic squares.

Knowledge of this and other magic squares apparently passed from
China to Japan at least as early as 1673, when a mathematician named
Sanenobu published a 20×20 magic square in Japan. We can create the Luo
Shu square in Python with the following command:

luoshu = [[4,9,2],[3,5,7],[8,1,6]]

It will come in handy to have a function that verifies whether a given
matrix is a magic square. The following function does this by verifying the
sums across all rows, columns, and diagonals and then checking whether
they are all the same:

def verifysquare(square):
 sums = []
 rowsums = [sum(square[i]) for i in range(0,len(square))]
 sums.append(rowsums)
 colsums = [sum([row[i] for row in square]) for i in range(0,len(square))]
 sums.append(colsums)
 maindiag = sum([square[i][i] for i in range(0,len(square))])
 sums.append([maindiag])
 antidiag = sum([square[i][len(square) - 1 - i] for i in \
range(0,len(square))])
 sums.append([antidiag])
 flattened = [j for i in sums for j in i]
 return(len(list(set(flattened))) == 1)

24 Chapter 2

Implementing Kurushima's Algorithm in Python
In the previous sections, we discussed how to perform our algorithms of inter-
est “by hand” before providing details of the implementation of the code. In
the case of Kurushima’s algorithm, we’ll outline the steps and introduce the
code simultaneously. The reason for this change is the relative complexity of
the algorithm, and especially the length of the code required to implement it.

One of the most elegant algorithms for generating magic squares,
Kurushima’s algorithm is named for Kurushima Yoshita, who lived during the
Edo period. Kurushima’s algorithm works only for magic squares of odd
dimension, meaning that it works for any n×n square if n is an odd number. It
begins by filling out the center of the square in a way that matches the Luo
Shu square. In particular, the central five squares are given by the following
expressions, with n here referring to the dimension of the square (Table 2-10).

Table 2-10: The Center of Kurushima’s Square

n2

n (n2 + 1)/2 n2 + 1 – n

1

Kurushima’s algorithm for generating an n×n magic square for odd n
can be described simply as follows:

 1. Fill in the five central squares according to Table 2-10.

 2. Beginning with any entry whose value is known, determine the value
of an unknown neighboring entry by following one of the three rules
(described next).

 3. Repeat step 2 until every entry in the full magic square is filled in.

Filling in the Central Squares

We can begin the process of creating a magic square by creating an empty
square matrix that we’ll fill up. For example, if we want to create a 7×7 matrix,
we can define n=7 and then create a matrix with n rows and n columns:

n = 7
square = [[float('nan') for i in range(0,n)] for j in range(0,n)]

In this case, we don’t know what numbers to put in the square, so we
fill it entirely with entries equal to float('nan'). Here, nan stands for not a
number, which we can use as a placeholder in Python when we want to fill up
a list before we know what numbers to use. If we run print(square), we find
that this matrix by default is filled with nan entries:

[[nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan], [nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan]]

Algorithms in History 25

This square is not too pretty as it is output in the Python console, so we
can write a function that will print it in a more readable way:

def printsquare(square):
 labels = ['['+str(x)+']' for x in range(0,len(square))]
 format_row = "{:>6}" * (len(labels) + 1)
 print(format_row.format("", *labels))
 for label, row in zip(labels, square):
 print(format_row.format(label, *row))

Don’t worry about the details of the printsquare() function, since it’s
only for pretty printing and not part of our algorithm. We can fill in the
central five squares with simple commands. First, we can get the indices of
the central entry as follows:

import math
center_i = math.floor(n/2)
center_j = math.floor(n/2)

The central five squares can be populated according to the expressions
in Table 2-10 as follows:

square[center_i][center_j] = int((n**2 +1)/2)
square[center_i + 1][center_j] = 1
square[center_i - 1][center_j] = n**2
square[center_i][center_j + 1] = n**2 + 1 - n
square[center_i][center_j - 1] = n

Specifying the Three Rules

The purpose of Kurushima’s algorithm is to fill in the rest of the nan entries
according to simple rules. We can specify three simple rules that enable us
to fill out every other entry, no matter how big the magic square is. The first
rule is expressed in Figure 2-1.

x+n (mod n2)

x

Figure 2-1: Rule 1 of Kurushima’s algorithm

So for any x in the magic square, we can determine the entry that is
situated in this diagonal relationship to x by simply adding n and taking the
result mod n2 (mod refers to the modulo operation). Of course, we can also
go in the opposite direction by reversing the operation: subtracting n and
taking the result mod n2.

26 Chapter 2

The second rule is even simpler, and is expressed in Figure 2-2.

x+1 (mod n2)

x

Figure 2-2: Rule 2 of Kurushima’s algorithm

For any x in the magic square, the entry below and to the right of x is 1
greater than x, mod n2. This is a simple rule, but it has one important excep-
tion: this rule is not followed when we cross from the upper-left half of the
magic square to the lower-right half of the square. Another way to say this is
that we do not follow the second rule if we are crossing the magic square’s
antidiagonal, the bottom-left-to-top-right line shown in Figure 2-3.

Figure 2-3: The antidiagonal of a square matrix

You can see the cells that are on the antidiagonal. The antidiagonal
line passes fully through them. We can follow our normal two rules when
we are dealing with these cells. We need the exceptional third rule only
when starting in a cell that is fully above the antidiagonal and crossing
to a cell that is fully below it, or vice versa. That final rule is expressed in
Figure 2-4, which shows an antidiagonal and two cells that would need to
follow this rule when crossing it.

Algorithms in History 27

x–n+1 (mod n2)

x

Figure 2-4: Rule 3 of Kurushima’s algorithm

This rule is followed when we are crossing the antidiagonal. If we cross
from the bottom right to the top left, we can follow the inverse of this rule,
in which x is transformed to x + n – 1, mod n2.

We can write a simple implementation of Rule 1 in Python by defining
a function that takes x and n as its arguments and returns (x+n)%n**2:

def rule1(x,n):
 return((x + n)%n**2)

We can try this out with the central entry in the Luo Shu square.
Remember, the Luo Shu square is a 3×3 square matrix, so n = 3. The cen-
tral entry of the Luo Shu square is 5. The entry below and to the left of this
entry is 8, and if we have implemented our rule1() function correctly we’ll
get an 8 when we run the following line:

print(rule1(5,3))

You should see an 8 in the Python console. Our rule1() function seems
to work as intended. However, we could improve it by enabling it to go “in
reverse,” determining not only the entry on the bottom left of a given entry,
but also the entry to the top right (that is, being able to go from 8 to 5 in
addition to going from 5 to 8). We can make this improvement by adding
one more argument to the function. We’ll call our new argument upright,
and it will be a True/False indicator of whether we’re looking for the entry
up and to the right of x. If not, we will by default look for the entry to the
bottom left of x:

def rule1(x,n,upright):
 return((x + ((-1)**upright) * n)%n**2)

In a mathematical expression, Python will interpret True as 1 and False as
0. If upright is False, our function will return the same value as before, since
(–1)0 = 1. If upright is True, then it will subtract n instead of adding n, which will
enable us to go in the other direction. Let’s check whether it can determine
the entry above and to the right of 1 in the Luo Shu square:

print(rule1(1,3,True))

It should print 7, the correct value in the Luo Shu square.

28 Chapter 2

For Rule 2, we can create an analogous function. Our Rule 2 function
will take x and n as arguments, just like Rule 1. But Rule 2 is by default find-
ing the entry below and to the right of x. So we will add an upleft argument
that will be True if we want to reverse the rule. The final rule is as follows:

def rule2(x,n,upleft):
 return((x + ((-1)**upleft))%n**2)

You can test this on the Luo Shu square, though there are only two
pairs of entries for which this doesn’t run into the exception to Rule 2. For
this exception, we can write the following function:

def rule3(x,n,upleft):
 return((x + ((-1)**upleft * (-n + 1)))%n**2)

This rule needs to be followed only when we’re crossing the magic
square’s antidiagonal. We’ll see later how to determine whether or not we
are crossing the antidiagonal.

Now that we know how to fill the five central squares, and we have a
rule to fill out the remaining squares based on knowledge of those central
squares, we can fill out the rest of the square.

Filling in the Rest of the Square

One way to fill in the rest of the square is to “walk” randomly through it,
using known entries to fill in unknown entries. First, we’ll determine the
indices of our central entry as follows:

center_i = math.floor(n/2)
center_j = math.floor(n/2)

Then, we can randomly select a direction to “walk,” as follows:

import random
entry_i = center_i
entry_j = center_j
where_we_can_go = ['up_left','up_right','down_left','down_right']
where_to_go = random.choice(where_we_can_go)

Here, we’ve used Python’s random.choice() function, which does random
selection from lists. It takes an element from the set we specified (where_we_
can_go), but it chooses at random (or as close to random as it can get).

After we’ve decided a direction to travel, we can follow whichever rule
corresponds to our direction of travel. If we have chosen to go down_left or
up_right, we’ll follow Rule 1, choosing the right arguments and indices as
follows:

if(where_to_go == 'up_right'):
 new_entry_i = entry_i - 1
 new_entry_j = entry_j + 1
 square[new_entry_i][new_entry_j] = rule1(square[entry_i][entry_j],n,True)

Algorithms in History 29

if(where_to_go == 'down_left'):
 new_entry_i = entry_i + 1
 new_entry_j = entry_j - 1
 square[new_entry_i][new_entry_j] = rule1(square[entry_i][entry_j],n,False)

Similarly, we’ll follow Rule 2 if we have chosen to travel up_left or
down_right:

if(where_to_go == 'up_left'):
 new_entry_i = entry_i - 1
 new_entry_j = entry_j - 1
 square[new_entry_i][new_entry_j] = rule2(square[entry_i][entry_j],n,True)

if(where_to_go == 'down_right'):
 new_entry_i = entry_i + 1
 new_entry_j = entry_j + 1
 square[new_entry_i][new_entry_j] = rule2(square[entry_i][entry_j],n,False)

This code is for going up-left and down-right, but we should follow it only
if we’re not crossing the antidiagonal. We’ll have to make sure that we follow
Rule 3 in the case where we are crossing the antidiagonal. There is a simple
way to know if we are in an entry that is near the antidiagonal: the entries
just above the antidiagonal will have indices that sum to n-2, and the entries just
below the antidiagonal will have indices that sum to n. We’ll want to implement
Rule 3 in these exceptional cases:

if(where_to_go == 'up_left' and (entry_i + entry_j) == (n)):
 new_entry_i = entry_i - 1
 new_entry_j = entry_j - 1
 square[new_entry_i][new_entry_j] = rule3(square[entry_i][entry_j],n,True)

if(where_to_go == 'down_right' and (entry_i + entry_j) == (n-2)):
 new_entry_i = entry_i + 1
 new_entry_j = entry_j + 1
 square[new_entry_i][new_entry_j] = rule3(square[entry_i][entry_j],n,False)

Keep in mind that our magic square is finite, so we cannot, for exam-
ple, travel up/left from the top row or leftmost column. By creating our list
of where it’s possible to travel based on our current location, we can add
some simple logic to ensure that we travel only in allowed directions:

where_we_can_go = []

if(entry_i < (n - 1) and entry_j < (n - 1)):
 where_we_can_go.append('down_right')

if(entry_i < (n - 1) and entry_j > 0):
 where_we_can_go.append('down_left')

30 Chapter 2

if(entry_i > 0 and entry_j < (n - 1)):
 where_we_can_go.append('up_right')

if(entry_i > 0 and entry_j > 0):
 where_we_can_go.append('up_left')

We have all the elements we need to write Python code that implements
Kurushima’s algorithm.

Putting It All Together

We can put everything together in a function that takes a starting square
with some nan entries and travels through it using our three rules to fill
them in. Listing 2-2 contains the whole function.

import random
def fillsquare(square,entry_i,entry_j,howfull):
 while(sum(math.isnan(i) for row in square for i in row) > howfull):
 where_we_can_go = []

 if(entry_i < (n - 1) and entry_j < (n - 1)):
 where_we_can_go.append('down_right')
 if(entry_i < (n - 1) and entry_j > 0):
 where_we_can_go.append('down_left')
 if(entry_i > 0 and entry_j < (n - 1)):
 where_we_can_go.append('up_right')
 if(entry_i > 0 and entry_j > 0):
 where_we_can_go.append('up_left')

 where_to_go = random.choice(where_we_can_go)
 if(where_to_go == 'up_right'):
 new_entry_i = entry_i - 1
 new_entry_j = entry_j + 1
 square[new_entry_i][new_entry_j] = rule1(square[entry_i][entry_j],n,True)

 if(where_to_go == 'down_left'):
 new_entry_i = entry_i + 1
 new_entry_j = entry_j - 1
 square[new_entry_i][new_entry_j] = rule1(square[entry_i][entry_j],n,False)

 if(where_to_go == 'up_left' and (entry_i + entry_j) != (n)):
 new_entry_i = entry_i - 1
 new_entry_j = entry_j - 1
 square[new_entry_i][new_entry_j] = rule2(square[entry_i][entry_j],n,True)

 if(where_to_go == 'down_right' and (entry_i + entry_j) != (n-2)):
 new_entry_i = entry_i + 1
 new_entry_j = entry_j + 1
 square[new_entry_i][new_entry_j] = rule2(square[entry_i][entry_j],n,False)

 if(where_to_go == 'up_left' and (entry_i + entry_j) == (n)):
 new_entry_i = entry_i - 1
 new_entry_j = entry_j - 1
 square[new_entry_i][new_entry_j] = rule3(square[entry_i][entry_j],n,True)

Algorithms in History 31

 if(where_to_go == 'down_right' and (entry_i + entry_j) == (n-2)):
 new_entry_i = entry_i + 1
 new_entry_j = entry_j + 1
 square[new_entry_i][new_entry_j] = rule3(square[entry_i][entry_j],n,False)

 1 entry_i = new_entry_i
 entry_j = new_entry_j

 return(square)

Listing 2-2: A function that enables an implementation of Kurushima’s algorithm

This function will take four arguments: first, a starting square that has
some nan entries; second and third, the indices of the entry that we want to
start with; and fourth, how much we want to fill up the square (measured by
the number of nan entries we are willing to tolerate). The function consists
of a while loop that writes a number to an entry in the square at every itera-
tion by following one of our three rules. It continues until it has as many nan
entries as we have specified in the function’s fourth argument. After it writes
to a particular entry, it “travels” to that entry by changing its indices 1, and
then it repeats again.

Now that we have this function, all that remains is to call it in the right way.

Using the Right Arguments

Let’s start with the central entry and fill up the magic square from there.
For our howfull argument, we’ll specify (n**2)/2-4. The reason for using this
value for howfull will become clear after we see our results:

entry_i = math.floor(n/2)
entry_j = math.floor(n/2)

square = fillsquare(square,entry_i,entry_j,(n**2)/2 - 4)

In this case, we call the fillsquare() function using the existing square
variable that we defined previously. Remember we defined it to be full of nan
entries except for five central elements that we specified. After we run the
fillsquare() function with that square as its input, the fillsquare() function
fills in many of the remaining entries. Let’s print out the resulting square
and see what it looks like afterward:

printsquare(square)

The result is as follows:

 [0] [1] [2] [3] [4] [5] [6]
 [0] 22 nan 16 nan 10 nan 4
 [1] nan 23 nan 17 nan 11 nan
 [2] 30 nan 24 49 18 nan 12
 [3] nan 31 7 25 43 19 nan
 [4] 38 nan 32 1 26 nan 20
 [5] nan 39 nan 33 nan 27 nan
 [6] 46 nan 40 nan 34 nan 28

32 Chapter 2

You’ll notice that the nans occupy alternating entries, like a checker-
board. The reason for this is that the rules we have for moving diagonally
give us access to only about half of the total entries, depending on which
entry we started with. The valid moves are the same as in checkers: a piece
that starts on a dark square can move diagonally to other dark squares, but
its diagonal moving pattern will never allow it to move to any of the light
squares. The nan entries we see are inaccessible if we start on the central
entry. We specified (n**2)/2 - 4 for our howfull argument instead of zero
because we know that we wouldn’t be able to fill the matrix completely by
calling our function only once. But if we start again on one of the central
entry’s neighbors, we will be able to access the rest of the nan entries in our
“checkerboard.” Let’s call the fillsquare() function again, this time starting
on a different entry and specifying our fourth argument as zero, indicating
that we want to completely fill our square:

entry_i = math.floor(n/2) + 1
entry_j = math.floor(n/2)

square = fillsquare(square,entry_i,entry_j,0)

If we print our square now, we can see that it is completely full:

>>> printsquare(square)
 [0] [1] [2] [3] [4] [5] [6]
 [0] 22 47 16 41 10 35 4
 [1] 5 23 48 17 42 11 29
 [2] 30 6 24 0 18 36 12
 [3] 13 31 7 25 43 19 37
 [4] 38 14 32 1 26 44 20
 [5] 21 39 8 33 2 27 45
 [6] 46 15 40 9 34 3 28

There is just one final change we need to make. Because of the rules
of the % operator, our square contains consecutive integers between 0 and
48, but Kurushima’s algorithm is meant to fill our square with the integers
from 1 to 49. We can add one line that replaces 0 with 49 in our square:

square=[[n**2 if x == 0 else x for x in row] for row in square]

Now our square is complete. We can verify that it is indeed a magic
square by using the verifysquare() function we created earlier:

verifysquare(square)

This should return True, indicating that we’ve succeeded.

Algorithms in History 33

We just created a 7×7 magic square by following Kurushima’s algorithm.
Let’s test our code and see if it can create a larger magic square. If we
change n to 11 or any other odd number, we can run exactly the same code
and get a magic square of any size:

n = 11
square=[[float('nan') for i in range(0,n)] for j in range(0,n)]

center_i = math.floor(n/2)
center_j = math.floor(n/2)

square[center_i][center_j] = int((n**2 + 1)/2)
square[center_i + 1][center_j] = 1
square[center_i - 1][center_j] = n**2
square[center_i][center_j + 1] = n**2 + 1 - n
square[center_i][center_j - 1] = n

entry_i = center_i
entry_j = center_j

square = fillsquare(square,entry_i,entry_j,(n**2)/2 - 4)

entry_i = math.floor(n/2) + 1
entry_j = math.floor(n/2)

square = fillsquare(square,entry_i,entry_j,0)

square = [[n**2 if x == 0 else x for x in row] for row in square]

Our 11×11 square looks as follows:

>>> printsquare(square)
 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
 [0] 56 117 46 107 36 97 26 87 16 77 6
 [1] 7 57 118 47 108 37 98 27 88 17 67
 [2] 68 8 58 119 48 109 38 99 28 78 18
 [3] 19 69 9 59 120 49 110 39 89 29 79
 [4] 80 20 70 10 60 121 50 100 40 90 30
 [5] 31 81 21 71 11 61 111 51 101 41 91
 [6] 92 32 82 22 72 1 62 112 52 102 42
 [7] 43 93 33 83 12 73 2 63 113 53 103
 [8] 104 44 94 23 84 13 74 3 64 114 54
 [9] 55 105 34 95 24 85 14 75 4 65 115
 [10] 116 45 106 35 96 25 86 15 76 5 66

We can verify, either manually or with our verifysquare() function, that
this is indeed a magic square. You can do the same with any odd n and mar-
vel at the results.

34 Chapter 2

Magic squares don’t have much practical significance, but it’s fun to
observe their patterns anyway. If you’re interested, you might spend some
time thinking about the following questions:

•	 Do the larger magic squares we created follow the odd/even alternat-
ing pattern seen in the outer edge of the Luo Shu square? Do you think
every possible magic square follows this pattern? What reason, if any,
would there be for this pattern?

•	 Do you see any other patterns in the magic squares we’ve created that
haven’t been mentioned yet?

•	 Can you find another set of rules that create Kurushima’s squares? For
example, are there rules that enable one to travel up and down through
Kurushima’s square instead of diagonally?

•	 Are there other types of magic squares that satisfy the definition of a
magic square but don’t follow Kurushima’s rules at all?

•	 Is there a more efficient way to write code to implement Kurushima’s
algorithm?

Magic squares occupied the attention of great Japanese mathemati-
cians for several centuries, and they’ve found a significant place in cultures
around the world. We can count ourselves lucky that the great mathemati-
cians of the past gave us algorithms for generating and analyzing magic
squares that we can easily implement on today’s powerful computers. At the
same time, we can admire the patience and insight that was required for
them to investigate magic squares with only pen, paper, and their wits (and
the occasional magical turtle) to guide them.

Summary
In this chapter, we discussed some historical algorithms that range from a
few centuries to a few millenia old. Readers who are interested in histori-
cal algorithms can find many more to study. These algorithms may not be
of great practical utility today, but it can be worthwhile to study them—
first because they give us a sense of history, and second because they help
broaden our horizons and may provide the inspiration for writing our own
innovative algorithms.

The algorithms in the next chapter enable us to do some commonly
needed and useful tasks with mathematical functions: maximize and
minimize them. Now that we have discussed algorithms in general and
algorithms in history, you should be comfortable with what an algorithm is
and how one works, and you should be ready to dive into serious algorithms
used in the most cutting-edge software being developed today.

Goldilocks preferred the middle, but in the
world of algorithms we’re usually more inter-

ested in the extreme highs and lows. Some
powerful algorithms enable us to reach maxima

(for example, maximum revenue, maximum profits,
maximum efficiency, maximum productivity) and
minima (for example, minimum cost, minimum error,
minimum discomfort, and minimum loss). This chap-
ter covers gradient ascent and gradient descent, two
simple but effective methods to efficiently find maxima and minima of func-
tions. We also discuss some of the issues that come with maximization and
minimization problems, and how to deal with them. Finally, we discuss how
to know whether a particular algorithm is appropriate to use in a given situa-
tion. We’ll start with a hypothetical scenario—trying to set optimal tax rates
to maximize a government’s revenues—and we’ll see how to use an algo-
rithm to find the right solution.

3
M A X I M I Z I N G A N D M I N I M I Z I N G

36 Chapter 3

Setting Tax Rates
Imagine that you’re elected prime minister of a small country. You have
ambitious goals, but you don’t feel like you have the budget to achieve
them. So your first order of business after taking office is to maximize the
tax revenues your government brings in.

It’s not obvious what taxation rate you should choose to maximize rev-
enues. If your tax rate is 0 percent, you will get zero revenue. At 100 percent,
it seems likely that taxpayers would avoid productive activity and assidu-
ously seek tax shelters to the point that revenue would be quite close to zero.
Optimizing your revenue will require finding the right balance between rates
that are so high that they discourage productive activity and rates that are
so low that they undercollect. To achieve that balance is, you’ll need to know
more about the way tax rates relate to revenue.

Steps in the Right Direction
Suppose that you discuss this with your team of economists. They see your
point and retire to their research office, where they consult the apparatuses
used by top-level research economists everywhere—mostly test tubes, ham-
sters running on wheels, astrolabes, and dowsing rods—to determine the
precise relationship between tax rates and revenues.

After some time thus sequestered, the team tells you that they’ve deter-
mined a function that relates the taxation rate to the revenue collected, and
they’ve been kind enough to write it in Python for you. Maybe the function
looks like the following:

import math
def revenue(tax):
 return(100 * (math.log(tax+1) - (tax - 0.2)**2 + 0.04))

This is a Python function that takes tax as its argument and returns a
numeric output. The function itself is stored in a variable called revenue.
You fire up Python to generate a simple graph of this curve, entering the
following in the console. Just as in Chapter 1, we’ll use the matplotlib mod-
ule for its plotting capabilities.

import matplotlib.pyplot as plt
xs = [x/1000 for x in range(1001)]
ys = [revenue(x) for x in xs]
plt.plot(xs,ys)
plt.title('Tax Rates and Revenue')
plt.xlabel('Tax Rate')
plt.ylabel('Revenue')
plt.show()

This plot shows the revenues (in billions of your country’s currency)
that your team of economists expects for each tax rate between 0 and 1

Maximizing and Minimizing 37

(where 1 represents a 100 percent tax rate). If your country currently has a
flat 70 percent tax on all income, we can add two lines to our code to plot
that point on the curve as follows:

import matplotlib.pyplot as plt
xs = [x/1000 for x in range(1001)]
ys = [revenue(x) for x in xs]
plt.plot(xs,ys)
current_rate = 0.7
plt.plot(current_rate,revenue(current_rate),'ro')
plt.title('Tax Rates and Revenue')
plt.xlabel('Tax Rate')
plt.ylabel('Revenue')
plt.show()

The final output is the simple plot in Figure 3-1.

Figure 3-1: The relationship between tax rates and revenue, with a dot representing your
country’s current situation

Your country’s current tax rate, according to the economists’ formula,
is not quite maximizing the government’s revenue. Although a simple visual
inspection of the plot will indicate approximately what level corresponds to
the maximum revenue, you are not satisfied with loose approximations and
you want to find a more precise figure for the optimal tax rate. It’s apparent
from the plot of the curve that any increase from the current 70 percent
rate should decrease total revenues, and some amount of decrease from the
current 70 percent rate should increase total revenues, so in this situation,
revenue maximization will require a decrease in the overall tax rate.

38 Chapter 3

We can verify whether this is true more formally by taking the deriva-
tive of the economists’ revenue formula. A derivative is a measurement of
the slope of a tangent line, with large values denoting steepness and nega-
tive values denoting downward motion. You can see an illustration of a
derivative in Figure 3-2: it’s just a way to measure how quickly a function is
growing or shrinking.

x

tangent line

slope = f'(x)

Figure 3-2: To calculate a derivative, we take a
tangent line to a curve at a point and find its slope.

We can create a function in Python that specifies this derivative as follows:

def revenue_derivative(tax):
 return(100 * (1/(tax + 1) - 2 * (tax - 0.2)))

We used four rules of calculus to derive that function. First, we used the
rule that the derivative of log(x) is 1/x. That’s why the derivative of log(tax + 1)
is 1/(tax + 1). Another rule is that the derivative of x2 is 2x. That’s why the
derivative of (tax – 0.2)2 is 2(tax – 0.2). Two more rules are that the deriva-
tive of a constant number is always 0, and the derivative of 100f(x) is 100
times the derivative of f(x). If you combine all these rules, you’ll find that
our tax-revenue function, 100(log(tax + 1) – (tax – 0.2)2 + 0.04), has a deriva-
tive equal to the following, as described in the Python function:

tax + 1
1

100(() – 2(tax – 0.2))

We can check that the derivative is indeed negative at the country’s cur-
rent taxation rate:

print(revenue_derivative(0.7))

This gives us the output -41.17647.
A negative derivative means that an increase in tax rate leads to a

decrease in revenue. By the same token, a decrease in tax rate should lead
to an increase in revenue. While we are not yet sure of the precise tax rate
corresponding to the maximum of the curve, we can at least be sure that if
we take a small step from where are in the direction of decreased taxation,
revenue should increase.

Maximizing and Minimizing 39

To take a step toward the revenue maximum, we should first specify a step
size. We can store a prudently small step size in a variable in Python as follows:

step_size = 0.001

Next, we can take a step in the direction of the maximum by finding a
new rate that is proportional to one step size away from our current rate, in
the direction of the maximum:

current_rate = current_rate + step_size * revenue_derivative(current_rate)

Our process so far is that we start at our current tax rate and take a step
toward the maximum whose size is proportional to the step_size we chose
and whose direction is determined by the derivative of the tax-revenue
function at the current rate.

We can verify that after this step, the new current_rate is 0.6588235 (about
a 66 percent tax rate), and the revenue corresponding to this new rate is
33.55896. But while we have taken a step toward the maximum and increased
the revenue, but we find ourselves in essentially the same situation as before:
we are not yet at the maximum, but we know the derivative of the function
and the general direction in which we should travel to get there. So we sim-
ply need to take another step, exactly as before but with the values represent-
ing the new rate. Yet again we set:

current_rate = current_rate + step_size * revenue_derivative(current_rate)

After running this again, we find that the new current_rate is 0.6273425,
and the revenue corresponding to this new rate is 34.43267. We have taken
another step in the right direction. But we are still not at the maximum rev-
enue rate, and we will have to take another step to get closer.

Turning the Steps into an Algorithm
You can see the pattern that is emerging. We’re following these steps
repeatedly:

 1. Start with a current_rate and a step_size.

 2. Calculate the derivative of the function you are trying to maximize at
the current_rate.

 3. Add step_size * revenue_derivative(current_rate) to the current rate, to
get a new current_rate.

 4. Repeat steps 2 and 3.

The only thing that’s missing is a rule for when to stop, a rule that trig-
gers when we have reached the maximum. In practice, it’s quite likely that
we’ll be asymptotically approaching the maximum: getting closer and closer
to it but always remaining microscopically distant. So although we may
never reach the maximum, we can get close enough that we match it up

40 Chapter 3

to 3 or 4 or 20 decimal places. We will know when we are sufficiently close
to the asymptote when the amount by which we change our rate is very
small. We can specify a threshold for this in Python:

threshold = 0.0001

Our plan is to stop our process when we are changing the rate by less
than this amount at each iteration of our process. It’s possible that our step-
taking process will never converge to the maximum we are seeking, so if we
set up a loop, we’ll get stuck in an infinite loop. To prepare for this possibil-
ity, we’ll specify a number of “maximum iterations,” and if we take a num-
ber of steps equal to this maximum, we’ll simply give up and stop.

Now, we can put all these steps together (Listing 3-1).

threshold = 0.0001
maximum_iterations = 100000

keep_going = True
iterations = 0
while(keep_going):
 rate_change = step_size * revenue_derivative(current_rate)
 current_rate = current_rate + rate_change

 if(abs(rate_change) < threshold):
 keep_going = False

 if(iterations >= maximum_iterations):
 keep_going = False

 iterations = iterations+1

Listing 3-1: Implementing gradient ascent

After running this code, you’ll find that the revenue-maximizing tax
rate is about 0.528. What we’ve done in Listing 3-1 is something called gradi-
ent ascent. It’s called that because it’s used to ascend to a maximum, and it
determines the direction of movement by taking the gradient. (In a two-
dimensional case like ours, a gradient is simply called a derivative.) We can
write out a full list of the steps we followed here, including a description of
our stopping criteria:

 1. Start with a current_rate and a step_size.

 2. Calculate the derivative of the function you are trying to maximize at
the current_rate.

 3. Add step_size * revenue_derivative(current_rate) to the current rate, to
get a new current_rate.

 4. Repeat steps 2 and 3 until you are so close to the maximum that your
current tax rate is changing less than a very small threshold at each step,
or until you have reached a number of iterations that is sufficiently high.

Our process can be written out simply, with only four steps. Though
humble in appearance and simple in concept, gradient ascent is an

Maximizing and Minimizing 41

algorithm, just like the algorithms described in previous chapters. Unlike
most of those algorithms, though, gradient ascent is in common use today
and is a key part of many of the advanced machine learning methods that
professionals use daily.

Objections to Gradient Ascent
We’ve just performed gradient ascent to maximize the revenues of a hypo-
thetical government. Many people who learn gradient ascent have practical
if not moral objections to it. Here are some of the arguments that people
raise about gradient ascent:

•	 It’s unnecessary because we can do a visual inspection to find the
maximum.

•	 It’s unnecessary because we can do repeated guesses, a guess-and-check
strategy, to find the maximum.

•	 It’s unnecessary because we can solve the first-order conditions.

Let’s consider each of these objections in turn. We discussed visual
inspection previously. For our taxation/revenue curve, it’s easy to get an
approximate idea of the location of a maximum through visual inspection.
But visual inspection of a plot does not enable high precision. More impor-
tantly, our curve is extremely simple: it can be plotted in two dimensions
and obviously has only one maximum on the range that interests us. If you
imagine more complex functions, you can start to see why visual inspection
is not a satisfactory way to find the maximum value of a function.

For example, consider a multidimensional case. If our economists had
concluded that revenue depended not only on tax rates but also on tariff
rates, then our curve would have to be drawn in three dimensions, and if
it were a complex function, it could be harder to see where the maximum
lies. If our economists had created a function that related 10 or 20 or a 100
predictors to expected revenue, it would not be possible to draw a plot of all
of them simultaneously given the limitations of our universe, our eyes, and
our brains. If we couldn’t even draw the tax/revenue curve, then there’s no
way visual inspection could enable us to find its maximum. Visual inspec-
tion works for simple toy examples like the tax/revenue curve, but not for
highly complex multidimensional problems. Besides all of that, plotting a
curve itself requires calculating the function’s value at every single point of
interest, so it always takes longer than a well-written algorithm.

It may seem that gradient ascent is overcomplicating the issue, and that
a guess-and-check strategy is sufficient for finding the maximum. A guess-
and-check strategy would consist of guessing a potential maximum and
checking whether it is higher than all previously guessed candidate maxima
until we are confident that we have found the maximum. One potential
reply to this is to point out that, just as with visual inspections, with high-
complexity multidimensional functions, guess-and-check could be prohibi-
tively difficult to successfully implement in practice. But the best reply to
the idea of guessing and checking to find maxima is that this is exactly what

42 Chapter 3

gradient ascent is already doing. Gradient ascent already is a guess-and-check
strategy, but one that is “guided” by moving guesses in the direction of the
gradient rather than by guessing randomly. Gradient ascent is just a more
efficient version of guess-and-check.

Finally, consider the idea of solving the first-order conditions to find a
maximum. This is a method that is taught in calculus classes all around the
world. It could be called an algorithm, and its steps are:

 1. Find the derivative of the function you are trying to maximize.

 2. Set that derivative equal to zero.

 3. Solve for the point at which the derivative is equal to zero.

 4. Make sure that point is a maximum rather than a minimum.

(In multiple dimensions, we can work with a gradient instead of a deriva-
tive and perform an analogous process.) This optimization algorithm is fine
as far as it goes, but it could be difficult or impossible to find a closed-form
solution for which a derivative is equal to zero (step 2), and it could be harder
to find that solution than it would be to simply perform gradient ascent.
Besides that, it could take huge computing resources, including space, pro-
cessing power, or time, and not all software has symbolic algebra capabilities.
In that sense, gradient ascent is more robust than this algorithm.

The Problem of Local Extrema
Every algorithm that tries to find a maximum or minimum faces a very seri-
ous potential problem with local extrema (local maximums and minimums).
We may perform gradient ascent perfectly, but realize that the peak we have
reached at the end is only a “local” peak—it’s higher than every point around
it, but not higher than some faraway global maximum. This could happen
in real life as well: you try to climb a mountain, you reach a summit where
you are higher than all of your immediate surroundings, but you realize that
you’re only on the foothill and the real summit is far away and much higher.
Paradoxically, you may have to walk down a little to eventually get to that
higher summit, so the “naive” strategy that gradient ascent follows, always
stepping to a slightly higher point in one’s immediate neighborhood, fails to
get to the global maximum.

Education and Lifetime Income
Local extrema are a very serious problem in gradient ascent. As an example,
consider trying to maximize lifelong income by choosing the optimal level
of education. In this case, we might suppose that lifelong earnings relate to
years of education according to the following formula:

import math
def income(edu_yrs):
 return(math.sin((edu_yrs - 10.6) * (2 * math.pi/4)) + (edu_yrs - 11)/2)

Maximizing and Minimizing 43

Here, edu_yrs is a variable expressing how many years of education one
has received, and income is a measurement of one’s lifetime income. We
can plot this curve as follows, including a point for a person who has 12.5
years of formal education—that is, someone who has graduated from high
school (12 years of formal education) and is half a year into a bachelor’s
degree program:

import matplotlib.pyplot as plt
xs = [11 + x/100 for x in list(range(901))]
ys = [income(x) for x in xs]
plt.plot(xs,ys)
current_edu = 12.5
plt.plot(current_edu,income(current_edu),'ro')
plt.title('Education and Income')
plt.xlabel('Years of Education')
plt.ylabel('Lifetime Income')
plt.show()

We get the graph in Figure 3-3.

Figure 3-3: The relationship between formal education and lifetime income

This graph, and the income function used to generate it, is not based
on empirical research but is used only as an illustrative, purely hypothetical
example. It shows what might be intuitive relationships between education
and income. Lifetime income is likely to be low for someone who does not
graduate from high school (has fewer than 12 years of formal education).
Graduation from high school—12 years—is an important milestone and
should correspond to higher earnings than dropping out. In other words, it’s
a maximum, but importantly it’s only a local maximum. Getting more than
12 years of education is helpful, but not at first. Someone who has completed
only a few months of college education is not likely to get jobs that differ from

44 Chapter 3

those available to a high school graduate, but by going to school for extra
months, they’ve missed an opportunity to earn in those months, so their life-
time earnings are actually lower than the earnings of people who enter the
workforce directly after high school graduation and remain there.

Only after several years of college education does someone acquire
skills that enable them to earn more over a lifetime than a high school
graduate after we take into account the lost earning potential of the years
spent at school. Then, college graduates (at 16 years of education) are at
another earnings peak higher than the local high school peak. Once again,
it’s only a local one. Getting a little more education after earning a bach-
elor’s degree leads to the same situation as getting a little more education
after a high school diploma: you don’t immediately acquire enough skills
to compensate for the time not spent earning. Eventually, that’s reversed,
and you reach what looks like another peak after obtaining a postgraduate
degree. It’s hard to speculate much further beyond that, but this simplistic
view of education and earnings will suffice for our purposes.

Climbing the Education Hill—the Right Way
For the individual we’ve imagined, drawn at 12.5 years of education on
our graph, we can perform gradient ascent exactly as outlined previously.
Listing 3-2 has a slightly altered version of the gradient ascent code we
introduced in Listing 3-1.

def income_derivative(edu_yrs):
 return(math.cos((edu_yrs - 10.6) * (2 * math.pi/4)) + 1/2)

threshold = 0.0001
maximum_iterations = 100000

current_education = 12.5
step_size = 0.001

keep_going = True
iterations = 0
while(keep_going):
 education_change = step_size * income_derivative(current_education)
 current_education = current_education + education_change
 if(abs(education_change) < threshold):
 keep_going = False
 if(iterations >= maximum_iterations):
 keep_going=False
 iterations = iterations + 1

Listing 3-2: An implementation of gradient ascent that climbs an income hill instead of a
revenue hill

The code in Listing 3-2 follows exactly the same gradient ascent algo-
rithm as the revenue-maximization process we implemented previously. The
only difference is the curve we are working with. Our taxation/revenue curve
had one global maximum value that was also the only local maximum. Our
education/income curve, by contrast, is more complicated: it has a global

Maximizing and Minimizing 45

maximum, but also several local maximum values (local peaks or maxima)
that are lower than the global maximum. We have to specify the derivative
of this education/income curve (in the first lines of Listing 3-2), we have a
different initial value (12.5 years of education instead of 70 percent taxa-
tion), and we have different names for the variables (current_education instead
of current_rate). But these differences are superficial; fundamentally we are
doing the same thing: taking small steps in the direction of the gradient
toward a maximum until we reach an appropriate stopping point.

The outcome of this gradient ascent process is that we conclude that this
person is overeducated, and actually about 12 years is the income-maximizing
number of years of education. If we are naive and trust the gradient ascent
algorithm too much, we might recommend that college freshmen drop out
and join the workforce immediately to maximize earnings at this local maxi-
mum. This is a conclusion that some college students have come to in the
past, as they see their high school–graduate friends making more money than
them as they work toward an uncertain future. Obviously, this is not right: our
gradient ascent process has found the top of a local hill, but not the global
maximum. The gradient ascent process is depressingly local: it climbs only
the hill it’s on, and it isn’t capable of taking temporary steps downward for the
sake of eventually getting to another hill with a higher peak. There are some
analogues to this in real life, as with people who fail to complete a university
degree because it will prevent them from earning in the near term. They don’t
consider that their long-term earnings will be improved if they push through a
local minimum to another hill to climb (their next, more valuable degree).

The local extrema problem is a serious one, and there’s no silver bullet
for resolving it. One way to attack the problem is to attempt multiple initial
guesses and perform gradient ascent for each of them. For example, if we
performed gradient ascent for 12.5, 15.5, and 18.5 years of education, we
would get different results each time, and we could compare these results to
see that in fact the global maximum comes from maximizing years of edu-
cation (at least on this scale).

This is a reasonable way to deal with the local extremum problem, but
it can take too long to perform gradient ascent enough times to get the
right maximum, and we’re never guaranteed to get the right answer even
after hundreds of attempts. An apparently better way to avoid the problem
is to introduce some degree of randomness into the process, so that we can
sometimes step in a way that leads to a locally worse solution, but which in
the long term can lead us to better maxima. An advanced version of gradi-
ent ascent, called stochastic gradient ascent, incorporates randomness for this
reason, and other algorithms, like simulated annealing, do the same. We’ll
discuss simulated annealing and the issues related to advanced optimization
in Chapter 6. For now, just keep in mind that as powerful as gradient ascent
is, it will always face difficulties with the local extrema problem.

From Maximization to Minimization
So far we’ve sought to maximize revenue: to climb a hill and to ascend.
It’s reasonable to wonder whether we would ever want to go down a hill, to

46 Chapter 3

descend and to minimize something (like cost or error). You might think
that a whole new set of techniques is required for minimization or that our
existing techniques need to be flipped upside down, turned inside out, or
run in reverse.

In fact, moving from maximization to minimization is quite simple.
One way to do it is to “flip” our function or, more precisely, to take its nega-
tive. Going back to our tax/revenue curve example, it is as simple as defin-
ing a new flipped function like so:

def revenue_flipped(tax):
 return(0 - revenue(tax))

We can then plot the flipped curve as follows:

import matplotlib.pyplot as plt
xs = [x/1000 for x in range(1001)]
ys = [revenue_flipped(x) for x in xs]
plt.plot(xs,ys)
plt.title('The Tax/Revenue Curve - Flipped')
plt.xlabel('Current Tax Rate')
plt.ylabel('Revenue - Flipped')
plt.show()

Figure 3-4 shows the flipped curve.

Figure 3-4: The negative or “flipped” version of the tax/revenue curve

So if we want to maximize the tax/revenue curve, one option is to
minimize the flipped tax/revenue curve. If we want to minimize the
flipped tax/revenue curve, one option is to maximize the flipped flipped
curve—in other words, the original curve. Every minimization problem

Maximizing and Minimizing 47

is a maximization problem of a flipped function, and every maximization
problem is a minimization of a flipped function. If you can do one, you can
do the other (after flipping). Instead of learning to minimize functions, you
can just learn to maximize them, and every time you are asked to minimize,
maximize the flipped function instead and you’ll get the right answer.

Flipping is not the only solution. The actual process of minimization is
very similar to the process of maximization: we can use gradient descent instead
of gradient ascent. The only difference is the direction of movement at each
step; in gradient descent, we go down instead of up. Remember that to find
the maximum of the tax/revenue curve, we move in the direction of the gradi-
ent. In order to minimize, we move in the opposite direction of the gradient.
This means we can alter our original gradient ascent code as in Listing 3-3.

threshold = 0.0001
maximum_iterations = 10000

def revenue_derivative_flipped(tax):
 return(0-revenue_derivative(tax))

current_rate = 0.7

keep_going = True
iterations = 0
while(keep_going):
 rate_change = step_size * revenue_derivative_flipped(current_rate)
 current_rate = current_rate - rate_change
 if(abs(rate_change) < threshold):
 keep_going = False
 if(iterations >= maximum_iterations):
 keep_going = False
 iterations = iterations + 1

Listing 3-3: Implementating gradient descent

Here everything is the same except we have changed a + to a - when we
change the current_rate. By making this very small change, we’ve converted
gradient ascent code to gradient descent code. In a way, they’re essentially
the same thing; they use a gradient to determine a direction, and then they
move in that direction toward a definite goal. In fact, the most common
convention today is to speak of gradient descent, and to refer to gradient
ascent as a slightly altered version of gradient descent, the opposite of how
this chapter has introduced it.

Hill Climbing in General
Being elected prime minister is a rare occurrence, and setting taxation
rates to maximize government revenue is not an everyday activity even
for prime ministers. (For the real-life version of the taxation/revenue dis-
cussion at the beginning of the chapter, I encourage you to look up the
Laffer curve.) However, the idea of maximizing or minimizing something
is extremely common. Businesses attempt to choose prices to maximize

48 Chapter 3

profits. Manufacturers attempt to choose practices that maximize efficiency
and minimize defects. Engineers attempt to choose design features that
maximize performance or minimize drag or cost. Economics is largely struc-
tured around maximization and minimization problems: maximizing utility
especially, and also maximizing dollar amounts like GDP and revenue, and
minimizing estimation error. Machine learning and statistics rely on minimi-
zation for the bulk of their methods; they minimize a “loss function” or an
error metric. For each of these, there is the potential to use a hill-climbing
solution like gradient ascent or descent to get to an optimal solution.

Even in everyday life, we choose how much money to spend to maxi-
mize achievement of our financial goals. We strive to maximize happiness
and joy and peace and love and minimize pain and discomfort and sadness.

For a vivid and relatable example, think of being at a buffet and seek-
ing, as all of us do, to eat the right amount to maximize satisfaction. If
you eat too little, you will walk out hungry and you may feel that by paying
the full buffet price for only a little food, you haven’t gotten your money’s
worth. If you eat too much, you will feel uncomfortable and maybe even
sick, and maybe you will violate your self-imposed diet. There is a sweet
spot, like the peak of the tax/revenue curve, that is the exact amount of
buffet consumption that maximizes satisfaction.

We humans can feel and interpret sensory input from our stomachs
that tells us whether we’re hungry or full, and this is something like a physi-
cal equivalent of taking a gradient of a curve. If we’re too hungry, we take
some step with a predecided size, like one bite, toward reaching the sweet
spot of satisfaction. If we’re too full, we stop eating; we can’t “un-eat” some-
thing we have already eaten. If our step size is small enough, we can be
confident that we will not overstep the sweet spot by much. The process we
go through when we are deciding how much to eat at a buffet is an iterative
process involving repeated direction checks and small steps in adjustable
directions—in other words, it’s essentially the same as the gradient ascent
algorithm we studied in this chapter.

Just as with the example of catching balls, we see in this buffet example
that algorithms like gradient ascent are natural to human life and decision-
making. They are natural to us even if we have never taken a math class or
written a line of code. The tools in this chapter are merely meant to formal-
ize and make precise the intuitions you already have.

When Not to Use an Algorithm
Often, learning an algorithm fills us with a feeling of power. We feel that if
we are ever in a situation that requires maximization or minimization, we
should immediately apply gradient ascent or descent and implicitly trust
whatever results we find. However, sometimes more important than know-
ing an algorithm is knowing when not to use it, when it’s inappropriate or
insufficient for the task at hand, or when there is something better that we
should try instead.

Maximizing and Minimizing 49

When should we use gradient ascent (and descent), and when should we
not? Gradient ascent works well if we start with the right ingredients:

•	 A mathematical function to maximize

•	 Knowledge of where we currently are

•	 An unequivocal goal to maximize the function

•	 Ability to alter where we are

There are many situations in which one or more of these ingredients is
missing. In the case of setting taxation rates, we used a hypothetical func-
tion relating tax rates to revenue. However, there’s no consensus among
economists about what that relationship is and what functional form it
takes. So we can perform gradient ascent and descent all we like, but until
we can all agree on what function we need to maximize, we cannot rely on
the results we find.

In other situations, we may find that gradient ascent isn’t very useful
because we don’t have the ability to take action to optimize our situation.
For example, suppose that we derived an equation relating a person’s height
to their happiness. Maybe this function expresses how people who are too
tall suffer because they cannot get comfortable on airplanes, and people
who are too short suffer because they cannot excel at pickup basketball
games, but some sweet spot in the middle of too tall and too short tends
to maximize happiness. Even if we can express this function perfectly and
apply gradient ascent to find the maximum, it will not be useful to us,
because we do not have control over our height.

If we zoom out even further, we may have all the ingredients required
for gradient ascent (or any other algorithm) and still wish to refrain for
deeper philosophical reasons. For example, suppose you can precisely
determine a tax-revenue function and you’re elected prime minister with
full control over the taxation rate in your country. Before you apply gradi-
ent ascent and climb to the revenue-maximizing peak, you may want to ask
yourself if maximizing your tax revenue is the right goal to pursue in the
first place. It could be that you are more concerned with freedom or eco-
nomic dynamism or redistributive justice or even opinion polls than you
are with state revenues. Even if you have decided that you want to maxi-
mize revenues, it’s not clear that maximizing revenues in the short term
(that is, this year) will lead to maximization of revenues in the long term.

Algorithms are powerful for practical purposes, enabling us to achieve
goals like catching baseballs and finding revenue-maximizing taxation
rates. But though algorithms can achieve goals effectively, they’re not as
suited to the more philosophical task of deciding which goals are worth
pursuing in the first place. Algorithms can make us clever, but they cannot
make us wise. It’s important to remember that the great power of algo-
rithms is useless or even harmful if it is used for the wrong ends.

50 Chapter 3

Summary
This chapter introduced gradient ascent and gradient descent as simple
and powerful algorithms used to find the maxima and minima of func-
tions, respectively. We also talked about the serious potential problem of
local extrema, and some philosophical considerations about when to use
algorithms and when to gracefully refrain.

Hang on tight, because in the next chapter we discuss a variety of
searching and sorting algorithms. Searching and sorting are fundamental
and important in the world of algorithms. We’ll also talk about “big O”
notation and the standard ways to evaluate algorithm performance.

There are a few workhorse algorithms
we use in nearly every kind of program.

Sometimes these algorithms are so funda-
mental that we take them for granted or don’t

even realize our code is relying on them.
Several methods for sorting and searching are among these fundamen-

tal algorithms. They’re worth knowing because they’re commonly used and
beloved by algorithm enthusiasts (and the sadists who give coding interviews).
The implementation of these algorithms can be short and simple, but every
character matters, and since they are so commonly needed, computer scien-
tists have striven to enable them to sort and search with mind-melting speed.
So we’ll also use this chapter to discuss algorithm speed and the special nota-
tion we use to compare algorithms’ efficiencies.

We start by introducing insertion sort, a simple and intuitive sorting
algorithm. We discuss the speed and efficiency of insertion sort and how
to measure algorithm efficiency in general. Next, we look at merge sort, a
faster algorithm that is the current state of the art for searching. We also
explore sleep sort, a strange algorithm that isn’t used much in practice but

4
S O R T I N G A N D S E A R C H I N G

52 Chapter 4

is interesting as a curiosity. Finally, we discuss binary search and show some
interesting applications of searching, including inverting mathematical
functions.

Insertion Sort
Imagine that you’ve been asked to sort all the files in a filing cabinet. Each
file has a number assigned to it, and you need to rearrange the files so that
the file with the lowest number is first in the cabinet, the file with the high-
est number is last, and the files’ numbers proceed in order in between.

Whatever method you follow as you sort the filing cabinet, we can
describe it as a “sorting algorithm.” But before you even think of opening
Python to code an algorithm for this, take a moment to pause and consider
how you would sort such a filing cabinet in real life. This may seem like a
mundane task, but allow the adventurer within you to creatively consider a
broad range of possibilities.

In this section, we present a very simple sorting algorithm called inser-
tion sort. This method relies on looking at each item in a list one at a time
and inserting it into a new list that ends up being correctly sorted. Our algo-
rithm’s code will have two sections: an insertion section, which performs
the humble task of inserting a file into a list, and a sorting section, which
performs insertion repeatedly until we have completed our sorting task.

Putting the Insertion in Insertion Sort
First, consider the task of insertion itself. Imagine that you have a filing cabi-
net whose files are already perfectly sorted. If someone hands you one new
file and asks you to insert it into the right (sorted) position in the filing cabi-
net, how do you accomplish that? The task may seem so simple that it doesn’t
warrant an explanation, or even the possibility of one (just do it! you might
think). But in the world of algorithms, every task, however humble, must be
explained completely.

The following method describes a reasonable algorithm for inserting
one file into a sorted filing cabinet. We’ll call the file we need to insert the
“file to insert.” We’ll say that we can compare two files and call one file
“higher than” the other one. This could mean that one file’s assigned num-
ber is higher than the other’s assigned number, or it could mean that it’s
higher in an alphabetical or other ordering.

 1. Select the highest file in the filing cabinet. (We’ll start at the back of
the cabinet and work our way to the front.)

 2. Compare the file you have selected with the file to insert.

 3. If the file you have selected is lower than the file to insert, place the file
to insert one position behind that file.

 4. If the file you have selected is higher than the file to insert, select the
next highest file in the filing cabinet.

Sorting and Searching 53

 5. Repeat steps 2 to 4 until you have inserted your file or compared it with
every existing file. If you have not yet inserted your file after comparing
it with every existing file, insert it at the beginning of the filing cabinet.

That method should more or less match the intuition you have for how
to insert a record into a sorted list. If you prefer, you could also start at the
beginning of the list, instead of the end, and follow an analogous process
with the same results. Notice that we haven’t just inserted a record; we’ve
inserted a record in the correct position, so after insertion, we’ll still have a
sorted list. We can write a script in Python that executes this insertion algo-
rithm. First, we can define our sorted filing cabinet. In this case, our filing
cabinet will be a Python list, and our files will simply be numbers.

cabinet = [1,2,3,3,4,6,8,12]

Then, we can define the “file” (in this case, just a number) that we want
to insert into our cabinet.

to_insert = 5

We proceed one at a time through every number in the list (every file
in the cabinet). We’ll define a variable called check_location. As advertised,
it will store the location in the cabinet that we want to check. We start at the
back of the cabinet:

check_location = len(cabinet) - 1

We’ll also define a variable called insert_location. The goal of our algo-
rithm is to determine the proper value of insert_location, and then it’s a
simple matter of inserting the file at the insert_location. We’ll start out by
assuming the insert_location is 0:

insert_location = 0

Then we can use a simple if statement to check whether the file to
insert is higher than the file at the check_location. As soon as we encounter a
number that’s lower than the number to insert, we use its location to decide
where to insert our new number. We add 1 because our insertion takes
place just behind the lower number we found:

if to_insert > cabinet[check_location]:
 insert_location = check_location + 1

After we know the right insert_location, we can use a built-in Python
method for list manipulation called insert to put the file into the cabinet:

cabinet.insert(insert_location,to_insert)

54 Chapter 4

Running this code will not work to insert our file properly yet, however.
We need to put these steps together in one coherent insertion function. This
function combines all of the previous code and also adds a while loop. The
while loop is used to iterate over the files in the cabinet, starting with the last
file and proceeding until either we find the right insert_location or we have
examined every file. The final code for our cabinet insertion is in Listing 4-1.

def insert_cabinet(cabinet,to_insert):
 check_location = len(cabinet) - 1
 insert_location = 0
 while(check_location >= 0):
 if to_insert > cabinet[check_location]:
 insert_location = check_location + 1
 check_location = - 1
 check_location = check_location - 1
 cabinet.insert(insert_location,to_insert)
 return(cabinet)

cabinet = [1,2,3,3,4,6,8,12]
newcabinet = insert_cabinet(cabinet,5)
print(newcabinet)

Listing 4-1: Inserting a numbered file into our cabinet

When you run the code in Listing 4-1, it will print out newcabinet, which
you can see includes our new “file,” 5, inserted into our cabinet at the cor-
rect location (between 4 and 6).

It’s worthwhile to think for a moment about one edge case of insertion:
inserting into an empty list. Our insertion algorithm mentioned “proceed-
ing sequentially through every file in the filing cabinet.” If there are no files
in the filing cabinet, then there is nothing to proceed through sequentially.
In this case, we need to heed only the last sentence, which tells us to insert
our new file at the beginning of the cabinet. Of course, this is easier done
than said, because the beginning of an empty cabinet is also the end and
the middle of the cabinet. So all we need to do in this case is insert the file
into the cabinet without regard to position. We can do this by using the
insert() function in Python and inserting at location 0.

Sorting via Insertion
Now that we’ve rigorously defined insertion and know how to perform it,
we’re almost at the point where we can perform an insertion sort. Insertion
sort is simple: it takes each element of an unsorted list one at a time and
uses our insertion algorithm to insert it correctly into a new, sorted list. In
filing cabinet terms, we start with an unsorted filing cabinet, which we’ll
call “old cabinet,” and an empty cabinet, which we’ll call “new cabinet.”
We remove the first element of our old unsorted cabinet and add it to our
new empty cabinet, using the insertion algorithm. We do the same with
the second element of the old cabinet, then the third, and so on until we
have inserted every element of the old cabinet into the new cabinet. Then,
we forget about the old cabinet and use only our new, sorted cabinet. Since

Sorting and Searching 55

we’ve been inserting using our insertion algorithm, and it always returns
a sorted list, we know that our new cabinet will be sorted at the end of the
process.

In Python, we start with an unsorted cabinet and an empty newcabinet:

cabinet = [8,4,6,1,2,5,3,7]
newcabinet = []

We implement insertion sort by repeatedly calling our insert_cabinet()
function from Listing 4-1. In order to call it, we’ll need to have a file in our
“hand,” which we accomplish by popping it out of the unsorted cabinet:

to_insert = cabinet.pop(0)
newcabinet = insert_cabinet(newcabinet, to_insert)

In this snippet, we used a method called pop(). This method removes
a list element at a specified index. In this case, we removed the element of
cabinet at index 0. After we use pop(), cabinet no longer contains that ele-
ment, and we store it in the variable to_insert so that we can put it into the
newcabinet.

We’ll put all of this together in Listing 4-2, where we define an
insertion_sort() function that loops through every element of our
unsorted cabinet, inserting the elements one by one into newcabinet.
Finally, at the end, we print out the result, a sorted cabinet called
sortedcabinet.

cabinet = [8,4,6,1,2,5,3,7]
def insertion_sort(cabinet):
 newcabinet = []
 while len(cabinet) > 0:
 to_insert = cabinet.pop(0)
 newcabinet = insert_cabinet(newcabinet, to_insert)
 return(newcabinet)

sortedcabinet = insertion_sort(cabinet)
print(sortedcabinet)

Listing 4-2: An implementation of insertion sort

Now that we can do insertion sort, we can sort any list we encounter. We
may be tempted to think that this means we have all the sorting knowledge
we’ll ever need. However, sorting is so fundamental and important that we
want to be able to do it in the best possible way. Before we discuss alterna-
tives to insertion sort, let’s look at what it means for one algorithm to be
better than another and, on an even more basic level, what it means for an
algorithm to be good.

Measuring Algorithm Efficiency
Is insertion sort a good algorithm? This question is hard to answer unless
we’re sure about what we mean by “good.” Insertion sort works—it sorts

56 Chapter 4

lists—so it’s good in the sense that it accomplishes its purpose. Another
point in its favor is that it’s easy to understand and explain with reference to
physical tasks that many people are familiar with. Yet another feather in its
cap is that it doesn’t take too many lines of code to express. So far, insertion
sort seems like a good algorithm.

However, insertion sort has one crucial failing: it takes a long time to
perform. The code in Listing 4-2 almost certainly ran in less than one sec-
ond on your computer, so the “long time” that insertion sort takes is not the
long time that it takes for a tiny seed to become a mighty redwood or even
the long time that it takes to wait in line at the DMV. It’s more like a long
time in comparison to how long it takes a gnat to flap its wings once.

To fret about a gnat’s wing flap as a “long time” may seem a little
extreme. But there are several good reasons to push algorithms as close as
possible to zero-second running times.

Why Aim for Efficiency?
The first reason to relentlessly pursue algorithm efficiency is that it can
increase our raw capabilities. If your inefficient algorithm takes one minute
to sort an eight-item list, that may not seem like a problem. But consider
that such an inefficient algorithm might take an hour to sort a thousand-
item list, and a week to sort a million-item list. It may take a year or a cen-
tury to sort a billion-item list, or it may not be able to sort it at all. If we
make the algorithm better able to sort an eight-item list (something that
seems trivial since it saves us only a minute), it may make the difference
between being able to sort a billion-item list in an hour rather than a cen-
tury, which can open up many possibilities. Advanced machine-learning
methods like k-means clustering and k-NN supervised learning rely on
ordering long lists, and improving the performance of a fundamental algo-
rithm like sorting can enable us to perform these methods on big datasets
that would otherwise be beyond our grasp.

Even sorting short lists is important to do quickly if it’s something that
we have to do many times. The world’s search engines, for example, col-
lectively receive a trillion searches every few months and have to order each
set of results from most to least relevant before delivering them to users. If
they can cut the time required for one simple sort from one second to half
a second, they cut their required processing time from a trillion seconds to
half a trillion seconds. This saves time for users (saving a thousand seconds
for half a billion people really adds up!) and reduces data processing costs,
and by consuming less energy, efficient algorithms are even environmen-
tally friendly.

The final reason to create faster algorithms is the same reason that
people try to do better in any pursuit. Even though there is no obvious
need for it, people try to run the 100-meter dash faster, play chess bet-
ter, and cook a tastier pizza than anyone ever has before. They do these
things for the same reason George Mallory said he wanted to climb Mount
Everest: “because it’s there.” It’s human nature to push the boundaries of
the possible and strive to be better, faster, stronger, and more intelligent

Sorting and Searching 57

than anyone else. Algorithm researchers are trying to do better because,
among other reasons, they wish to do something remarkable, whether or
not it is practically useful.

Measuring Time Precisely
Since the time required for an algorithm to run is so important, we should
be more precise than saying that insertion sort takes a “long time” or “less
than a second.” How long, exactly, does it take? For a literal answer, we can
use the timeit module in Python. With timeit, we can create a timer that we
start just before running our sorting code and end just afterward. When
we check the difference between the starting time and the ending time, we
find how long it took to run our code.

from timeit import default_timer as timer

start = timer()
cabinet = [8,4,6,1,2,5,3,7]
sortedcabinet = insertion_sort(cabinet)
end = timer()
print(end - start)

When I ran this code on my consumer-grade laptop, it ran in about
0.0017 seconds. This is a reasonable way to express how good insertion sort
is—it can fully sort a list with eight items in 0.0017 seconds. If we want to
compare insertion sort with any other sorting algorithm, we can compare
the results of this timeit timing to see which is faster, and say the faster one
is better.

However, using these timings to compare algorithm performance has
some problems. For example, when I ran the timing code a second time
on my laptop, I found that it ran in 0.0008 seconds. A third time, I found
that it ran on another computer in 0.03 seconds. The precise timing you
get depends on the speed and architecture of your hardware, the current
load on your operating system (OS), the version of Python you’re running,
the OS’s internal task schedulers, the efficiency of your code, and prob-
ably other chaotic vagaries of randomness and electron motion and the
phases of the moon. Since we can get very different results in each timing
attempt, it’s hard to rely on timings to communicate about algorithms’
comparative efficiency. One programmer may brag that they can sort a
list in Y seconds, while another programmer laughs and says that their
algorithm gets better performance in Z seconds. We might find out they
are running exactly the same code, but on different hardware at differ-
ent times, so their comparison is not of algorithm efficiency but rather of
hardware speed and luck.

Counting Steps
Instead of using timings in seconds, a more reliable measure of algorithm
performance is the number of steps required to execute the algorithm. The
number of steps an algorithm takes is a feature of the algorithm itself and

58 Chapter 4

isn’t dependent on the hardware architecture or even necessarily on the pro-
gramming language. Listing 4-3 is our insertion sort code from Listings 4-1
and 4-2 with several lines added where we have specified stepcounter+=1. We
increase our step counter every time we pick up a new file to insert from the
old cabinet, every time we compare that file to another file in the new cabi-
net, and every time we insert the file into the new cabinet.

def insert_cabinet(cabinet,to_insert):
 check_location = len(cabinet) - 1
 insert_location = 0
 global stepcounter
 while(check_location >= 0):
 stepcounter += 1
 if to_insert > cabinet[check_location]:
 insert_location = check_location + 1
 check_location = - 1
 check_location = check_location - 1
 stepcounter += 1
 cabinet.insert(insert_location,to_insert)
 return(cabinet)

def insertion_sort(cabinet):
 newcabinet = []
 global stepcounter
 while len(cabinet) > 0:
 stepcounter += 1
 to_insert = cabinet.pop(0)
 newcabinet = insert_cabinet(newcabinet,to_insert)
 return(newcabinet)

cabinet = [8,4,6,1,2,5,3,7]
stepcounter = 0
sortedcabinet = insertion_sort(cabinet)
print(stepcounter)

Listing 4-3: Our insertion sort code with a step counter

In this case, we can run this code and see that it performs 36 steps in
order to accomplish the insertion sort for a list of length 8. Let’s try to per-
form insertion sort for lists of other lengths and see how many steps we take.

To do so, let’s write a function that can check the number of steps
required for insertion sort for unsorted lists of different lengths. Instead
of manually writing out each unsorted list, we can use a simple list compre-
hension in Python to generate a random list of any specified length. We can
import Python’s random module to make the random creation of lists easier.
Here’s how we can create a random unsorted cabinet of length 10:

import random
size_of_cabinet = 10
cabinet = [int(1000 * random.random()) for i in range(size_of_cabinet)]

Sorting and Searching 59

Our function will simply generate a list of some given length, run our
insertion sort code, and return the final value it finds for stepcounter.

def check_steps(size_of_cabinet):
 cabinet = [int(1000 * random.random()) for i in range(size_of_cabinet)]
 global stepcounter
 stepcounter = 0
 sortedcabinet = insertion_sort(cabinet)
 return(stepcounter)

Let’s create a list of all numbers between 1 and 100 and check the num-
ber of steps required to sort lists of each length.

random.seed(5040)
xs = list(range(1,100))
ys = [check_steps(x) for x in xs]
print(ys)

In this code, we start by calling the random.seed() function. This is not
necessary but will ensure that you see the same results as those printed
here if you run the same code. You can see that we define sets of values for
x, stored in xs, and a set of values for y, stored in ys. The x values are simply
the numbers between 1 and 100, and the y values are the number of steps
required to sort randomly generated lists of each size corresponding to
each x. If you look at the output, you can see how many steps insertion sort
took to sort randomly generated lists of lengths 1, 2, 3 . . . , all the way to 99.
We can plot the relationship between list length and sorting steps as follows.
We’ll import matplotlib.pyplot in order to accomplish the plotting.

import matplotlib.pyplot as plt
plt.plot(xs,ys)
plt.title('Steps Required for Insertion Sort for Random Cabinets')
plt.xlabel('Number of Files in Random Cabinet')
plt.ylabel('Steps Required to Sort Cabinet by Insertion Sort')
plt.show()

Figure 4-1 shows the output. You can see that the output curve is a little
jagged—sometimes a longer list will be sorted in fewer steps than will a
shorter list. The reason for this is that we generated every list randomly.
Occasionally our random list generation code will create a list that’s easy
for insertion sort to deal with quickly (because it’s already partially sorted),
and occasionally it will create a list that is harder to deal with quickly,
strictly through random chance. For this same reason, you may find that
the output on your screen doesn’t look exactly like the output printed here
if you don’t use the same random seed, but the general shape should be
the same.

60 Chapter 4

Figure 4-1: Insertion sort steps

Comparing to Well-Known Functions
Looking beyond the superficial jaggedness of Figure 4-1, we can examine the
general shape of the curve and try to reason about its growth rate. The num-
ber of steps required appears to grow quite slowly between x = 1 and about
x = 10. After that, it seems to slowly get steeper (and more jagged). Between
about x = 90 and x = 100, the growth rate appears very steep indeed.

Saying that the plot gets gradually steeper as the list length increases
is still not as precise as we want to be. Sometimes we talk colloquially about
this kind of accelerating growth as “exponential.” Are we dealing with expo-
nential growth here? Strictly speaking, there is a function called the expo-
nential function defined by ex, where e is Euler’s number, or about 2.71828. So
does the number of steps required for insertion sort follow this exponential
function that we could say fits the narrowest possible definition of exponen-
tial growth? We can get a clue about the answer by plotting our step curve
together with an exponential growth curve, as follows. We will also import
the numpy module in order to take the maximum and minimum of our step
values.

import math
import numpy as np
random.seed(5040)
xs = list(range(1,100))
ys = [check_steps(x) for x in xs]
ys_exp = [math.exp(x) for x in xs]
plt.plot(xs,ys)
axes = plt.gca()
axes.set_ylim([np.min(ys),np.max(ys) + 140])

Sorting and Searching 61

plt.plot(xs,ys_exp)
plt.title('Comparing Insertion Sort to the Exponential Function')
plt.xlabel('Number of Files in Random Cabinet')
plt.ylabel('Steps Required to Sort Cabinet')
plt.show()

Just like before, we define xs to be all the numbers between 1 and 100,
and ys to be the number of steps required to sort randomly generated lists
of each size corresponding to each x. We also define a variable called ys_exp,
which is ex for each of the values stored in xs. We then plot both ys and ys_exp
on the same plot. The result enables us to see how the growth of the number
of steps required to sort a list relates to true exponential growth.

Running this code creates the plot shown in Figure 4-2.

Figure 4-2: Insertion sort steps compared to the exponential function

We can see the true exponential growth curve shooting up toward
infinity on the left side of the plot. Though the insertion sort step curve
grows at an accelerating rate, its acceleration does not seem to get close to
matching true exponential growth. If you plot other curves whose growth
rate could also be called exponential, 2× or 10×, you’ll see that all of these
types of curves also grow much faster than our insertion sort step counter
curve does. So if the insertion sort step curve doesn’t match exponential
growth, what kind of growth might it match? Let’s try to plot a few more
functions on the same plot. Here, we’ll plot y = x, y = x1.5, y = x2, and
y = x3 along with the insertion sort step curve.

random.seed(5040)
xs = list(range(1,100))
ys = [check_steps(x) for x in xs]
xs_exp = [math.exp(x) for x in xs]

62 Chapter 4

xs_squared = [x**2 for x in xs]
xs_threehalves = [x**1.5 for x in xs]
xs_cubed = [x**3 for x in xs]
plt.plot(xs,ys)
axes = plt.gca()
axes.set_ylim([np.min(ys),np.max(ys) + 140])
plt.plot(xs,xs_exp)
plt.plot(xs,xs)
plt.plot(xs,xs_squared)
plt.plot(xs,xs_cubed)
plt.plot(xs,xs_threehalves)
plt.title('Comparing Insertion Sort to Other Growth Rates')
plt.xlabel('Number of Files in Random Cabinet')
plt.ylabel('Steps Required to Sort Cabinet')
plt.show()

This results in Figure 4-3.

Figure 4-3: Insertion sort steps compared to other growth rates

There are five growth rates plotted in Figure 4-3, in addition to the
jagged curve counting the steps required for insertion sort. You can see
that the exponential curve grows the fastest, and next to it the cubic curve
scarcely even makes an appearance on the plot because it also grows so fast.
The y = x curve grows extremely slowly compared to the other curves; you
can see it at the very bottom of the plot.

The curves that are the closest to the insertion sort curve are y = x2 and
y = x1.5. It isn’t obvious which curve is most comparable to the insertion
sort curve, so we cannot speak with certainty about the exact growth rate
of insertion sort. But after plotting, we’re able to make a statement like

Sorting and Searching 63

“if we are sorting a list with n elements, insertion sort will take somewhere
between n1.5 and n2 steps.” This is a more precise and robust statement than
“as long as a gnat’s wing flap” or “.002-ish seconds on my unique laptop this
morning.”

Adding Even More Theoretical Precision
To get even more precise, we should try to reason carefully about the steps
required for insertion sort. Let’s imagine, once again, that we have a new
unsorted list with n elements. In Table 4-2, we proceed through each step of
insertion sort individually and count the steps.

Table 4-2: Counting the Steps in Insertion Sort

Description of actions

Number of steps
required for pulling the
file from the old cabinet

Maximum number
of steps required for
comparing to other files

Number of steps
required for
inserting the file into
the new cabinet

Take the first file from the
old cabinet and insert
it into the (empty) new
cabinet.

1 0. (There are no files to
compare to.)

1

Take the second file
from the old cabinet and
insert it into the new cab-
inet (that now contains
one file).

1 1. (There’s one file to
compare to and we have
to compare it.)

1

Take the third file from
the old cabinet and
insert it into the new cab-
inet (that now contains
two files).

1 2 or fewer. (There are
two files and we have to
compare between 1 of
them and all of them.)

1

Take the fourth file from
the old cabinet and
insert it into the new cab-
inet (that now contains
three files).

1 3 or fewer. (There are
three files and we have
to compare between 1
of them and all of them.)

1

.

Take the nth file from the
old cabinet and insert
it into the new cabinet
(that contains n – 1 files).

1 n – 1 or fewer. (There are
n – 1 files and we have to
compare between one
of them and all of them.)

1

If we add up all the steps described in this table, we get the following
maximum total steps:

•	 Steps required for pulling files: n (1 step for pulling each of n files)

•	 Steps required for comparison: up to 1 + 2 + . . . + (n – 1)

•	 Steps required for inserting files: n (1 step for inserting each of n files)

64 Chapter 4

If we add these up, we get an expression like the following:

maximum_total_steps = n + (1 + 2 + . . . + n)

We can simplify this expression using a handy identity:

2
n × (n + 1)

1 + 2 + . . . + n =

If we use this identity and then add everything together and simplify,
we find that the total number of steps required is

2
n2

2
3n

maximum_total_steps = +

We finally have a very precise expression for the maximum total steps
that could be required to perform insertion sort. But believe it or not, this
expression may even be too precise, for several reasons. One is that it’s the
maximum number of steps required, but the minimum and the average
could be much lower, and almost every conceivable list that we might want
to sort would require fewer steps. Remember the jaggedness in the curve we
plotted in Figure 4-1—there’s always variation in how long it takes to per-
form an algorithm, depending on our choice of input.

Another reason that our expression for the maximum steps could be
called too precise is that knowing the number of steps for an algorithm is
most important for large values of n, but as n gets very large, a small part
of the expression starts to dominate the rest in importance because of the
sharply diverging growth rates of different functions.

Consider the expression n2 + n. It is a sum of two terms: an n2 term, and
an n term. When n = 10, n2 + n is 110, which is 10% higher than n2. When
n = 100, n2 + n is 10,100, which is only 1% higher than n2. As n grows, the n2
term in the expression becomes more important than the n term because
quadratic functions grow so much faster than linear ones. So if we have
one algorithm that takes n2+ n steps to perform and another algorithm
that takes n2 steps to perform, as n grows very large, the difference between
them will matter less and less. Both of them run in more or less n2 steps.

Using Big O Notation
To say that an algorithm runs in more or less n2 steps is a reasonable balance
between the precision we want and the conciseness we want (and the ran-
domness we have). The way we express this type of “more or less” relation-
ship formally is by using big O notation(the O is short for order). We might
say that a particular algorithm is “big O of n2,” or O(n2), if, in the worst case,
it runs in more or less n2 steps for large n. The technical definition states
that the function f(x) is big- O of the function g(x) if there’s some constant
number M such that the absolute value of f(x) is always less than M times
g(x) for all sufficiently large values of x.

Sorting and Searching 65

In the case of insertion sort, when we look at our expression for the
maximum number of steps required to perform the algorithm, we find that
it’s a sum of two terms: one is a multiple of n2, and the other is a multiple of
n. As we just discussed, the term that is a multiple of n will matter less and
less as n grows, and the n2 term will come to be the only one that we are
concerned with. So the worst case of insertion sort is that it is a O(n2) (“big
O of n2”) algorithm.

The quest for algorithm efficiency consists of seeking algorithms whose
runtimes are big O of smaller and smaller functions. If we could find a way
to alter insertion sort so that it is O(n1.5) instead of O(n2), that would be a
major breakthrough that would make a huge difference in runtimes for
large values of n. We can use big O notation to talk not only about time but
also about space. Some algorithms can gain speed by storing big datasets
in memory. They might be big O of a small function for runtime but big O
of a larger function for memory requirements. Depending on the circum-
stances, it may be wise to gain speed by eating up memory, or to free up
memory by sacrificing speed. In this chapter, we’ll focus on gaining speed
and designing algorithms to have runtimes that are big O of the smallest
possible functions, without regard to memory requirements.

After learning insertion sort and seeing that its runtime performance
is O(n2), it’s natural to wonder what level of improvement we can reasonably
hope for. Could we find some holy grail algorithm that could sort any pos-
sible list in fewer than 10 steps? No. Every sorting algorithm will require at
least n steps, because it will be necessary to consider each element of the list
in turn, for each of the n elements. So any sorting algorithm will be at least
O(n). We cannot do better than O(n), but can we do better than insertion
sort’s O(n2)? We can. Next, we’ll consider an algorithm that’s known to be
O(nlog(n)), a significant improvement over insertion sort.

Merge Sort
Merge sort is an algorithm that’s much quicker than insertion sort. Just like
insertion sort, merge sort contains two parts: a part that merges two lists
and a part that repeatedly uses merging to accomplish the actual sorting.
Let’s consider the merging itself before we consider the sorting.

Suppose we have two filing cabinets that are both sorted individually
but have never been compared to each other. We want to combine their
contents into one final filing cabinet that is also completely sorted. We
will call this task a merge of the two sorted filing cabinets. How should we
approach this problem?

Once again, it’s worthwhile to consider how we would do this with real
filing cabinets before we open Python and start writing code. In this case, we
can imagine having three filing cabinets in front of us: the two full, sorted
filing cabinets whose files we want to merge, and a third, empty filing cabinet
that we will insert files into and that will eventually contain all of the files from
the original two cabinets. We can call our two original cabinets the “left” and
“right” cabinets, imagining that they are placed on our left and right.

66 Chapter 4

Merging
To merge, we can take the first file in both of the original cabinets simul-
taneously: the first left file with our left hand and the first right file with
our right hand. Whichever file is lower is inserted into the new cabinet as
its first file. To find the second file for the new cabinet, once again take
the first file in the left and right cabinets, compare them, and insert which-
ever is lower into the last position in the new cabinet. When either the left
cabinet or the right cabinet is empty, take the remaining files in the non-
empty cabinet and place them all together at the end of the new cabinet.
After this, your new cabinet will contain all the files from the left and
right cabinets, sorted in order. We have successfully merged our original
two cabinets.

In Python, we’ll use the variables left and right to refer to our original
sorted cabinets, and we’ll define a newcabinet list, which will start empty and
eventually contain all elements of both left and right, in order.

newcabinet = []

We’ll define example cabinets that we’ll call left and right:

left = [1,3,4,4,5,7,8,9]
right = [2,4,6,7,8,8,10,12,13,14]

To compare the respective first elements of our left and right cabinets,
we’ll use the following if statements (which won’t be ready to run until we
fill in the --snip-- sections):

 if left[0] > right[0]:
 --snip--
 elif left[0] <= right[0]:
 --snip--

Remember that if the first element of the left cabinet is lower than the
first element of the right cabinet, we want to pop that element out of the left
cabinet and insert it into the newcabinet, and vice versa. We can accomplish
that by using Python’s built-in pop() function, inserting it into our if state-
ments as follows:

if left[0] > right[0]:
 to_insert = right.pop(0)
 newcabinet.append(to_insert)
elif left[0] <= right[0]:
 to_insert = left.pop(0)
 newcabinet.append(to_insert)

This process—checking the first elements of the left and right cabinets
and popping the appropriate one into the new cabinet—needs to continue
as long as both of the cabinets still have at least one file. That’s why we will

Sorting and Searching 67

nest these if statements inside a while loop that checks the minimum length
of left and right. As long as both left and right contain at least one file, it
will continue its process:

while(min(len(left),len(right)) > 0):
 if left[0] > right[0]:
 to_insert = right.pop(0)
 newcabinet.append(to_insert)
 elif left[0] <= right[0]:
 to_insert = left.pop(0)
 newcabinet.append(to_insert)

Our while loop will stop executing as soon as either left or right runs
out of files to insert. At that point, if left is empty, we’ll insert all the files in
right at the end of the new cabinet in their current order, and vice versa. We
can accomplish that final insertion as follows:

if(len(left) > 0):
 for i in left:
 newcabinet.append(i)

if(len(right) > 0):
 for i in right:
 newcabinet.append(i)

Finally, we combine all of those snippets into our final merging algo-
rithm in Python as shown in Listing 4-4.

def merging(left,right):
 newcabinet = []
 while(min(len(left),len(right)) > 0):
 if left[0] > right[0]:
 to_insert = right.pop(0)
 newcabinet.append(to_insert)
 elif left[0] <= right[0]:
 to_insert = left.pop(0)
 newcabinet.append(to_insert)
 if(len(left) > 0):
 for i in left:
 newcabinet.append(i)
 if(len(right)>0):
 for i in right:
 newcabinet.append(i)
 return(newcabinet)

left = [1,3,4,4,5,7,8,9]
right = [2,4,6,7,8,8,10,12,13,14]

newcab=merging(left,right)

Listing 4-4: An algorithm to merge two sorted lists

68 Chapter 4

The code in Listing 4-4 creates newcab, a single list that contains all ele-
ments of left and right, merged and in order. You can run print(newcab) to
see that our merging function worked.

From Merging to Sorting
Once we know how to merge, merge sort is within our grasp. Let’s start by
creating a simple merge sort function that works only on lists that have two
or fewer elements. A one-element list is already sorted, so if we pass that as
the input to our merge sort function, we should just return it unaltered. If we
pass a two-element list to our merge sort function, we can split that list into
two one-element lists (that are therefore already sorted) and call our merging
function on those one-element lists to get a final, sorted two-element list. The
following Python function accomplishes what we need:

import math

def mergesort_two_elements(cabinet):
 newcabinet = []
 if(len(cabinet) == 1):
 newcabinet = cabinet
 else:
 left = cabinet[:math.floor(len(cabinet)/2)]
 right = cabinet[math.floor(len(cabinet)/2):]
 newcabinet = merging(left,right)
 return(newcabinet)

This code relies on Python’s list indexing syntax to split whatever cabinet
we want to sort into a left cabinet and a right cabinet. You can see in the lines
that define left and right that we’re using :math.floor(len(cabinet)/2) and
math.floor(len(cabinet)/2): to refer to the entire first half or the entire second
half of the original cabinet, respectively. You can call this function with any
one- or two-element cabinet—for example, mergesort_two_elements([3,1])—
and see that it successfully returns a sorted cabinet.

Next, let’s write a function that can sort a list that has four elements.
If we split a four-element list into two sublists, each sublist will have two
elements. We could follow our merging algorithm to combine these lists.
However, recall that our merging algorithm is designed to combine two
already sorted lists. These two lists may not be sorted, so using our merging
algorithm will not successfully sort them. However, each of our sublists has
only two elements, and we just wrote a function that can perform merge
sort on lists with two elements. So we can split our four-element list into
two sublists, call our merge sort function that works on two-element lists on
each of those sublists, and then merge the two sorted lists together to get a
sorted result with four elements. This Python function accomplishes that:

def mergesort_four_elements(cabinet):
 newcabinet = []
 if(len(cabinet) == 1):
 newcabinet = cabinet

Sorting and Searching 69

 else:
 left = mergesort_two_elements(cabinet[:math.floor(len(cabinet)/2)])
 right = mergesort_two_elements(cabinet[math.floor(len(cabinet)/2):])
 newcabinet = merging(left,right)
 return(newcabinet)

cabinet = [2,6,4,1]
newcabinet = mergesort_four_elements(cabinet)

We could continue writing these functions to work on successively larger
lists. But the breakthrough comes when we realize that we can collapse that
whole process by using recursion. Consider the function in Listing 4-5, and
compare it to the preceding mergesort_four_elements() function.

def mergesort(cabinet):
 newcabinet = []
 if(len(cabinet) == 1):
 newcabinet = cabinet
 else:

 1 left = mergesort(cabinet[:math.floor(len(cabinet)/2)])
 2 right = mergesort(cabinet[math.floor(len(cabinet)/2):])

 newcabinet = merging(left,right)
 return(newcabinet)

Listing 4-5: Implementing merge sort with recursion

You can see that this function is nearly identical to our mergesort_four_
elements() to function. The crucial difference is that to create the sorted left
and right cabinets, it doesn’t call another function that works on smaller
lists. Rather, it calls itself on the smaller list 12. Merge sort is a divide and
conquer algorithm. We start with a large, unsorted list. Then we split that list
repeatedly into smaller and smaller chunks (the dividing) until we end up
with sorted (conquered) one-item lists, and then we simply merge them back
together successively until we have built back up to one big sorted list. We
can call this merge sort function on a list of any size and check that it works:

cabinet = [4,1,3,2,6,3,18,2,9,7,3,1,2.5,-9]
newcabinet = mergesort(cabinet)
print(newcabinet)

When we put all of our merge sort code together, we get Listing 4-6.

def merging(left,right):
 newcabinet = []
 while(min(len(left),len(right)) > 0):
 if left[0] > right[0]:
 to_insert = right.pop(0)
 newcabinet.append(to_insert)
 elif left[0] <= right[0]:
 to_insert = left.pop(0)
 newcabinet.append(to_insert)
 if(len(left) > 0):
 for i in left:
 newcabinet.append(i)

70 Chapter 4

 if(len(right) > 0):
 for i in right:
 newcabinet.append(i)
 return(newcabinet)

import math

def mergesort(cabinet):
 newcabinet = []
 if(len(cabinet) == 1):
 newcabinet=cabinet
 else:
 left = mergesort(cabinet[:math.floor(len(cabinet)/2)])
 right = mergesort(cabinet[math.floor(len(cabinet)/2):])
 newcabinet = merging(left,right)
 return(newcabinet)

cabinet = [4,1,3,2,6,3,18,2,9,7,3,1,2.5,-9]
newcabinet=mergesort(cabinet)

Listing 4-6: Our complete merge sort code

You could add a step counter to your merge sort code to check how
many steps it takes to run and how it compares to insertion sort. The merge
sort process consists of successively splitting the initial cabinet into sublists
and then merging those sublists back together, preserving the sorting order.
Every time we split a list, we’re cutting it in half. The number of times a list
of length n can be split in half before each sublist has only one element is
about log(n) (where the log is to base 2), and the number of comparisons we
have to make at each merge is at most n. So n or fewer comparisons for each
of log(n) comparisons means that merge sort is O(n×log(n)), which may not
seem impressive but actually makes it the state of the art for sorting. In fact,
when we call Python’s built-in sorting function sorted as follows:

print(sorted(cabinet))

Python is using a hybrid version of merge sort and insertion sort
behind the scenes to accomplish this sorting task. By learning merge sort
and insertion sort, you’ve gotten up to speed with the quickest sorting algo-
rithm computer scientists have been able to create, something that is used
millions of times every day in every imaginable kind of application.

Sleep Sort
The enormous negative influence that the internet has had on humanity is
occasionally counterbalanced by a small, shining treasure that it provides.
Occasionally, the bowels of the internet even produce a scientific discovery
that creeps into the world outside the purview of scientific journals or the
“establishment.” In 2011, an anonymous poster on the online image board
4chan proposed and provided code for a sorting algorithm that had never
been published before and has since come to be called sleep sort.

Sorting and Searching 71

Sleep sort wasn’t designed to resemble any real-world situation, like
inserting files into a filing cabinet. If we’re seeking an analogy, we might
consider the task of allocating lifeboat spots on the Titanic as it began to
sink. We might want to allow children and younger people the first chance
to get on the lifeboats, and then allow older people to try to get one of the
remaining spots. If we make an announcement like “younger people get on
the boats before older people,” we’d face chaos as everyone would have to
compare their ages—they would face a difficult sorting problem amidst the
chaos of the sinking ship.

A sleep-sort approach to the Titanic lifeboats would be the following.
We would announce, “Everyone please stand still and count to your age:
1, 2, 3, As soon as you have counted up to your current age, step for-
ward to get on a lifeboat.” We can imagine that 8-year-olds would finish
their counting about one second before the 9-year-olds, and so would have
a one-second head start and be able to get a spot on the boats before those
who were 9. The 8- and 9-year-olds would similarly be able to get on the
boats before the 10-year-olds, and so on. Without doing any comparisons
at all, we’d rely on individuals’ ability to pause for a length of time propor-
tional to the metric we want to sort on and then insert themselves, and the
sorting would happen effortlessly after that—with no direct inter-person
comparisons.

This Titanic lifeboat process shows the idea of sleep sort: allow each
element to insert itself directly, but only after a pause in proportion to the
metric it’s being sorted on. From a programming perspective, these pauses
are called sleeps and can be implemented in most languages.

In Python, we can implement sleep sort as follows. We will import the
threading module, which will enable us to create different computer pro-
cesses for each element of our list to sleep and then insert itself. We’ll also
import the time.sleep module, which will enable us to put our different
“threads” to sleep for the appropriate length of time.

import threading
from time import sleep

def sleep_sort(i):
 sleep(i)
 global sortedlist
 sortedlist.append(i)
 return(i)

items = [2, 4, 5, 2, 1, 7]
sortedlist = []
ignore_result = [threading.Thread(target = sleep_sort, args = (i,)).start() \
for i in items]

The sorted list will be stored in the sortedlist variable, and you can
ignore the list we create called ignore_result. You can see that one advan-
tage of sleep sort is that it can be written concisely in Python. It’s also fun
to print the sortedlist variable before the sorting is done (in this case,

72 Chapter 4

within about 7 seconds) because depending on exactly when you execute
the print command, you’ll see a different list. However, sleep sort also has
some major disadvantages. One of these is that because it’s not possible to
sleep for a negative length of time, sleep sort cannot sort lists with nega-
tive numbers. Another disadvantage is that sleep sort’s execution is highly
dependent on outliers—if you append 1,000 to the list, you’ll have to wait at
least 1,000 seconds for the algorithm to finish executing. Yet another disad-
vantage is that numbers that are close to each other may be inserted in the
wrong order if the threads are not executed perfectly concurrently. Finally,
since sleep sort uses threading, it will not be able to execute (well) on hard-
ware or software that does not enable threading (well).

If we had to express sleep sort’s runtime in big O notation, we might say
that it is O(max(list)). Unlike the runtime of every other well-known sorting
algorithm, its runtime depends not on the size of the list but on the size of
the elements of the list. This makes sleep sort hard to rely on, because we
can only be confident about its performance with certain lists—even a short
list may take far too long to sort if any of its elements are too large.

There may never be a practical use for sleep sort, even on a sinking
ship. I include it here for a few reasons. First, because it is so different from
all other extant sorting algorithms, it reminds us that even the most stale
and static fields of research have room for creativity and innovation, and
it provides a refreshingly new perspective on what may seem like a narrow
field. Second, because it was designed and published anonymously and
probably by someone outside the mainstream of research and practice, it
reminds us that great thoughts and geniuses are found not only in fancy
universities, established journals, and top firms, but also among the uncre-
dentialed and unrecognized. Third, it represents a fascinating new genera-
tion of algorithms that are “native to computers,” meaning that they are not
a translation of something that can be done with a cabinet and two hands
like many old algorithms, but are fundamentally based on capabilities that
are unique to computers (in this case, sleeping and threading). Fourth, the
computer-native ideas it relies on (sleeping and threading) are very useful
and worth putting in any algorithmicist’s toolbox for use in designing other
algorithms. And fifth, I have an idiosyncratic affection for it, maybe just
because it is a strange, creative misfit or maybe because I like its method of
self-organizing order and the fact that I can use it if I’m ever in charge of
saving a sinking ship.

From Sorting to Searching
Searching, like sorting, is fundamental to a variety of tasks in computer sci-
ence (and in the rest of life). We may want to search for a name in a phone
book, or (since we’re living after the year 2000) we may need to access a
database and find a relevant record.

Searching is often merely a corollary of sorting. In other words, once
we have sorted a list, searching is very straightforward—the sorting is often
the hard part.

Sorting and Searching 73

Binary Search
Binary search is a quick and effective method for searching for an element
in a sorted list. It works a little like a guessing game. Suppose that someone
is thinking of a number from 1 to 100 and you are trying to guess it. You
may guess 50 as your first guess. Your friend says that 50 is incorrect but
allows you to guess again and gives you a hint: 50 is too high. Since 50 is too
high, you guess 49. Again, you are incorrect, and your friend tells you that
49 is too high and gives you another chance to guess. You could guess 48,
then 47, and so on until you get the right answer. But that could take a long
time—if the correct number is 1, it will take you 50 guesses to get it, which
seems like too many guesses considering there were only 100 total possibili-
ties to begin with.

A better approach is to take larger jumps after you find out whether
your guess is too high or too low. If 50 is too high, consider what we could
learn from guessing 40 next instead of 49. If 40 is too low, we have elimi-
nated 39 possibilities (1–39) and we’ll definitely be able to guess in at most
9 more guesses (41–49). If 40 is too high, we’ve at least eliminated 9 pos-
sibilities (41–49) and we’ll definitely be able to guess in at most 39 more
guesses (1–39). So in the worst case, guessing 40 narrows down the possi-
bilities from 49 (1–49) to 39 (1–39). By contrast, guessing 49 narrows down
the possibilities from 49 (1–49) to 48 (1–48) in the worst case. Clearly,
guessing 40 is a better searching strategy than guessing 49.

It turns out that the best searching strategy is to guess exactly the
midpoint of the remaining possibilities. If you do that and then check
whether your guess was too high or too low, you can always eliminate half
of the remaining possibilities. If you eliminate half of the possibilities in
each round of guessing, you can actually find the right value quite quickly
(O(log(n)) for those keeping score at home). For example, a list with 1,000
items will require only 10 guesses to find any element with a binary search
strategy. If we’re allowed to have only 20 guesses, we can correctly find the
position of an element in a list with more than a million items. Incidentally,
this is why we can write guessing-game apps that can correctly “read your
mind” by asking only about 20 questions.

To implement this in Python, we will start by defining upper and lower
bounds for what location a file can occupy in a filing cabinet. The lower
bound will be 0, and the upper bound will be the length of the cabinet:

sorted_cabinet = [1,2,3,4,5]
upperbound = len(sorted_cabinet)
lowerbound = 0

To start, we will guess that the file is in the middle of the cabinet. We’ll
import Python’s math library to use the floor() function, which can convert
decimals to integers. Remember that guessing the halfway point gives us
the maximum possible amount of information:

import math
guess = math.floor(len(sorted_cabinet)/2)

74 Chapter 4

Next, we will check whether our guess is too low or too high. We’ll take
a different action depending on what we find. We use the looking_for vari-
able for the value we are searching for:

if(sorted_cabinet[guess] > looking_for):
 --snip--
if(sorted_cabinet[guess] < looking_for):
 --snip--

If the file in the cabinet is too high, then we’ll make our guess the new
upper bound, since there is no use looking any higher in the cabinet. Then
our new guess will be lower—to be precise, it will be halfway between the
current guess and the lower bound:

looking_for = 3
if(sorted_cabinet[guess] > looking_for):
 upperbound = guess
 guess = math.floor((guess + lowerbound)/2)

We follow an analogous process if the file in the cabinet is too low:

if(sorted_cabinet[guess] < looking_for):
 lowerbound = guess
 guess = math.floor((guess + upperbound)/2)

Finally, we can put all of these pieces together into a binarysearch()
function. The function contains a while loop that will run for as long
as it takes until we find the part of the cabinet we’ve been looking for
(Listing 4-7).

import math
sortedcabinet = [1,2,3,4,5,6,7,8,9,10]

def binarysearch(sorted_cabinet,looking_for):
 guess = math.floor(len(sorted_cabinet)/2)
 upperbound = len(sorted_cabinet)
 lowerbound = 0
 while(abs(sorted_cabinet[guess] - looking_for) > 0.0001):
 if(sorted_cabinet[guess] > looking_for):
 upperbound = guess
 guess = math.floor((guess + lowerbound)/2)
 if(sorted_cabinet[guess] < looking_for):
 lowerbound = guess
 guess = math.floor((guess + upperbound)/2)
 return(guess)

print(binarysearch(sortedcabinet,8))

Listing 4-7: An implementation of binary search

Sorting and Searching 75

The final output of this code tells us that the number 8 is at position 7
in our sorted_cabinet. This is correct (remember that the index of Python
lists starts at 0). This strategy of guessing in a way that eliminates half of
the remaining possibilities is useful in many domains. For example, it’s
the basis for the most efficient strategy on average in the formerly popular
board game Guess Who. It’s also the best way (in theory) to look words up in
a large, unfamiliar dictionary.

Applications of Binary Search
Besides guessing games and word lookups, binary search is used in a few
other domains. For example, we can use the idea of binary search when
debugging code. Suppose that we have written some code that doesn’t work,
but we aren’t sure which part is faulty. We can use a binary search strategy
to find the problem. We split the code in half and run both halves sepa-
rately. Whichever half doesn’t run properly is the half where the problem
lies. Again, we split the problematic part in half, and test each half to fur-
ther narrow down the possibilities until we find the offending line of code.
A similar idea is implemented in the popular code version-control software
Git as git bisect (although git bisect iterates through temporally separated
versions of the code rather than through lines in one version).

Another application of binary search is inverting a mathematical func-
tion. For example, imagine that we have to write a function that can cal-
culate the arcsin, or inverse sine, of a given number. In only a few lines, we
can write a function that will call our binarysearch() function to get the right
answer. To start, we need to define a domain; these are the values that we
will search through to find a particular arcsin value. The sine function is
periodic and takes on all of its possible values between –pi/2 and pi/2, so
numbers in between those extremes will constitute our domain. Next, we
calculate sine values for each value in the domain. We call binarysearch() to
find the position of the number whose sine is the number we’re looking for,
and return the domain value with the corresponding index, like so:

def inverse_sin(number):
 domain = [x * math.pi/10000 - math.pi/2 for x in list(range(0,10000))]
 the_range = [math.sin(x) for x in domain]
 result = domain[binarysearch(the_range,number)]
 return(result)

You can run inverse_sin(0.9) and see that this function returns the cor-
rect answer: about 1.12.

This is not the only way to invert a function. Some functions can be
inverted through algebraic manipulation. However, algebraic function
inversion can be difficult or even impossible for many functions. The
binary search method presented here, by contrast, can work for any func-
tion, and with its O(log(n)) runtime, it’s also lightning fast.

76 Chapter 4

Summary
Sorting and searching may feel mundane to you, as if you’ve taken a break
from an adventure around the world to attend a seminar on folding laun-
dry. Maybe so, but remember that if you can fold clothes efficiently, you
can pack more gear for your trek up Kilimanjaro. Sorting and searching
algorithms can be enablers, helping you build newer and greater things
on their shoulders. Besides that, it’s worth studying sorting and searching
algorithms closely because they are fundamental and common, and the
ideas you see in them can be useful for the rest of your intellectual life. In
this chapter, we discussed some fundamental and interesting sorting algo-
rithms, plus binary search. We also discussed how to compare algorithms
and use big O notation.

In the next chapter, we’ll turn to a few applications of pure math. We’ll
see how we can use algorithms to explore the mathematical world, and how
the mathematical world can help us understand our own.

The quantitative precision of algorithms
makes them naturally suited to applications

in mathematics. In this chapter, we explore
algorithms that are useful in pure mathematics

and look at how mathematical ideas can improve any
of our algorithms. We’ll start by discussing continued
fractions, an austere topic that will take us to the dizzy
ing heights of the infinite and give us the power to find
order in chaos. We’ll continue by discussing square roots, a more prosaic
but arguably more useful topic. Finally, we’ll discuss randomness, includ
ing the mathematics of randomness and some important algorithms that
generate random numbers.

5
P U R E M A T H

78 Chapter 5

Continued Fractions
In 1597, the great Johannes Kepler wrote about what he considered geom
etry’s “two great treasures”: the Pythagorean theorem and a number that
has since come to be called the golden ratio. Often denoted by the Greek let
ter phi, the golden ratio is equal to about 1.618, and Kepler was only one of
dozens of great thinkers who have been entranced by it. Like pi and a few
other famous constants, such as the exponential base e, phi has a tendency
to show up in unexpected places. People have found phi in many places in
nature, and have painstakingly documented where it occurs in fine art, as
in the annotated version of the Rokeby Venus shown in Figure 51.

In Figure 51, a phi enthusiast has added overlays that indicate that the
ratios of some of these lengths, like b/a and d/c, seem to be equal to phi.
Many great paintings have a composition that’s amenable to this kind of
phihunting.

Figure 5-1: Phi/Venus (from https://commons.wikimedia.org/wiki/File:DV_The_Toilet_of_Venus_Gr.jpg)

https://commons.wikimedia.org/wiki/File:DV_The_Toilet_of_Venus_Gr.jpg

Pure Math 79

Compressing and Communicating Phi
Phi’s exact value is surprisingly hard to express. I could say that it’s equal
to 1.61803399 The ellipsis here is a way of cheating; it means that more
numbers follow (an infinite number of numbers, in fact), but I haven’t told
you what those numbers are, so you still don’t know the exact value of phi.

For some numbers with infinite decimal expansions, a fraction can
represent them exactly. For example, the number 0.11111 . . . is equal to
1/9—here, the fraction provides an easy way to express the exact value
of an infinitely continued decimal. Even if you didn’t know the fractional
representation, you could see the pattern of repeating 1s in 0.1111 . . . and
thereby understand its exact value. Unfortunately, the golden ratio is what’s
called an irrational number, meaning that there are no two integers x and y
that enable us to say that phi is equal to x/y. Moreover, no one has yet been
able to discern any pattern in its digits.

We have an infinite decimal expansion with no clear pattern and no
fractional representation. It may seem impossible to ever clearly express
phi’s exact value. But if we learn more about phi, we can find a way to
express it both exactly and concisely. One of the things we know about phi
is that it’s the solution to this equation:

phi 2 – phi – 1 = 0

One way we might imagine expressing the exact value of phi would be
to write “the solution to the equation written above this paragraph.” This
has the benefit of being concise and technically exact, but it means that we
have to solve the equation somehow. That description also doesn’t tell us
the 200th or 500th digit in phi’s expansion.

If we divide our equation by phi, we get the following:

phi – 1 – = 0
phi
1

And if we rearrange that equation, we get this:

phi = 1 +
phi
1

Now imagine if we attempted a strange substitution of this equation
into itself:

phi = 1 +
phi
1

phi
1

= 1 +
1 +

1

80 Chapter 5

Here, we rewrote the phi on the righthand side as 1 + 1/phi. We could
do that same substitution again; why not?

phi = 1 +
phi
1 = 1 +

phi
11 +

1
1

= 1 +
1 +

phi
11 +

1

We can perform this substitution as many times as we like, with no end.
As we continue, phi gets pushed more and more levels “in” to the corner of
a growing fraction. Listing 51 shows an expression for phi with phi seven
levels in.

phi = 1 +
11 +

11 +
11 +

1 +

1

11 +

phi
11 +

1

Listing 5-1: A continued fraction with seven levels expressing the value of phi

If we imagine continuing this process, we can push phi infinity levels in.
Then what we have left is shown in Listing 52.

phi = 1 +
11 +

11 +
11 +

1 +

1

11 +

1 + . . .
11 +

1

Listing 5-2: An infinite continued fraction expressing the value of phi

In theory, after the infinity of 1s and plus signs and fraction bars rep
resented by the ellipsis, we should insert a phi into Listing 52, just like it
appears in the bottom right of Listing 51. But we will never get through all
of those 1s (because there are an infinite number of them), so we are justi
fied in forgetting entirely about the phi that’s supposed to be nested in the
righthand side.

More about Continued Fractions
The expressions just shown are called continued fractions. A continued frac-
tion consists of sums and reciprocals nested in multiple layers. Continued
fractions can be finite, like the one in Listing 51 that terminated after
seven layers, or infinite, continuing forever without end like the one in

Pure Math 81

Listing 52. Continued fractions are especially useful for our purposes
because they enable us to express the exact value of phi without needing
to chop down an infinite forest to manufacture enough paper. In fact,
mathematicians sometimes use an even more concise notation method
that enables us to express a continued fraction in one simple line. Instead
of writing all the fraction bars in a continued fraction, we can use square
brackets ([]) to denote that we’re working with a continued fraction, and
use a semicolon to separate the digit that’s “alone” from the digits that are
together in a fraction. With this method, we can write the continued frac
tion for phi as the following:

phi = [1; 1,1,1,1 . . .]

In this case, the ellipses are no longer losing information, since the
continued fraction for phi has a clear pattern: it’s all 1s, so we know its exact
100th or 1,000th element. This is one of those times when mathematics
seems to deliver something miraculous to us: a way to concisely write down
a number that we had thought was infinite, without pattern, and ineffable.
But phi isn’t the only possible continued fraction. We could write another
continued fraction as follows:

mysterynumber = [2; 1,2,1,1,4,1,1,6,1,1,8, . . .]

In this case, after the first few digits, we find a simple pattern: pairs of
1s alternate with increasing even numbers. The next values will be 1, 1, 10,
1, 1, 12, and so on. We can write the beginning of this continued fraction in
a more conventional style as

mysterynumber = 2 +
11 +

12 +
11 +

1 +

1

14 +

. . .
11 +

1

In fact, this mystery number is none other than our old friend e, the
base of the natural logarithm! The constant e, just like phi and other
irrational numbers, has an infinite decimal expansion with no apparent
pattern and cannot be represented by a finite fraction, and it seems like
it’s impossible to express its exact numeric value concisely. But by using
the new concept of continued fractions and a new concise notation, we
can write these apparently intractable numbers in one line. There are
also several remarkable ways to use continued fractions to represent pi.
This is a victory for data compression. It’s also a victory in the perennial
battle between order and chaos: where we thought there was nothing but
encroaching chaos dominating the numbers we love, we find that there
was always a deep order beneath the surface.

82 Chapter 5

Our continued fraction for phi came from a special equation that works
only for phi. But in fact, it is possible to generate a continued fraction rep
resentation of any number.

An Algorithm for Generating Continued Fractions
To find a continued fraction expansion for any number, we’ll use an
algorithm.

It’s easiest to find continued fraction expansions for numbers that are
integer fractions already. For example, consider the task of finding a contin
ued fraction representation of 105/33. Our goal is to express this number
in a form that looks like the following:

= a +
1b +

1c +
1d +

e +

1

1f +

. . .
1

33
105

g +

1

where the ellipses could be referring to a finite rather than an infinite con
tinuation. Our algorithm will generate a first, then b, then c, and proceed
through terms of the alphabet sequentially until it reaches the final term or
until we require it to stop.

If we interpret our example 105/33 as a division problem instead of a
fraction, we find that 105/33 is 3, remainder 6. We can rewrite 105/33 as
3 + 6/33:

= a + 3 +
1b +

1c +
1d +

e +

1

1f +

. . .
1

33
6

g +

1

The left and the right sides of this equation both consist of an integer
(3 and a) and a fraction (6/33 and the rest of the right side). We conclude
that the integer parts are equal, so a = 3. After this, we have to find a suit
able b, c, and so on such that the whole fractional part of the expression will
evaluate to 6/33.

Pure Math 83

To find the right b, c, and the rest, look at what we have to solve after
concluding that a = 3:

=
1b +

1c +
1d +

e +

1

1f +

. . .
1

33
6

g +

1

If we take the reciprocal of both sides of this equation, we get the fol
lowing equation:

= b +
1c +

1d +
1e +

f +

1

1g +

. . .
1

6
33

h +

1

Our task is now to find b and c. We can do a division again; 33 divided
by 6 is 5, with remainder 3, so we can rewrite 33/6 as 5 + 3/6:

= b + 5 +
1c +

1d +
1e +

f +

1

1g +

. . .
1

6
3

h +

1

We can see that both sides of the equation have an integer (5 and b)
and a fraction (3/6 and the rest of the right side). We can conclude that the
integer parts are equal, so b = 5. We have gotten another letter of the alpha
bet, and now we need to simplify 3/6 to progress further. If you can’t tell
immediately that 3/6 is equal to 1/2, you could follow the same process we
did for 6/33: say that 3/6 expressed as a reciprocal is 1/(6/3), and we find
that 6/3 is 2 remainder 0. The algorithm we’re following is meant to com
plete when we have a remainder of 0, so we will realize that we’ve finished
the process, and we can write our full continued fraction as in Listing 53.

= 3 +
15 +
2

1
33
105

Listing 5-3: A continued fraction for 105/33

84 Chapter 5

If this process of repeatedly dividing two integers to get a quotient and
a remainder felt familiar to you, it should have. In fact, it’s the same process
we followed in Euclid’s algorithm in Chapter 2! We follow the same steps
but record different answers: for Euclid’s algorithm, we recorded the final
nonzero remainder as the final answer, and in the continued fraction gen
eration algorithm, we recorded every quotient (every letter of the alphabet)
along the way. As happens so often in math, we have found an unexpected
connection—in this case, between the generation of a continued fraction
and the discovery of a greatest common divisor.

We can implement this continued fraction generation algorithm in
Python as follows.

We’ll assume that we’re starting with a fraction of the form x/y. First, we
decide which of x and y is bigger and which is smaller:

x = 105
y = 33
big = max(x,y)
small = min(x,y)

Next, we’ll take the quotient of the bigger divided by the smaller of
the two, just as we did with 105/33. When we found that the result was 3,
remainder 6, we concluded that 3 was the first term (a) in the continued
fraction. We can take this quotient and store the result as follows:

import math
output = []
quotient = math.floor(big/small)
output.append(quotient)

In this case, we are ready to obtain a full alphabet of results (a, b, c, and so
on), so we create an empty list called output and append our first result to it.

Finally, we have to repeat the process, just as we did for 33/6. Remember
that 33 was previously the small variable, but now it’s the big one, and the
remainder of our division process is the new small variable. Since the remain
der is always smaller than the divisor, big and small will always be correctly
labeled. We accomplish this switcheroo in Python as follows:

new_small = big % small
big = small
small = new_small

At this point, we have completed one round of the algorithm, and we
need to repeat it for our next set of numbers (33 and 6). In order to accom
plish the process concisely, we can put it all in a loop, as in Listing 54.

import math
def continued_fraction(x,y,length_tolerance):
 output = []
 big = max(x,y)
 small = min(x,y)

Pure Math 85

 while small > 0 and len(output) < length_tolerance:
 quotient = math.floor(big/small)
 output.append(quotient)
 new_small = big % small
 big = small
 small = new_small
 return(output)

Listing 5-4: An algorithm for expressing fractions as continued fractions

Here, we took x and y as inputs, and we defined a length_tolerance vari
able. Remember that some continued fractions are infinite in length, and
others are extremely long. By including a length_tolerance variable in the
function, we can stop our process early if the output is getting unwieldy,
and thereby avoid getting caught in an infinite loop.

Remember that when we performed Euclid’s algorithm, we used a recur
sive solution. In this case, we used a while loop instead. Recursion is well
suited to Euclid’s algorithm because it required only one final output num
ber at the very end. Here, however, we want to collect a sequence of numbers
in a list. A loop is better suited to that kind of sequential collection.

We can run our new continued_fraction generation function as follows:

print(continued_fraction(105,33,10))

We’ll get the following simple output:

[3,5,2]

We can see that the numbers here are the same as the key integers on
the right side of Listing 53.

We may want to check that a particular continued fraction correctly
expresses a number we’re interested in. In order to do this, we should
define a get_number() function that converts a continued fraction to a deci
mal number, as in Listing 55.

def get_number(continued_fraction):
 index = -1
 number = continued_fraction[index]

 while abs(index) < len(continued_fraction):
 next = continued_fraction[index - 1]
 number = 1/number + next
 index -= 1
 return(number)

Listing 5-5: Converting a continued fraction to a decimal representation of a number

We don’t need to worry about the details of this function since we’re
just using it to check our continued fractions. We can check that the func
tion works by running get_number([3,5,2]) and seeing that we get 3.181818 . . .
as the output, which is another way to write 105/33 (the number we
started with).

86 Chapter 5

From Decimals to Continued Fractions
What if, instead of starting with some x/y as an input to our continued frac
tion algorithm, we start with a decimal number, like 1.4142135623730951?
We’ll need to make a few adjustments, but we can more or less follow the
same process we followed for fractions. Remember that our goal is to find
a, b, c, and the rest of the alphabet in the following type of expression:

= a +
1b +

1c +
1d +

e +

1

1f +

. . .
1

1.4142135623730951

g +

1

Finding a is as simple as it gets—it’s just the part of the decimal num
ber to the left of the decimal point. We can define this first_term (a in our
equation) and the leftover as follows:

x = 1.4142135623730951
output = []
first_term = int(x)
leftover = x - int(x)
output.append(first_term)

Just like before, we’re storing our successive answers in a list called output.
After solving for a, we have a leftover, and we need to find a continued

fraction representation for it:

=
1b +

1c +
1d +

e +

1

1f +

. . .
1

0.4142135623730951

g +

1

Again, we can take a reciprocal of this:

= b + = 2.4142135623730945
1c +

1d +
e +

11

1f +

. . .
1

0.4142135623730951

g +

1

Pure Math 87

Our next term, b, will be the integer part to the left of the decimal point
in this new term—in this case, 2. And then we will repeat the process: tak
ing a reciprocal of a decimal part, finding the integer part to the left of the
decimal, and so on.

In Python, we accomplish each round of this as follows:

next_term = math.floor(1/leftover)
leftover = 1/leftover - next_term
output.append(next_term)

We can put the whole process together into one function as in
Listing 56.

def continued_fraction_decimal(x,error_tolerance,length_tolerance):
 output = []
 first_term = int(x)
 leftover = x - int(x)
 output.append(first_term)
 error = leftover
 while error > error_tolerance and len(output) <length_tolerance:
 next_term = math.floor(1/leftover)
 leftover = 1/leftover - next_term
 output.append(next_term)
 error = abs(get_number(output) - x)
 return(output)

Listing 5-6: Finding continued fractions from decimal numbers

In this case, we include a length_tolerance term just like before. We also
add an error_tolerance term, which allows us to exit the algorithm if we get
an approximation that’s “close enough” to the exact answer. To find out
whether we are close enough, we take the difference between x, the number
we are trying to approximate, and the decimal value of the continued frac
tion terms we have calculated so far. To get that decimal value, we can use
the same get_number() function we wrote in Listing 55.

We can try our new function easily as follows:

print(continued_fraction_decimal(1.4142135623730951,0.00001,100))

We get the following output:

[1, 2, 2, 2, 2, 2, 2, 2]

We can write this continued fraction as follows (using an approximate
equal sign because our continued fraction is an approximation to within a

88 Chapter 5

tiny error and we don’t have the time to calculate every element of an infi
nite sequence of terms):

≈ 1 +
12 +

12 +
12 +

2 +

1

12 +

2
1

1.4142135623730951

2 +

1

Notice that there are 2s all along the diagonal in the fraction on the
right. We’ve found the first seven terms of another infinite continued frac
tion whose infinite expansion consists of all 2s. We could write its continued
fraction expansion as [1,2,2,2,2, . . .]. This is the continued fraction expan
sion of √2, another irrational number that can’t be represented as an inte
ger fraction, has no pattern in its decimal digit, and yet has a convenient
and easily memorable representation as a continued fraction.

From Fractions to Radicals
If you’re interested in continued fractions, I recommend that you read
about Srinivasa Ramanujan, who during his short life traveled mentally
to the edges of infinity and brought some gems back for us to treasure. In
addition to continued fractions, Ramanujan was interested in continued
square roots (also known as nested radicals)—for example, the following three
infinitely nested radicals:

x = 2 + 2 + 2 + . . .

and

y = 1 + 2 × 1 + 3 × 1 + 4 × 1 + . . .

and

z = 1 + 1 + 1 + . . .

It turns out that x = 2 (an old anonymous result), y = 3 (as proved by
Ramanujan), and z is none other than phi, the golden ratio! I encourage
you to try to think of a method for generating nested radical representa
tions in Python. Square roots are obviously interesting if we take them to
infinite lengths, but it turns out that they’re interesting even if we just con
sider them alone.

Pure Math 89

Square Roots
We take handheld calculators for granted, but when we think about what
they can do, they’re actually quite impressive. For example, you may remem
ber learning in geometry class that the sine is defined in terms of triangle
lengths: the length of the angle’s opposite side divided by the length of
the hypotenuse. But if that is the definition of a sine, how can a calculator
have a sin button that performs this calculation instantaneously? Does the
calculator draw a right triangle in its innards, get out a ruler and measure
the lengths of the sides, and then divide them? We might ask a similar ques
tion for square roots: the square root is the inverse of a square, and there’s
no straightforward, closedform arithmetic formula for it that a calculator
could use. I imagine that you can already guess the answer: there is an algo
rithm for quick calculations of square roots.

The Babylonian Algorithm
Suppose that we need to find the square root of a number x. As with any
math problem, we can try a guessandcheck strategy. Let’s say that our best
guess for the square root of x is some number y. We can calculate y2, and if
it’s equal to x, we’re done (having achieved a rare completion of the one
step “lucky guess algorithm”).

If our guess y is not exactly the square root of x, then we’ll want to
guess again, and we’ll want our next guess to take us closer to the true
value of the square root of x. The Babylonian algorithm provides a way to
systematically improve our guesses until we converge on the right answer.
It’s a simple algorithm and requires only division and averaging:

 1. Make a guess, y, for the value of the square root of x.

 2. Calculate z = x/y.

 3. Find the average of z and y. This average is your new value of y, or your
new guess for the value of the square root of x.

 4. Repeat steps 2 and 3 until y2 – x is sufficiently small.

We described the Babylonian algorithm in four steps. A pure mathema
tician, by contrast, might express the entire thing in one equation:

yn+1 =
2

yn

x
yn +

In this case, the mathematician would be relying on the common math
ematical practice of describing infinite sequences by continued subscripts,
as in: (y1, y2, . . . yn, . . .). If you know the nth term of this infinite sequence,
you can get the n + 1th term from the equation above. This sequence will
converge to x , or in other words y∞= x . Whether you prefer the clarity of
the fourstep description, the elegant concision of an equation, or the prac
ticality of the code we will write is a matter of taste, but it helps to be famil
iar with all the possible ways to describe an algorithm.

90 Chapter 5

You can understand why the Babylonian algorithm works if you con
sider these two simple cases:

•	 If y < , then y2 < x. x So > 1
y2

x
 so > xx ×

y2

x
.

But notice that = = ()2 = z2x ×
y2

x
y2

x2

y
x

. So z2 > x. This means that z > x .

•	 If y > , then y2 > x. x So < 1
y2

x
, so < xx ×

y2

x
.

But notice that = = ()2 = z2x ×
y2

x
y2

x2

y
x

. So z2 < x. This means that z < x .

We can write these cases more succintly by removing some text:

•	 If y < , then z > x. x

•	 If y > , then z < x. x

If y is an underestimate for the correct value of x , then z is an over
estimate. If y is an overestimate for the correct value of x , then z is an
underestimate. Step 3 of the Babylonian algorithm asks us to average an
overestimate and an underestimate of the truth. The average of the under
estimate and the overestimate will be higher than the underestimate and
lower than the overestimate, so it will be closer to the truth than which
ever of y or z was a worse guess. Eventually, after many rounds of gradual
improvement of our guesses, we arrive at the true value of x .

Square Roots in Python
The Babylonian algorithm is not hard to implement in Python. We can
define a function that takes x, y, and an error_tolerance variable as its argu
ments. We create a while loop that runs repeatedly until our error is suf
ficiently small. At each iteration of the while loop, we calculate z, we update
the value of y to be the average of y and z (just like steps 2 and 3 in the
algorithm describe), and we update our error, which is y2 – x. Listing 57
shows this function.

def square_root(x,y,error_tolerance):
 our_error = error_tolerance * 2
 while(our_error > error_tolerance):
 z = x/y
 y = (y + z)/2
 our_error = y**2 - x
 return y

Listing 5-7: A function to calculate square roots using the Babylonian algorithm

You may notice that the Babylonian algorithm shares some traits with
gradient ascent and the outfielder algorithm. All consist of taking small,
iterative steps until getting close enough to a final goal. This is a common
structure for algorithms.

We can check our square root function as follows:

print(square_root(5,1,.000000000000001))

Pure Math 91

We can see that the number 2.23606797749979 is printed in the console.
You can check whether this is the same number we get from the math.sqrt()
method that’s standard in Python:

print(math.sqrt(5))

We get exactly the same output: 2.23606797749979. We’ve success
fully written our own function that calculates square roots. If you’re ever
stranded on a desert island with no ability to download Python modules
like the math module, you can rest assured that you can write functions like
math.sqrt() on your own, and you can thank the Babylonians for their help
in giving us the algorithm for it.

Random Number Generators
So far we’ve taken chaos and found order within it. Mathematics is good at
that, but in this section, we’ll consider a quite opposite goal: finding chaos
in order. In other words, we’re going to look at how to algorithmically cre
ate randomness.

There’s a constant need for random numbers. Video games depend on
randomly selected numbers to keep gamers surprised by game characters’
positions and movements. Several of the most powerful machine learn
ing methods (including random forests and neural networks) rely heavily
on random selections to function properly. The same goes for powerful
statistical methods, like bootstrapping, that use randomness to make a
static dataset better resemble the chaotic world. Corporations and research
scientists perform A/B tests that rely on randomly assigning subjects to
conditions so that the conditions’ effects can be properly compared. The
list goes on; there’s a huge, constant demand for randomness in most tech
nological fields.

The Possibility of Randomness
The only problem with the huge demand for random numbers is that
we’re not quite certain that they actually exist. Some people believe that
the universe is deterministic: that like colliding billiard balls, if something
moves, its movement was caused by some other completely traceable move
ment, which was in turn caused by some other movement, and so on. If the
universe behaved like billiard balls on a table, then by knowing the cur
rent state of every particle in the universe, we would be able to determine
the complete past and future of the universe with certainty. If so, then any
event—winning the lottery, running into a longlost friend on the other
side of the world, being hit by a meteor—is not actually random, as we
might be tempted to think of it, but merely the fully predetermined conse
quence of the way the universe was set up around a dozen billion years ago.
This would mean that there is no randomness, that we are stuck in a player
piano’s melody and things appear random only because we don’t know
enough about them.

92 Chapter 5

The mathematical rules of physics as we understand them are consis
tent with a deterministic universe, but they are also consistent with a non
deterministic universe in which randomness really does exist and, as some
have put it, God “plays dice.” They are also consistent with a “many worlds”
scenario in which every possible version of an event occurs, but in different
universes that are inaccessible from each other. All these interpretations
of the laws of physics are further complicated if we try to find a place for
free will in the cosmos. The interpretation of mathematical physics that we
accept depends not on our mathematical understanding but rather on our
philosophical inclinations—any position is acceptable mathematically.

Whether or not the universe itself contains randomness, your laptop
doesn’t—or at least it isn’t supposed to. Computers are meant to be our
perfectly obedient servants and do only what we explicitly command them
to do, exactly when and how we command them to do it. To ask a computer
to run a video game, perform machine learning via a random forest, or
administer a randomized experiment is to ask a supposedly deterministic
machine to generate something nondeterministic: a random number. This
is an impossible request.

Since a computer cannot deliver true randomness, we’ve designed
algorithms that can deliver the nextbest thing: pseudorandomness. Pseudo
random number generation algorithms are important for all the reasons
that random numbers are important. Since true randomness is impos
sible on a computer (and may be impossible in the universe at large),
pseudorandom number generation algorithms must be designed with
great care so that their outputs resemble true randomness as closely as
possible. The way we judge whether a pseudorandom number generation
algorithm truly resembles randomness depends on mathematical defini
tions and theory that we’ll explore soon.

Let’s start by looking at a simple pseudorandom number generation algo
rithm and examine how much its outputs appear to resemble randomness.

Linear Congruential Generators
One of the simplest examples of a pseudorandom number generator (PRNG) is
the linear congruential generator (LCG). To implement this algorithm, you’ll
have to choose three numbers, which we’ll call n1, n2, and n3. The LCG
starts with some natural number (like 1) and then simply applies the follow
ing equation to get the next number:

next = (previous × n1 + n2) mod n3

This is the whole algorithm, which you could say takes only one step. In
Python, we’ll write % instead of mod, and we can write a full LCG function as
in Listing 58.

def next_random(previous,n1,n2,n3):
 the_next = (previous * n1 + n2) % n3
 return(the_next)

Listing 5-8: A linear congruential generator

Pure Math 93

Note that the next_random() function is deterministic, meaning that if
we put the same input in, we’ll always get the same output. Once again, our
PRNG has to be this way because computers are always deterministic. LCGs
do not generate truly random numbers, but rather numbers that look ran
dom, or are pseudorandom.

In order to judge this algorithm for its ability to generate pseudorandom
numbers, it might help to look at many of its outputs together. Instead of
getting one random number at a time, we could compile an entire list with
a function that repeatedly calls the next_random() function we just created, as
follows:

def list_random(n1,n2,n3):
 output = [1]
 while len(output) <=n3:
 output.append(next_random(output[len(output) - 1],n1,n2,n3))
 return(output)

Consider the list we get by running list_random(29,23,32):

[1, 20, 27, 6, 5, 8, 31, 26, 9, 28, 3, 14, 13, 16, 7, 2, 17, 4, 11, 22, 21,
24, 15, 10, 25, 12, 19, 30, 29, 0, 23, 18, 1]

It’s not easy to detect a simple pattern in this list, which is exactly
what we wanted. One thing we can notice is that it contains only numbers
between 0 and 32. We may also notice that this list’s last element is 1, the
same as its first element. If we wanted more random numbers, we could
extend this list by calling the next_random() function on its last element, 1.
However, remember that the next_random() function is deterministic. If we
extend our list, all we would get is repetition of the beginning of the list,
since the next “random” number after 1 will always be 20, the next random
number after 20 will always be 27, and so on. If we continued, we would
eventually get to the number 1 again and repeat the whole list forever. The
number of unique values that we obtain before they repeat is called the
period of our PRNG. In this case, the period of our LCG is 32.

Judging a PRNG
The fact that this random number generation method will eventually start
to repeat is a potential weakness because it allows people to predict what’s
coming next, which is exactly what we don’t want to happen in situations
where we’re seeking randomness. Suppose that we used our LCG to govern
an online roulette application for a roulette wheel with 32 slots. A savvy
gambler who observed the roulette wheel long enough might notice that
the winning numbers were following a regular pattern that repeated every
32 spins, and they may win all our money by placing bets on the number
they now know with certainty will win in each round.

The idea of a savvy gambler trying to win at roulette is useful for
evaluating any PRNG. If we are governing a roulette wheel with true

94 Chapter 5

randomness, no gambler will ever be able to win reliably. But any slight
weakness, or deviation from true randomness, in the PRNG governing our
roulette wheel could be exploited by a sufficiently savvy gambler. Even if
we are creating a PRNG for a purpose that has nothing to do with roulette,
we can ask ourselves, “If I use this PRNG to govern a roulette application,
would I lose all my money?” This intuitive “roulette test” is a reasonable
criterion for judging how good any PRNG is. Our LCG might pass the rou
lette test if we never do more than 32 spins, but after that, a gambler could
notice the repeating pattern of outputs and start to place bets with perfect
accuracy. The short period of our LCG has caused it to fail the roulette test.

Because of this, it helps to ensure that a PRNG has a long period. But
in a case like a roulette wheel with only 32 slots, no deterministic algorithm
can have a period longer than 32. That’s why we often judge a PRNG by
whether it has a full period rather than a long period. Consider the PRNG
that we get by generating list_random(1,2,24):

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
21, 23, 1]

In this case, the period is 12, which may be long enough for very simple
purposes, but it is not a full period because it does not encompass every
possible value in its range. Once again, a savvy gambler might notice that
even numbers are never chosen by the roulette wheel (not to mention the
simple pattern the chosen odd numbers follow) and thereby increase their
winnings at our expense.

Related to the idea of a long, full period is the idea of uniform distribu-
tion, by which we mean that each number within the PRNG’s range has an
equal likelihood of being output. If we run list_random(1,18,36), we get:

[1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19,
1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1, 19, 1]

Here, 1 and 19 each have a 50 percent likelihood of being output by
the PRNG, while each other number has a likelihood of 0 percent. A rou
lette player would have a very easy time with this nonuniform PRNG. By
contrast, in the case of list_random(29,23,32), we find that every number has
about a 3.1 percent likelihood of being output.

We can see that these mathematical criteria for judging PRNGs have
some relation to each other: the lack of a long or full period can be the
cause of a lack of uniform distribution. From a more practical perspective,
these mathematical properties are important only because they cause our
roulette app to lose money. To state it more generally, the only important
test of a PRNG is whether a pattern can be detected in it.

Unfortunately, the ability to detect a pattern is hard to pin down concisely
in mathematical or scientific language. So we look for long, full period and
uniform distribution as markers that give us a hint about pattern detection.

Pure Math 95

But of course, they’re not the only clues that enable us to detect a pattern.
Consider the LCG denoted by list_random(1,1,37). This outputs the follow
ing list:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 0, 1]

This has a long period (37), a full period (37), and a uniform distribu
tion (each number has likelihood 1/37 of being output). However, we can
still detect a pattern in it (the number goes up by 1 every round until it
gets to 36, and then it repeats from 0). It passes the mathematical tests we
devised, but it definitely fails the roulette test.

The Diehard Tests for Randomness
There is no single silverbullet test that indicates whether there’s an exploit
able pattern in a PRNG. Researchers have devised many creative tests to
evaluate the extent to which a collection of random numbers is resistant to
pattern detection (or in other words can pass the roulette test). One col
lection of such tests is called the Diehard tests. There are 12 Diehard tests,
each of which evaluates a collection of random numbers in a different way.
Collections of numbers that pass every Diehard test are deemed to have
a very strong resemblance to true randomness. One of the Diehard tests,
called the overlapping sums test, takes the entire list of random numbers and
finds sums of sections of consecutive numbers from the list. The collection
of all these sums should follow the mathematical pattern colloquially called
a bell curve. We can implement a function that generates a list of overlapping
sums in Python as follows:

def overlapping_sums(the_list,sum_length):
 length_of_list = len(the_list)
 the_list.extend(the_list)
 output = []
 for n in range(0,length_of_list):
 output.append(sum(the_list[n:(n + sum_length)]))
 return(output)

We can run this test on a new random list like so:

import matplotlib.pyplot as plt
overlap = overlapping_sums(list_random(211111,111112,300007),12)
plt.hist(overlap, 20, facecolor = 'blue', alpha = 0.5)
plt.title('Results of the Overlapping Sums Test')
plt.xlabel('Sum of Elements of Overlapping Consecutive Sections of List')
plt.ylabel('Frequency of Sum')
plt.show()

We created a new random list by running list_random(211111,111112,300007).
This new random list is long enough to make the overlapping sums test per
form well. The output of this code is a histogram that records the frequency

96 Chapter 5

of the observed sums. If the list resembles a truly random collection, we
expect some of the sums to be high and some to be low, but we expect
most of them to be near the middle of the possible range of values. This
is exactly what we see in the plot output (Figure 52).

Figure 5-2: The result of the overlapping sums test for an LCG

If you squint, you can see that this plot resembles a bell. Remember
that the Diehard overlapping sums test says that our list passes if it closely
resembles a bell curve, which is a specific mathematically important curve
(Figure 53).

Figure 5-3: A bell curve, or Gaussian normal curve (source:
Wikimedia Commons)

Pure Math 97

The bell curve, like the golden ratio, appears in many sometimes sur
prising places in math and the universe. In this case, we interpret the close
resemblance between our overlapping sums test results and the bell curve
as evidence that our PRNG resembles true randomness.

Knowledge of the deep mathematics of randomness can help you as you
design random number generators. However, you can do almost as well just
by sticking with a commonsense idea of how to win at roulette.

Linear Feedback Shift Registers
LCGs are easy to implement but are not sophisticated enough for many
applications of PRNGs; a savvy roulette player could crack an LCG in no
time at all. Let’s look at a more advanced and reliable type of algorithm
called linear feedback shift registers (LFSRs), which can serve as a jumpingoff
point for the advanced study of PRNG algorithms.

LFSRs were designed with computer architecture in mind. At the lowest
level, data in computers is stored as a series of 0s and 1s called bits. We can
illustrate a potential string of 10 bits as shown in Figure 54.

1 1 0 1 1 1 0 0 0 1

Figure 5-4: A string of 10 bits

After starting with these bits, we can proceed through a simple LFSR
algorithm. We start by calculating a simple sum of a subset of the bits—for
example, the sum of the 4th bit, 6th bit, 8th bit, and 10th bit (we could also
choose other subsets). In this case, that sum is 3. Our computer architec
ture can only store 0s and 1s, so we take our sum mod 2, and end up with 1
as our final sum. Then we remove our rightmost bit and shift every remain
ing bit one position to the right (Figure 55).

1 1 0 1 1 1 0 0 0

Figure 5-5: Bits after removal and shifting

Since we removed a bit and shifted everything, we have an empty space
where we should insert a new bit. The bit we insert here is the sum we
calculated before. After that insertion, we have the new state of our bits
(Figure 56).

11 1 0 1 1 1 0 0 0

Figure 5-6: Bits after replacement with a sum of selected bits

98 Chapter 5

We take the bit we removed from the right side as the output of the
algorithm, the pseudorandom number that this algorithm is supposed to
generate. And now that we have a new set of 10 ordered bits, we can run a
new round of the algorithm and get a new pseudorandom bit just as before.
We can repeat this process as long as we’d like.

In Python, we can implement a feedback shift register relatively simply.
Instead of directly overwriting individual bits on the hard drive, we will just
create a list of bits like the following:

bits = [1,1,1]

We can define the sum of the bits in the specified locations with one
line. We store it in a variable called xor_result, because taking a sum mod
2 is also called the exclusive OR or XOR operation. If you have studied formal
logic, you may have encountered XOR before—it has a logical definition and
an equivalent mathematical definition; here we will use the mathematical
definition. Since we are working with a short bitstring, we don’t sum the 4th,
6th, 8th, and 10th bits (since those don’t exist), but instead sum the 2nd and
3rd bits:

xor_result = (bits[1] + bits[2]) % 2

Then, we can take out the rightmost element of the bits easily with
Python’s handy pop() function, storing the result in a variable called output:

output = bits.pop()

We can then insert our sum with the insert() function, specifying posi
tion 0 since we want it to be on the left side of our list:

bits.insert(0,xor_result)

Now let’s put it all together into one function that will return two out
puts: a pseudorandom bit and a new state for the bits series (Listing 59).

def feedback_shift(bits):
 xor_result = (bits[1] + bits[2]) % 2
 output = bits.pop()
 bits.insert(0,xor_result)
 return(bits,output)

Listing 5-9: A function that implements an LFSR, completing our goal for this section

Just as we did with the LCG, we can create a function that will generate
an entire list of our output bits:

def feedback_shift_list(bits_this):
 bits_output = [bits_this.copy()]
 random_output = []
 bits_next = bits_this.copy()

Pure Math 99

 while(len(bits_output) < 2**len(bits_this)):
 bits_next,next = feedback_shift(bits_next)
 bits_output.append(bits_next.copy())
 random_output.append(next)
 return(bits_output,random_output)

In this case, we run the while loop until we expect the series to repeat.
Since there are 23 = 8 possible states for our bits list, we can expect a period
of at most 8. Actually, LFSRs typically cannot output a full set of zeros, so in
practice we expect a period of at most 23 – 1 = 7. We can run the following
code to find all possible outputs and check the period:

bitslist = feedback_shift_list([1,1,1])[0]

Sure enough, the output that we stored in bitslist is

[[1, 1, 1], [0, 1, 1], [0, 0, 1], [1, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 0],
[1, 1, 1]]

We can see that our LFSR outputs all seven possible bitstrings that are
not all 0s. We have a fullperiod LFSR, and also one that shows a uniform
distribution of outputs. If we use more input bits, the maximum possible
period grows exponentially: with 10 bits, the maximum possible period is
210– 1 = 1023, and with only 20 bits, it is 220 – 1=1,048,575.

We can check the list of pseudorandom bits that our simple LFSR gen
erates with the following:

pseudorandom_bits = feedback_shift_list([1,1,1])[1]

The output that we stored in pseudorandom_bits looks reasonably random
given how simple our LFSR and its input are:

[1, 1, 1, 0, 0, 1, 0]

LFSRs are used to generate pseudorandom numbers in a variety of
applications, including white noise. We present them here to give you
a taste of advanced PRNGs. The most widely used PRNG in practice
today is the Mersenne Twister, which is a modified, generalized feedback
shift register—essentially a much more convoluted version of the LFSR
presented here. If you continue to progress in your study of PRNGs, you
will find a great deal of convolution and advanced mathematics, but all
of it will build on the ideas presented here: deterministic, mathematical
formulas that can resemble randomness as evaluated by stringent math
ematical tests.

Summary
Mathematics and algorithms will always have a close relationship. The
more deeply you dive into one field, the more ready you will be to take on
advanced ideas in the other. Math may seem arcane and impractical, but it

100 Chapter 5

is a long game: theoretical advances in math sometimes lead to practical
technologies only many centuries later. In this chapter we discussed contin
ued fractions and an algorithm for generating continued fraction represen
tations of any number. We also discussed square roots, and examined an
algorithm that handheld calculators use to calculate them. Finally, we dis
cussed randomness, including two algorithms for generating pseudorandom
numbers, and mathematical principles that we can use to evaluate lists that
claim to be random.

In the next chapter, we will discuss optimization, including a powerful
method you can use to travel the world or forge a sword.

You already know optimization. In Chapter 3,
we covered gradient ascent/descent, which

lets us “climb hills” to find a maximum or min-
imum. Any optimization problem can be thought

of as a version of hill climbing: we strive to find the best
possible outcome out of a huge range of possibilities.
The gradient ascent tool is simple and elegant, but it has
an Achilles’ heel: it can lead us to find a peak that is only
locally optimal, not globally optimal. In the hill-climbing
analogy, it might take us to the top of a foothill, when
going downhill for just a little while would enable us to start scaling the huge
mountain that we actually want to climb. Dealing with this issue is the most
difficult and crucial aspect of advanced optimization.

In this chapter, we discuss a more advanced optimization algorithm
using a case study. We’ll consider the traveling salesman problem, as well
as several of its possible solutions and their shortcomings. Finally, we’ll

6
A D V A N C E D O P T I M I Z A T I O N

102 Chapter 6

introduce simulated annealing, an advanced optimization algorithm that
overcomes these shortcomings and can perform global, rather than just
local, optimization.

Life of a Salesman
The traveling salesman problem (TSP) is an extremely famous problem in com-
puter science and combinatorics. Imagine that a traveling salesman wishes
to visit a collection of many cities to peddle his wares. For any number of rea-
sons—lost income opportunities, the cost of gas for his car, his head aching
after a long journey (Figure 6-1)—it’s costly to travel between cities.

Figure 6-1: A traveling salesman in Naples

Advanced Optimization 103

The TSP asks us to determine the order of travel between cities that will
minimize travel costs. Like all the best problems in science, it’s easy to state
and extremely difficult to solve.

Setting Up the Problem
Let’s fire up Python and start exploring. First, we’ll randomly generate a
map for our salesman to traverse. We start by selecting some number N that
will represent the number of cities we want on the map. Let’s say N = 40.
Then we’ll select 40 sets of coordinates: one x value and one y value for each
city. We’ll use the numpy module to do the random selection:

import numpy as np
random_seed = 1729
np.random.seed(random_seed)
N = 40
x = np.random.rand(N)
y = np.random.rand(N)

In this snippet, we used the numpy module’s random.seed() method. This
method takes any number you pass to it and uses that number as a “seed”
for its pseudorandom number generation algorithm (see Chapter 5 for
more about pseudorandom number generation). This means that if you use
the same seed we used in the preceding snippet, you’ll generate the same
random numbers we generate here, so it will be easier to follow the code
and you’ll get plots and results that are identical to these.

Next, we’ll zip the x values and y values together to create cities, a list
containing the coordinate pair for each of our 40 randomly generated city
locations.

points = zip(x,y)
cities = list(points)

If you run print(cities) in the Python console, you can see a list con-
taining the randomly generated points. Each of these points represents a
city. We won’t bother to give any city a name. Instead, we can refer to the
first city as cities[0], the second as cities[1], and so on.

We already have everything we need to propose a solution to the TSP.
Our first proposed solution will be to simply visit all the cities in the order
in which they appear in the cities list. We can define an itinerary variable
that will store this order in a list:

itinerary = list(range(0,N))

This is just another way of writing the following:

itinerary = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29, \
30,31,32,33,34,35,36,37,38,39]

The order of the numbers in our itinerary is the order in which we’re
proposing to visit our cities: first city 0, then city 1, and so on.

104 Chapter 6

Next, we’ll need to judge this itinerary and decide whether it represents
a good or at least acceptable solution to the TSP. Remember that the point
of the TSP is to minimize the cost the salesman faces as he travels between
cities. So what is the cost of travel? We can specify whatever cost function we
want: maybe certain roads have more traffic than others, maybe there are
rivers that are hard to cross, or maybe it’s harder to travel north than east
or vice versa. But let’s start simply: let’s say it costs one dollar to travel a dis-
tance of 1, no matter which direction and no matter which cities we’re trav-
eling between. We won’t specify any distance units in this chapter because
our algorithms work the same whether we’re traveling miles or kilometers
or light-years. In this case, minimizing the cost is the same as minimizing
the distance traveled.

To determine the distance required by a particular itinerary, we need
to define two new functions. First, we need a function that will generate a
collection of lines that connect all of our points. After that, we need to sum
up the distances represented by those lines. We can start by defining an
empty list that we’ll use to store information about our lines:

lines = []

Next, we can iterate over every city in our itinerary, at each step adding
a new line to our lines collection that connects the current city and the city
after it.

for j in range(0,len(itinerary) - 1):
 lines.append([cities[itinerary[j]],cities[itinerary[j + 1]]])

If you run print(lines), you can see how we’re storing information about
lines in Python. Each line is stored as a list that contains the coordinates of
two cities. For example, you can see the first line by running print(lines[0]),
which will show you the following output:

[(0.21215859519373315, 0.1421890509660515), (0.25901824052776146,
0.4415438502354807)]

We can put these elements together in one function called genlines
(short for “generate lines”), which takes cities and itinerary as arguments
and returns a collection of lines connecting each city in our list of cities, in
the order specified in the itinerary:

def genlines(cities,itinerary):
 lines = []
 for j in range(0,len(itinerary) - 1):
 lines.append([cities[itinerary[j]],cities[itinerary[j + 1]]])
 return(lines)

Now that we have a way to generate a collection of lines between each
two cities in any itinerary, we can create a function that measures the total

Advanced Optimization 105

distances along those lines. It will start by defining our total distance as 0, and
then for every element in our lines list, it will add the length of that line to the
distance variable. We’ll use the Pythagorean theorem to get these line lengths.

N O T E Using the Pythagorean theorem to calculate distances on Earth is not quite correct;
the surface of the Earth is curved, so more sophisticated geometry is required to get
true distances between points on Earth. We’re ignoring this small complexity and
assuming that our salesman can burrow through the curved crust of the Earth to
take direct routes, or else that he lives in some Flatland-esque geometrical utopia in
which distances are easy to calculate using ancient Greek methods. Especially for
short distances, the Pythagorean theorem provides a very good approximation to the
true distance.

import math
def howfar(lines):
 distance = 0
 for j in range(0,len(lines)):
 distance += math.sqrt(abs(lines[j][1][0] - lines[j][0][0])**2 + \
 abs(lines[j][1][1] - lines[j][0][1])**2)
 return(distance)

This function takes a list of lines as its input and outputs the sum of the
lengths of every line. Now that we have these functions, we can call them
together with our itinerary to determine the total distance our salesman
has to travel:

totaldistance = howfar(genlines(cities,itinerary))
print(totaldistance)

When I ran this code, I found that the totaldistance was about 16.81.
You should get the same results if you use the same random seed. If you use
a different seed or set of cities, your results will vary slightly.

To get a sense of what this result means, it will help to plot our itinerary.
For that, we can create a plotitinerary() function:

import matplotlib.collections as mc
import matplotlib.pylab as pl
def plotitinerary(cities,itin,plottitle,thename):
 lc = mc.LineCollection(genlines(cities,itin), linewidths=2)
 fig, ax = pl.subplots()
 ax.add_collection(lc)
 ax.autoscale()
 ax.margins(0.1)
 pl.scatter(x, y)
 pl.title(plottitle)
 pl.xlabel('X Coordinate')
 pl.ylabel('Y Coordinate')
 pl.savefig(str(thename) + '.png')
 pl.close()

106 Chapter 6

The plotitinerary() function takes cities, itin, plottitle, and thename as
arguments, where cities is our list of cities, itin is the itinerary we want to
plot, plottitle is the title that will appear at the top of our plot, and thename
is the name that we will give to the png plot output. The function uses the
pylab module for plotting and matplotlib’s collections module to create a col-
lection of lines. Then it plots the points of the itinerary and the lines we’ve
created connecting them.

If you plot the itinerary with plotitinerary(cities,itinerary,'TSP - Random
Itinerary','figure2'), you’ll generate the plot shown in Figure 6-2.

Figure 6-2: The itinerary resulting from visiting the cities in the random order in which they
were generated

Maybe you can tell just by looking at Figure 6-2 that we haven’t yet
found the best solution to the TSP. The itinerary we’ve given our poor sales-
man has him whizzing all the way across the map to an extremely distant
city several times, when it seems obvious that he could do much better by
stopping at some other cities along the way. The goal of the rest of this
chapter is to use algorithms to find an itinerary with the minimum travel-
ing distance.

The first potential solution we’ll discuss is the simplest and has the
worst performance. After that, we’ll discuss solutions that trade a little
complexity for a lot of performance improvement.

Brains vs. Brawn
It might occur to you to make a list of every possible itinerary that can con-
nect our cities and evaluate them one by one to see which is best. If we

Advanced Optimization 107

want to visit three cities, the following is an exhaustive list of every order in
which they can be visited:

•	 1, 2, 3

•	 1, 3, 2

•	 2, 3, 1

•	 2, 1, 3

•	 3, 1, 2

•	 3, 2, 1

It shouldn’t take long to evaluate which is best by measuring each of the
lengths one by one and comparing what we find for each of them. This is
called a brute force solution. It refers not to physical force, but to the effort of
checking an exhaustive list by using the brawn of our CPUs rather than the
brains of an algorithm designer, who could find a more elegant approach
with a quicker runtime.

Sometimes a brute force solution is exactly the right approach. They
tend to be easy to write code for, and they work reliably. Their major weak-
ness is their runtime, which is never better and usually much worse than
algorithmic solutions.

In the case of the TSP, the required runtime grows far too fast for a
brute force solution to be practical for any number of cities higher than
about 20. To see this, consider the following argument about how many pos-
sible itineraries there are to check if we are working with four cities and try-
ing to find every possible order of visiting them:

 1. When we choose the first city to visit, we have four choices, since there
are four cities and we haven’t visited any of them yet. So the total num-
ber of ways to choose the first city is 4.

 2. When we choose the second city to visit, we have three choices, since
there are four cities total and we’ve already visited one of them. So the
total number of ways to choose the first two cities is 4 × 3 = 12.

 3. When we choose the third city to visit, we have two choices, since there
are four cities total and we’ve already visited two of them. So the total
number of ways to choose the first three cities is 4 × 3 × 2 = 24.

 4. When we choose the fourth city to visit, we have one choice, since there
are four cities total and we’ve already visited three of them. So the total
number of ways to choose all four cities is 4 × 3 × 2 × 1 = 24.

You should’ve noticed the pattern here: when we have N cities to visit,
the total number of possible itineraries is N × (N–1) × (N–2) × . . . × 3 × 2 × 1,
otherwise known as N! (“N factorial”). The factorial function grows incred-
ibly fast: while 3! is only 6 (which we can brute force without even using a
computer), we find that 10! is over 3 million (easy enough to brute force on
a modern computer), and 18! is over 6 quadrillion, 25! is over 15 septillion,

108 Chapter 6

and 35! and above starts to push the edge of what’s possible to brute force
on today’s technology given the current expectation for the longevity of the
universe.

This phenomenon is called combinatorial explosion. Combinatorial explo-
sion doesn’t have a rigorous mathematical definition, but it refers to cases
like this, in which apparently small sets can, when considered in combina-
tions and permutations, lead to a number of possible choices far beyond the
size of the original set and beyond any size that we know how to work with
using brute force.

The number of possible itineraries that connect the 90 zip codes in
Rhode Island, for example, is much larger than the estimated number of
atoms in the universe, even though Rhode Island is much smaller than the
universe. Similarly, a chess board can host more possible chess games than
the number of atoms in the universe despite the fact that a chess board is
even smaller than Rhode Island. These paradoxical situations, in which
the nearly infinite can spring forth from the assuredly bounded, make
good algorithm design all the more important, since brute force can never
investigate all possible solutions of the hardest problems. Combinatorial
explosion means that we have to consider algorithmic solutions to the TSP
because we don’t have enough CPUs in the whole world to calculate a brute
force solution.

The Nearest Neighbor Algorithm
Next we’ll consider a simple, intuitive method called the nearest neighbor
algorithm. We start with the first city on the list. Then we simply find the
closest unvisited city to the first city and visit that city second. At every step,
we simply look at where we are and choose the closest unvisited city as the
next city on our itinerary. This minimizes the travel distance at each step,
although it may not minimize the total travel distance. Note that rather
than looking at every possible itinerary, as we would in a brute force search,
we find only the nearest neighbor at each step. This gives us a runtime
that’s very fast even for very large N.

Implementing Nearest Neighbor Search
We’ll start by writing a function that can find the nearest neighbor of any
given city. Suppose that we have a point called point and a list of cities called
cities. The distance between point and the jth element of cities is given by
the following Pythagorean-style formula:

point = [0.5,0.5]
j = 10
distance = math.sqrt((point[0] - cities[j][0])**2 + (point[1] - cities[j][1])**2)

Advanced Optimization 109

If we want to find which element of cities is closest to our point (the
point’s nearest neighbor), we need to iterate over every element of cities
and check the distance between the point and every city, as in Listing 6-1.

def findnearest(cities,idx,nnitinerary):
 point = cities[idx]
 mindistance = float('inf')
 minidx = - 1
 for j in range(0,len(cities)):
 distance = math.sqrt((point[0] - cities[j][0])**2 + (point[1] - cities[j][1])**2)
 if distance < mindistance and distance > 0 and j not in nnitinerary:
 mindistance = distance
 minidx = j
 return(minidx)

Listing 6-1: The findnearest() function, which finds the nearest city to a given city

After we have this findnearest() function, we’re ready to implement
the nearest neighbor algorithm. Our goal is to create an itinerary called
nnitinerary. We’ll start by saying that the first city in cities is where our
salesman starts:

nnitinerary = [0]

If our itinerary needs to have N cities, our goal is to iterate over all the
numbers between 0 and N – 1, find for each of those numbers the nearest
neighbor to the most recent city we visited, and append that city to our itin-
erary. We’ll accomplish that with the function in Listing 6-2, donn() (short
for “do nearest neighbor”). It starts with the first city in cities, and at every
step adds the closest city to the most recently added city until every city has
been added to the itinerary.

def donn(cities,N):
 nnitinerary = [0]
 for j in range(0,N - 1):
 next = findnearest(cities,nnitinerary[len(nnitinerary) - 1],nnitinerary)
 nnitinerary.append(next)
 return(nnitinerary)

Listing 6-2: A function that successively finds the nearest neighbor to each city and returns
a complete itinerary

We already have everything we need to check the performance of
the nearest neighbor algorithm. First, we can plot the nearest neighbor
itinerary:

plotitinerary(cities,donn(cities,N),'TSP - Nearest Neighbor','figure3')

110 Chapter 6

Figure 6-3 shows the result we get.

Figure 6-3: The itinerary generated by the nearest neighbor algorithm

We can also check how far the salesman had to travel using this new
itinerary:

print(howfar(genlines(cities,donn(cities,N))))

In this case, we find that whereas the salesman travels a distance of
16.81 following the random path, our algorithm has pushed down the dis-
tance to 6.29. Remember that we’re not using units, so we could interpret
this as 6.29 miles (or kilometers or parsecs). The important thing is that
it’s less than the 16.81 miles or kilometers or parsecs we found from the
random itinerary. This is a significant improvement, all from a very simple,
intuitive algorithm. In Figure 6-3, the performance improvement is evident;
there are fewer journeys to opposite ends of the map and more short trips
between cities that are close to each other.

Checking for Further Improvements
If you look closely at Figure 6-2 or Figure 6-3, you might be able to imagine
some specific improvements that could be made. You could even attempt those
improvements yourself and check whether they worked by using our howfar()
function. For example, maybe you look at our initial random itinerary:

initial_itinerary = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26, \
27,28,29,30,31,32,33,34,35,36,37,38,39]

Advanced Optimization 111

and you think you could improve the itinerary by switching the order of the
salesman’s visits to city 6 and city 30. You can switch them by defining this
new itinerary with the numbers in question switched (shown in bold):

new_itinerary = [0,1,2,3,4,5,30,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27, \
28,29,6,31,32,33,34,35,36,37,38,39]

We can then do a simple comparison to check whether the switch we
performed has decreased the total distance:

print(howfar(genlines(cities,initial_itinerary)))
print(howfar(genlines(cities,new_itinerary)))

If the new_itinerary is better than the initial_itinerary, we might want to
throw out the initial_itinerary and keep the new one. In this case, we find that
the new itinerary has a total distance of about 16.79, a very slight improvement
on our initial itinerary. After finding one small improvement, we can run the
same process again: pick two cities, exchange their locations in the itinerary,
and check whether the distance has decreased. We can continue this process
indefinitely, and at each step expect a reasonable chance that we can find a way
to decrease the traveling distance. After repeating this process many times, we
can (we hope) obtain an itinerary with a very low total distance.

It’s simple enough to write a function that can perform this switch-and-
check process automatically (Listing 6-3):

def perturb(cities,itinerary):
 neighborids1 = math.floor(np.random.rand() * (len(itinerary)))
 neighborids2 = math.floor(np.random.rand() * (len(itinerary)))

 itinerary2 = itinerary.copy()

 itinerary2[neighborids1] = itinerary[neighborids2]
 itinerary2[neighborids2] = itinerary[neighborids1]

 distance1 = howfar(genlines(cities,itinerary))
 distance2 = howfar(genlines(cities,itinerary2))

 itinerarytoreturn = itinerary.copy()

 if(distance1 > distance2):
 itinerarytoreturn = itinerary2.copy()

 return(itinerarytoreturn.copy())

Listing 6-3: A function that makes a small change to an itinerary, compares it to the origi-
nal itinerary, and returns whichever itinerary is shorter

The perturb() function takes any list of cities and any itinerary as its
arguments. Then, it defines two variables: neighborids1 and neihborids2,
which are randomly selected integers between 0 and the length of the itin-
erary. Next, it creates a new itinerary called itinerary2, which is the same as
the original itinerary except that the cities at neighborids1 and neighborids2

112 Chapter 6

have switched places. Then it calculates distance1, the total distance of the
original itinerary, and distance2, the total distance of itinerary2. If distance2
is smaller than distance1, it returns the new itinerary (with the switch).
Otherwise, it returns the original itinerary. So we send an itinerary to this
function, and it always returns an itinerary either as good as or better than
the one we sent it. We call this function perturb() because it perturbs the
given itinerary in an attempt to improve it.

Now that we have a perturb() function, let’s call it repeatedly on a ran-
dom itinerary. In fact, let’s call it not just one time but 2 million times in an
attempt to get the lowest traveling distance possible:

itinerary = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29, \
30,31,32,33,34,35,36,37,38,39]

np.random.seed(random_seed)
itinerary_ps = itinerary.copy()
for n in range(0,len(itinerary) * 50000):
 itinerary_ps = perturb(cities,itinerary_ps)

print(howfar(genlines(cities,itinerary_ps)))

We have just implemented something that might be called a perturb
search algorithm. It’s searching through many thousands of possible itin-
eraries in the hopes of finding a good one, just like a brute force search.
However, it’s better because while a brute force search would consider every
possible itinerary indiscriminately, this is a guided search that is consider-
ing a set of itineraries that are monotonically decreasing in total traveling
distance, so it should arrive at a good solution faster than brute force. We
only need to make a few small additions to this perturb search algorithm
in order to implement simulated annealing, the capstone algorithm of this
chapter.

Before we jump into the code for simulated annealing, we’ll go over
what kind of improvement it offers over the algorithms we’ve discussed
so far. We also want to introduce a temperature function that allows us to
implement the features of simulated annealing in Python.

Algorithms for the Avaricious
The nearest neighbor and perturb search algorithms that we’ve considered so
far belong to a class of algorithms called greedy algorithms. Greedy algorithms
proceed in steps, and they make choices that are locally optimal at each step
but may not be globally optimal once all the steps are considered. In the
case of our nearest neighbor algorithm, at each step, we look for the closest
city to where we are at that step, without any regard to the rest of the cities.
Visiting the closest city is locally optimal because it minimizes the distance
we travel at the step we’re on. However, since it doesn’t take into account all
cities at once, it may not be globally optimal—it may lead us to take strange
paths around the map that eventually make the total trip extremely long and
expensive for the salesman even though each individual step looked good at
the time.

Advanced Optimization 113

The “greediness” refers to the shortsightedness of this locally opti-
mizing decision process. We can understand these greedy approaches to
optimization problems with reference to the problem of trying to find the
highest point in a complex, hilly terrain, where “high” points are analogous
to better, optimal solutions (short distances in the TSP), and “low” points
are analogous to worse, suboptimal solutions (long distances in the TSP).
A greedy approach to finding the highest point in a hilly terrain would be
to always go up, but that might take us to the top of a little foothill instead
of the top of the highest mountain. Sometimes it’s better to go down to the
bottom of the foothill in order to start the more important ascent of the
bigger mountain. Because greedy algorithms search only for local improve-
ments, they will never allow us to go down and can get us stuck on local
extrema. This is exactly the problem discussed in Chapter 3.

With that understanding, we’re finally ready to introduce the idea that
will enable us to resolve the local optimization problem caused by greedy
algorithms. The idea is to give up the naive commitment to always climbing.
In the case of the TSP, we may sometimes have to perturb to worse itinerar-
ies so that later we can get the best possible itineraries, just as we go down a
foothill in order to ultimately go up a mountain. In other words, in order to
do better eventually, we have to do worse initially.

Introducing the Temperature Function
To do worse with the intention of eventually doing better is a delicate
undertaking. If we’re overzealous in our willingness to do worse, we might
go downward at every step and get to a low point instead of a high one. We
need to find a way to do worse only a little, only occasionally, and only in
the context of learning how to eventually do better.

Imagine again that we’re in a complex, hilly terrain. We start in the late
afternoon and know that we have two hours to find the highest point in the
whole terrain. Suppose we don’t have a watch to keep track of our time, but
we know that the air gradually cools down in the evening, so we decide to
use the temperature as a way to gauge approximately how much time we
have left to find the highest point.

At the beginning of our two hours, when it’s relatively hot outside, it is
natural for us to be open to creative exploration. Since we have a long time
remaining, it’s not a big risk to travel downward a little in order to under-
stand the terrain better and see some new places. But as it gets cooler and
we near the end of our two hours, we’ll be less open to broad exploration.
We’ll be more narrowly focused on improvements and less willing to travel
downward.

Take a moment to think about this strategy and why it’s the best way to
get to the highest point. We already talked about why we want to go down
occasionally: so that we can avoid a “local optimum,” or the top of a foothill
next to a huge mountain. But when should we go down? Consider the last
10 seconds of our two-hour time period. No matter where we are, we should
go as directly upward as we can at that time. It’s no use to go down to explore
new foothills and find new mountains during our last 10 seconds, since even
if we found a promising mountain, we wouldn’t have time to climb it, and

114 Chapter 6

if we make a mistake and slip downward during our last 10 seconds, we
won’t have time to correct it. Thus, the last 10 seconds is when we should go
directly up and not consider going down at all.

By contrast, consider the first 10 seconds of our two-hour time period.
During that time, there’s no need to rush directly upward. At the begin-
ning, we can learn the most from going a little downward to explore. If we
make a mistake in the first 10 seconds, there’s plenty of time to correct it
later. We’ll have plenty of time to take advantage of anything we learn or
any mountains we find. During the first 10 seconds, it pays to be the most
open about going down and the least zealous about going directly up.

You can understand the remainder of the two hours by thinking of the
same ideas. If we consider the time 10 minutes before the end, we’ll have a
more moderate version of the mindset we had 10 seconds before the end.
Since the end is near, we’ll be motivated to go directly upward. However,
10 minutes is longer than 10 seconds, so we have some small amount of
openness to a little bit of downward exploration just in case we discover
something promising. By the same token, the time 10 minutes after the
beginning will lead us to a more moderate version of the mindset we had
10 seconds after the beginning. The full two-hour time period will have a
gradient of intention: a willingness to sometimes go down at first, followed
by a gradually strengthening zeal to go only up.

In order to model this scenario in Python, we can define a function.
We’ll start with a hot temperature and a willingness to explore and go
downward, and we’ll end with a cool temperature and an unwillingness to
go downward. Our temperature function is relatively simple. It takes t as an
argument, where t stands for time:

temperature = lambda t: 1/(t + 1)

You can see a simple plot of the temperature function by running the fol-
lowing code in the Python console. This code starts by importing matplotlib
functionality and then defines ts, a variable containing a range of t values
between 1 and 100. Finally, it plots the temperature associated with each t
value. Again, we’re not worried about units or exact magnitude here because
this is a hypothetical situation meant to show the general shape of a cooling
function. So we use 1 to represent our maximum temperature, 0 to represent
our minimum temperature, 0 to represent our minimum time, and 99 to rep-
resent our maximum time, without specifying units.

import matplotlib.pyplot as plt
ts = list(range(0,100))
plt.plot(ts, [temperature(t) for t in ts])
plt.title('The Temperature Function')
plt.xlabel('Time')
plt.ylabel('Temperature')
plt.show()

Advanced Optimization 115

The plot looks like Figure 6-4.

Figure 6-4: The temperature decreases as time goes on

This plot shows the temperature we’ll experience during our hypotheti-
cal optimization. The temperature is used as a schedule that will govern
our optimization: our willingness to go down is proportional to the tem-
perature at any given time.

We now have all the ingredients we need to fully implement simulated
annealing. Go ahead—dive right in before you overthink it.

Simulated Annealing
Let’s bring all of our ideas together: the temperature function, the search
problem in hilly terrain, the perturb search algorithm, and the TSP. In
the context of the TSP, the complex, hilly terrain that we’re in consists of
every possible solution to the TSP. We can imagine that a better solution
corresponds to a higher point in the terrain, and a worse solution corre-
sponds to a lower point in the terrain. When we apply the perturb() func-
tion, we’re moving to a different point in the terrain, hoping that point is
as high as possible.

We’ll use the temperature function to guide our exploration of this
terrain. When we start, our high temperature will dictate more open-
ness to choosing a worse itinerary. Closer to the end of the process, we’ll
be less open to choosing worse itineraries and more focused on “greedy”
optimization.

The algorithm we’ll implement, simulated annealing, is a modified
form of the perturb search algorithm. The essential difference is that in

116 Chapter 6

simulated annealing, we’re sometimes willing to accept itinerary changes
that increase the distance traveled, because this enables us to avoid the
problem of local optimization. Our willingness to accept worse itineraries
depends on the current temperature.

Let’s modify our perturb() function with this latest change. We’ll add
a new argument: time, which we’ll have to pass to perturb(). The time argu-
ment measures how far we are through the simulated annealing process; we
start with time 1 the first time we call perturb(), and then time will be 2, 3,
and so on as many times as we call the perturb() function. We’ll add a line
that specifies the temperature function and a line that selects a random
number. If the random number is lower than the temperature, then we’ll be
willing to accept a worse itinerary. If the random number is higher than the
temperature, then we won’t be willing to accept a worse itinerary. That way,
we’ll have occasional, but not constant, times when we accept worse itinerar-
ies, and our likelihood of accepting a worse itinerary will decrease over time
as our temperature cools. We’ll call this new function perturb_sa1(), where
sa is short for simulated annealing. Listing 6-4 shows our new perturb_sa1()
function with these changes.

def perturb_sa1(cities,itinerary,time):
 neighborids1 = math.floor(np.random.rand() * (len(itinerary)))
 neighborids2 = math.floor(np.random.rand() * (len(itinerary)))

 itinerary2 = itinerary.copy()

 itinerary2[neighborids1] = itinerary[neighborids2]
 itinerary2[neighborids2] = itinerary[neighborids1]

 distance1 = howfar(genlines(cities,itinerary))
 distance2 = howfar(genlines(cities,itinerary2))

 itinerarytoreturn = itinerary.copy()

 randomdraw = np.random.rand()
 temperature = 1/((time/1000) + 1)

 if((distance2 > distance1 and (randomdraw) < (temperature)) or (distance1 > distance2)):
 itinerarytoreturn=itinerary2.copy()

 return(itinerarytoreturn.copy())

Listing 6-4: An updated version of our perturb() function that takes into account the tem-
perature and a random draw

Just by adding those two short lines, a new argument, and a new if
condition (all shown in bold in Listing 6-4), we already have a very simple
simulated annealing function. We also changed the temperature function
a little; because we’ll be calling this function with very high time values,
we use time/1000 instead of time as part of the denominator argument in

Advanced Optimization 117

our temperature function. We can compare the performance of simulated
annealing with the perturb search algorithm and the nearest neighbor
algorithm as follows:

itinerary = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29, \
30,31,32,33,34,35,36,37,38,39]
np.random.seed(random_seed)

itinerary_sa = itinerary.copy()
for n in range(0,len(itinerary) * 50000):
 itinerary_sa = perturb_sa1(cities,itinerary_sa,n)

print(howfar(genlines(cities,itinerary))) #random itinerary
print(howfar(genlines(cities,itinerary_ps))) #perturb search
print(howfar(genlines(cities,itinerary_sa))) #simulated annealing
print(howfar(genlines(cities,donn(cities,N)))) #nearest neighbor

Congratulations! You can perform simulated annealing. You can see
that a random itinerary has distance 16.81, while a nearest neighbor itiner-
ary has distance 6.29, just like we observed before. The perturb search itin-
erary has distance 7.38, and the simulated annealing itinerary has distance
5.92. In this case, we’ve found that perturb search performs better than
a random itinerary, that nearest neighbor performs better than perturb
search and a random itinerary, and simulated annealing performs better
than all the others. When you try other random seeds, you may see differ-
ent results, including cases where simulated annealing does not perform as
well as nearest neighbor. This is because simulated annealing is a sensitive
process, and several aspects of it need to be tuned precisely in order for it to
work well and reliably. After we do that tuning, it will consistently give us sig-
nificantly better performance than simpler, greedy optimization algorithms.
The rest of the chapter is concerned with the finer details of simulated
annealing, including how to tune it to get the best possible performance.

ME TA PHOR-BA SE D ME TA HE UR IS T ICS

The peculiarities of simulated annealing are easier to understand if you know its
origin. Annealing is a process from metallurgy, in which metals are heated up
and then gradually cooled. When the metal is hot, many of the bonds between
particles in the metal are broken. As the metal cools, new bonds are formed
between particles that lead to the metal having different, more desirable prop-
erties. Simulated annealing is like annealing in the sense that when our tem-
perature is hot, we “break” things by accepting worse solutions, in the hope
that then, as the temperature cools, we can fix them in a way that makes them
better than they were before.

(continued)

118 Chapter 6

The metaphor is a little contrived, and isn’t one that non-metallurgists find
intuitive. Simulated annealing is something called a metaphor-based metaheuris-
tic. There are many other metaphor-based metaheuristics that take an existing
process found in nature or human society and find a way to adapt it to solve
an optimization problem. They have names like ant colony optimization, cuckoo
search, cuttlefish optimization, cat swarm optimization, shuffled frog leaping,
emperor penguins colony, harmony search (based on the improvisation of jazz
musicians), and the rain water algorithm. Some of these analogies are contrived
and not very useful, but sometimes they can provide or inspire a real insight into
a serious problem. In either case, they’re nearly always interesting to learn and
fun to code.

Tuning Our Algorithm
As mentioned, simulated annealing is a sensitive process. The code we’ve
introduced shows how to do it in a basic way, but we’ll want to make changes
to the details in order to do better. This process of changing small details
or parameters of an algorithm in order to get better performance without
changing its main approach is often called tuning, and it can make big dif-
ferences in difficult cases like this one.

Our perturb() function makes a small change in the itinerary: it
switches the place of two cities. But this isn’t the only possible way to per-
turb an itinerary. It’s hard to know in advance which perturbing methods
will perform best, but we can always try a few.

Another natural way to perturb an itinerary is to reverse some portion
of it: take a subset of cities, and visit them in the opposite order. In Python,
we can implement this reversal in one line. If we choose two cities in the
itinerary, with indices small and big, the following snippet shows how to
reverse the order of all the cities between them:

small = 10
big = 20
itinerary = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29, \
30,31,32,33,34,35,36,37,38,39]
itinerary[small:big] = itinerary[small:big][::-1]
print(itinerary)

When you run this snippet, you can see that the output shows an itiner-
ary with cities 10 through 19 in reverse order:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]

Advanced Optimization 119

Another way to perturb an itinerary is to lift a section from where it is
and place it in another part of the itinerary. For example, we might take the
following itinerary:

itinerary = [0,1,2,3,4,5,6,7,8,9]

and move the whole section [1,2,3,4] to later in the itinerary by converting
it to the following new itinerary:

itinerary = [0,5,6,7,8,1,2,3,4,9]

We can do this type of lifting and moving with the following Python
snippet, which will move a chosen section to a random location:

small = 1
big = 5
itinerary = [0,1,2,3,4,5,6,7,8,9]
tempitin = itinerary[small:big]
del(itinerary[small:big])
np.random.seed(random_seed + 1)
neighborids3 = math.floor(np.random.rand() * (len(itinerary)))
for j in range(0,len(tempitin)):
 itinerary.insert(neighborids3 + j,tempitin[j])

We can update our perturb() function so that it randomly alternates
between these different perturbing methods. We’ll do this by making
another random selection of a number between 0 and 1. If this new ran-
dom number lies in a certain range (say, 0–0.45), we’ll perturb by revers-
ing a subset of cities, but if it lies in another range (say, 0.45–0.55), we’ll
perturb by switching the places of two cities. If it lies in a final range (say,
0.55–1), we’ll perturb by lifting and moving a subset of cities. In this way,
our perturb() function can randomly alternate between each type of per-
turbing. We can put this random selection and these types of perturbing
into our new function, now called perturb_sa2(), as shown in Listing 6-5.

def perturb_sa2(cities,itinerary,time):
 neighborids1 = math.floor(np.random.rand() * (len(itinerary)))
 neighborids2 = math.floor(np.random.rand() * (len(itinerary)))

 itinerary2 = itinerary.copy()

 randomdraw2 = np.random.rand()
 small = min(neighborids1,neighborids2)
 big = max(neighborids1,neighborids2)
 if(randomdraw2 >= 0.55):
 itinerary2[small:big] = itinerary2[small:big][:: - 1]
 elif(randomdraw2 < 0.45):
 tempitin = itinerary[small:big]
 del(itinerary2[small:big])

120 Chapter 6

 neighborids3 = math.floor(np.random.rand() * (len(itinerary)))
 for j in range(0,len(tempitin)):
 itinerary2.insert(neighborids3 + j,tempitin[j])
 else:
 itinerary2[neighborids1] = itinerary[neighborids2]
 itinerary2[neighborids2] = itinerary[neighborids1]

 distance1 = howfar(genlines(cities,itinerary))
 distance2 = howfar(genlines(cities,itinerary2))

 itinerarytoreturn = itinerary.copy()

 randomdraw = np.random.rand()
 temperature = 1/((time/1000) + 1)

 if((distance2 > distance1 and (randomdraw) < (temperature)) or (distance1 > distance2)):
 itinerarytoreturn = itinerary2.copy()

 return(itinerarytoreturn.copy())

Listing 6-5: Now, we use several different methods to perturb our itinerary.

Our perturb() function is now more complex and more flexible; it can
make several different types of changes to itineraries based on random
draws. Flexibility is not necessarily a goal worth pursuing for its own sake,
and complexity is definitely not. In order to judge whether the complexity
and flexibility are worth adding in this case (and in every case), we should
check whether they improve performance. This is the nature of tuning: as
with tuning a musical instrument, you don’t know beforehand exactly how
tight a string needs to be—you have to tighten or loosen a little, listen to
how it sounds, and adjust. When you test the changes here (shown in bold
in Listing 6-5), you’ll be able to see that they do improve performance com-
pared to the code we were running before.

Avoiding Major Setbacks
The whole point of simulated annealing is that we need to do worse in
order to do better. However, we want to avoid making changes that leave us
too much worse off. The way we set up the perturb() function, it will accept a
worse itinerary any time our random selection is less than the temperature.
It does this using the following conditional (which is not meant to be run
alone):

if((distance2 > distance1 and randomdraw < temperature) or (distance1 > distance2)):

We may want to change that condition so that our willingness to accept
a worse itinerary depends not only on the temperature but also on how
much worse our hypothetical change makes the itinerary. If it makes it just a
little worse, we’ll be more willing to accept it than if it makes it much worse.

Advanced Optimization 121

To account for this, we’ll incorporate into our conditional a measurement
of how much worse our new itinerary is. The following conditional (which is
also not meant to be run alone) is an effective way to accomplish this:

scale = 3.5
if((distance2 > distance1 and (randomdraw) < (math.exp(scale*(distance1-distance2)) *
temperature)) or (distance1 > distance2)):

When we put this conditional in our code, we have the function in
Listing 6-6, where we show only the very end of the perturb() function.

--snip--
beginning of perturb function goes here

 scale = 3.5
 if((distance2 > distance1 and (randomdraw) < (math.exp(scale * (distance1 - distance2)) *
temperature)) or (distance1 > distance2)):
 itinerarytoreturn = itinerary2.copy()

 return(itinerarytoreturn.copy())

Allowing Resets
During the simulated annealing process, we may unwittingly accept a
change to our itinerary that’s unequivocally bad. In that case, it may be
useful to keep track of the best itinerary we’ve encountered so far and
allow our algorithm to reset to that best itinerary under certain conditions.
Listing 6-6 provides the code to do this, highlighted in bold in a new, full
perturbing function for simulated annealing.

def perturb_sa3(cities,itinerary,time,maxitin):
 neighborids1 = math.floor(np.random.rand() * (len(itinerary)))
 neighborids2 = math.floor(np.random.rand() * (len(itinerary)))
 global mindistance
 global minitinerary
 global minidx
 itinerary2 = itinerary.copy()
 randomdraw = np.random.rand()

 randomdraw2 = np.random.rand()
 small = min(neighborids1,neighborids2)
 big = max(neighborids1,neighborids2)
 if(randomdraw2>=0.55):
 itinerary2[small:big] = itinerary2[small:big][::- 1]
 elif(randomdraw2 < 0.45):
 tempitin = itinerary[small:big]
 del(itinerary2[small:big])
 neighborids3 = math.floor(np.random.rand() * (len(itinerary)))
 for j in range(0,len(tempitin)):
 itinerary2.insert(neighborids3 + j,tempitin[j])

122 Chapter 6

 else:
 itinerary2[neighborids1] = itinerary[neighborids2]
 itinerary2[neighborids2] = itinerary[neighborids1]

 temperature=1/(time/(maxitin/10)+1)

 distance1 = howfar(genlines(cities,itinerary))
 distance2 = howfar(genlines(cities,itinerary2))

 itinerarytoreturn = itinerary.copy()

 scale = 3.5
 if((distance2 > distance1 and (randomdraw) < (math.exp(scale*(distance1 - distance2)) * \
temperature)) or (distance1 > distance2)):
 itinerarytoreturn = itinerary2.copy()

 reset = True
 resetthresh = 0.04
 if(reset and (time - minidx) > (maxitin * resetthresh)):
 itinerarytoreturn = minitinerary
 minidx = time

 if(howfar(genlines(cities,itinerarytoreturn)) < mindistance):
 mindistance = howfar(genlines(cities,itinerary2))
 minitinerary = itinerarytoreturn
 minidx = time

 if(abs(time - maxitin) <= 1):
 itinerarytoreturn = minitinerary.copy()

 return(itinerarytoreturn.copy())

Listing 6-6: This function performs the full simulated annealing process and returns an optimized itinerary.

Here, we define global variables for the minimum distance achieved
so far, the itinerary that achieved it, and the time at which it was achieved.
If the time progresses very far without finding anything better than the
itinerary that achieved our minimum distance, we can conclude that the
changes we made after that point were mistakes, and we allow resetting
to that best itinerary. We’ll reset only if we’ve attempted many perturba-
tions without finding an improvement on our previous best, and a variable
called resetthresh will determine how long we should wait before resetting.
Finally, we add a new argument called maxitin, which tells the function how
many total times we intend to call this function, so that we know where
exactly in the process we are. We use maxitin in our temperature function
as well so that the temperature curve can adjust flexibly to however many
perturbations we intend to perform. When our time is up, we return the
itinerary that gave us the best results so far.

Testing Our Performance
Now that we have made these edits and improvements, we can create a func-
tion called siman() (short for simulated annealing), which will create our

Advanced Optimization 123

global variables, and then call our newest perturb() function repeatedly, even-
tually arriving at an itinerary with a very low traveling distance (Listing 6-7).

def siman(itinerary,cities):
 newitinerary = itinerary.copy()
 global mindistance
 global minitinerary
 global minidx
 mindistance = howfar(genlines(cities,itinerary))
 minitinerary = itinerary
 minidx = 0

 maxitin = len(itinerary) * 50000
 for t in range(0,maxitin):
 newitinerary = perturb_sa3(cities,newitinerary,t,maxitin)

 return(newitinerary.copy())

Listing 6-7: This function performs the full simulated annealing process and returns an opti-
mized itinerary.

Next, we call our siman() function and compare its results to the results
of our nearest neighbor algorithm:

np.random.seed(random_seed)
itinerary = list(range(N))
nnitin = donn(cities,N)
nnresult = howfar(genlines(cities,nnitin))
simanitinerary = siman(itinerary,cities)
simanresult = howfar(genlines(cities,simanitinerary))
print(nnresult)
print(simanresult)
print(simanresult/nnresult)

When we run this code, we find that our final simulated annealing
function yields an itinerary with distance 5.32. Compared to the nearest-
neighbor itinerary distance of 6.29, this is an improvement of more than
15 percent. This may seem underwhelming to you: we spent more than a
dozen pages grappling with difficult concepts only to shave about 15 percent
from our total distance. This is a reasonable complaint, and it may be that
you never need to have better performance than the performance offered by
the nearest neighbor algorithm. But imagine offering the CEO of a global
logistics company like UPS or DHL a way to decrease travel costs by 15 per-
cent, and seeing the pupils of their eyes turn to dollar signs as they think of
the billions of dollars this would represent. Logistics remains a major driver
of high costs and environmental pollution in every business in the world,
and doing well at solving the TSP will always make a big practical difference.
Besides this, the TSP is extremely important academically, as a benchmark
for comparing optimization methods and as a gateway to investigating
advanced theoretical ideas.

124 Chapter 6

You can plot the itinerary we got as the final result of simulated
annealing by running plotitinerary(cities,simanitinerary,'Traveling
Salesman Itinerary - Simulated Annealing','figure5'). You’ll see the plot
in Figure 6-5.

Figure 6-5: The final result of simulated annealing

On one hand, it’s just a plot of randomly generated points with lines
connecting them. On the other, it’s the result of an optimization process
that we performed over hundreds of thousands of iterations, relentlessly
pursuing perfection among nearly infinite possibilities, and in that way it is
beautiful.

Summary
In this chapter, we discussed the traveling salesman problem as a case study
in advanced optimization. We discussed a few approaches to the problem,
including brute force search, nearest neighbor search, and finally simulated
annealing, a powerful solution that enables doing worse in order to do bet-
ter. I hope that by working through the difficult case of the TSP, you have
gained skills that you can apply to other optimization problems. There will
always be a practical need for advanced optimization in business and in
science.

In the next chapter, we turn our attention to geometry, examining pow-
erful algorithms that enable geometric manipulations and constructions.
Let the adventure continue!

We humans have a deep, intuitive grasp
of geometry. Every time we maneuver a

couch through a hallway, draw a picture in
Pictionary, or judge how far away another car on

the highway is, we’re engaging in some kind of geo-
metric reasoning, often depending on algorithms that
we’ve unconsciously mastered. By now, you won’t be
surprised to learn that advanced geometry is a natural
fit for algorithmic reasoning.

In this chapter, we’ll use a geometric algorithm to solve the postmaster
problem. We’ll begin with a description of the problem and see how we can
solve it using Voronoi diagrams. The rest of the chapter explains how to
algorithmically generate this solution.

7
G E O M E T R Y

126 Chapter 7

The Postmaster Problem
Imagine that you are Benjamin Franklin, and you have been appointed the
first postmaster general of a new nation. The existing independent post
offices had been built haphazardly as the nation grew, and your job is to
turn these chaotic parts into a well-functioning whole. Suppose that in one
town, four post offices are placed among the homes, as in Figure 7-1.

Post office 4

Post office 1

Post office 2

Post office 3

Figure 7-1: A town and its post offices

Since there has never been a postmaster in your new nation, there has
been no oversight to optimize the post offices’ deliveries. It could be that
post office 4 is assigned to deliver to a home that’s closer to post offices 2
and 3, and at the same time post office 2 is assigned to deliver to a home
that’s closer to post office 4, as in Figure 7-2.

Post office 4

Post office 1

Post office 2

Post office 3

Figure 7-2: Post offices 2 and 4 have inefficient assignments.

Geometry 127

You can rearrange the delivery assignments so that each home receives
deliveries from the ideal post office. The ideal post office for a delivery
assignment could be the one with the most free staff, the one that possesses
suitable equipment for traversing an area, or the one with the institutional
knowledge to find all the addresses in an area. But probably, the ideal post
office for a delivery assignment is simply the closest one. You may notice that
this is similar to the traveling salesman problem (TSP), at least in the sense
that we are moving objects around a map and want to decrease the distance
we have to travel. However, the TSP is the problem of one traveler optimiz-
ing the order of a set route, while here you have the problem of many trav-
elers (letter carriers) optimizing the assignment of many routes. In fact,
this problem and the TSP can be solved consecutively for maximum gain:
after you make the assignments of which post office should deliver to which
homes, the individual letter carriers can use the TSP to decide the order in
which to visit those homes.

The simplest approach to this problem, which we might call the post-
master problem, is to consider each house in turn, calculating the distance
between the house and each of the four post offices, and assigning the clos-
est post office to deliver to the house in question.

This approach has a few weaknesses. First, it does not provide an easy
way to make assignments when new houses are built; every newly built house
has to go through the same laborious process of comparison with every
existing post office. Second, doing calculations at the individual house level
does not allow us to learn about a region as a whole. For example, maybe an
entire neighborhood lies within the shadow of one post office but lies many
miles away from all other post offices. It would be best to conclude in one
step that the whole neighborhood should be served by the same close post
office. Unfortunately, our method requires us to repeat the calculation for
every house in the neighborhood, only to get the same result each time.

By calculating distances for each house individually, we’re repeating
work that we wouldn’t have to do if we could somehow make generalizations
about entire neighborhoods or regions. And that work will add up. In mega-
cities of tens of millions of inhabitants, with many post offices and quick
construction rates like we see today around the world, this approach would
be unnecessarily slow and computing-resource-heavy.

A more elegant approach would be to consider the map as a whole and
separate it into distinct regions, each of which represents one post office’s
assigned service area. By drawing just two straight lines, we can accomplish
that with our hypothetical town (Figure 7-3).

The regions we have drawn indicate areas of closest proximity, mean-
ing that for every single house, point, and pixel, the closest post office is the
one that shares its region. Now that the entire map is subdivided, we can
easily assign any new construction to its closest post office simply by check-
ing which region it’s in.

A diagram that subdivides a map into regions of closest proximity, as
ours does, is called a Voronoi diagram. Voronoi diagrams have a long his-
tory going all the way back to René Descartes. They were used to analyze
water pump placement in London to provide evidence for how cholera was

128 Chapter 7

spread, and they’re still used in physics and materials science to represent
crystal structures. This chapter will introduce an algorithm for generat-
ing a Voronoi diagram for any set of points, thereby solving the postmaster
problem.

Post office 4

Post office 1

Post office 2

Post office 3

Figure 7-3: Voronoi diagram separating our town into optimal postal delivery regions

Triangles 101
Let’s back up and start with the simplest elements of the algorithms we’ll
explore. We’re working in geometry, in which the simplest element of
analysis is the point. We’ll represent points as lists with two elements: an
x-coordinate and a y-coordinate, like the following example:

point = [0.2,0.8]

At the next level of complexity, we combine points to form triangles.
We’ll represent a triangle as a list of three points:

triangle = [[0.2,0.8],[0.5,0.2],[0.8,0.7]]

Let’s also define a helper function that can convert a set of three dispa-
rate points into a triangle. All this little function does is collect three points
into a list and return the list:

def points_to_triangle(point1,point2,point3):
 triangle = [list(point1),list(point2),list(point3)]
 return(triangle)

Geometry 129

It will be helpful to be able to visualize the triangles we’re working with.
Let’s create a simple function that will take any triangle and plot it. First,
we’ll use the genlines() function that we defined in Chapter 6. Remember
that this function takes a collection of points and converts them into lines.
Again, it’s a very simple function, just appending points to a list called lines:

def genlines(listpoints,itinerary):
 lines = []
 for j in range(len(itinerary)-1):
 lines.append([listpoints[itinerary[j]],listpoints[itinerary[j+1]]])
 return(lines)

Next, we’ll create our simple plotting function. It will take a triangle we
pass to it, split it into its x and y values, call genlines() to create a collection
of lines based on those values, plot the points and lines, and finally save
the figure to a .png file. It uses the pylab module for plotting and code from
the matplotlib module to create the line collection. Listing 7-1 shows this
function.

import pylab as pl
from matplotlib import collections as mc
def plot_triangle_simple(triangle,thename):
 fig, ax = pl.subplots()

 xs = [triangle[0][0],triangle[1][0],triangle[2][0]]
 ys = [triangle[0][1],triangle[1][1],triangle[2][1]]

 itin=[0,1,2,0]

 thelines = genlines(triangle,itin)

 lc = mc.LineCollection(genlines(triangle,itin), linewidths=2)

 ax.add_collection(lc)

 ax.margins(0.1)
 pl.scatter(xs, ys)
 pl.savefig(str(thename) + '.png')
 pl.close()

Listing 7-1: A function for plotting triangles

Now, we can select three points, convert them to a triangle, and plot the
triangle, all in one line:

plot_triangle_simple(points_to_triangle((0.2,0.8),(0.5,0.2),(0.8,0.7)),'tri')

130 Chapter 7

Figure 7-4 shows the output.

Figure 7-4: A humble triangle

It will also come in handy to have a function that allows us to calculate
the distance between any two points using the Pythagorean theorem:

def get_distance(point1,point2):
 distance = math.sqrt((point1[0] - point2[0])**2 + (point1[1] - point2[1])**2)
 return(distance)

Finally, a reminder of the meaning of some common terms in
geometry:

Bisect To divide a line into two equal segments. Bisecting a line finds
its midpoint.

Equilateral Meaning “equal sides.” We use this term to describe a
shape in all which all sides have equal length.

Perpendicular The way we describe two lines that form a 90-degree
angle.

Vertex The point at which two edges of a shape meet.

Advanced Graduate-Level Triangle Studies
The scientist and philosopher Gottfried Wilhelm Leibniz thought that
our world was the best of all possible worlds because it was the “simplest in
hypotheses and richest in phenomena.” He thought that the laws of science
could be boiled down to a few simple rules but that those rules led to the

Geometry 131

complex variety and beauty of the world we observe. This may not be true
for the universe, but it is certainly true for triangles. Starting with some-
thing that is extremely simple in hypothesis (the idea of a shape with three
sides), we enter a world that is extremely rich in phenomena.

Finding the Circumcenter
To begin to see the richness of the phenomena of the world of triangles,
consider the following simple algorithm, which you can try with any triangle:

 1. Find the midpoint of each side of the triangle.

 2. Draw a line from each vertex of the triangle to the midpoint of the ver-
tex’s opposite side.

After you follow this algorithm, you will see something like Figure 7-5.

Figure 7-5: Triangle centroid (source Wikimedia Commons)

Remarkably, all the lines you drew meet in a single point that looks
something like the “center” of the triangle. All three lines will meet at a sin-
gle point no matter what triangle you start with. The point where they meet
is commonly called the centroid of the triangle, and it’s always on the inside
in a place that looks like it could be called the triangle’s center.

Some shapes, like circles, always have one point that can unambigu-
ously be called the shape’s center. But triangles aren’t like this: the centroid
is one center-ish point, but there are other points that could also be consid-
ered centers. Consider this new algorithm for any triangle:

 1. Bisect each side of the triangle.

 2. Draw a line perpendicular to each side through the side’s midpoint.

In this case, the lines do not typically go through the vertices like they
did when we drew a centroid. Compare Figure 7-5 with Figure 7-6.

132 Chapter 7

Figure 7-6: Triangle circumcenter (source: Wikimedia Commons)

Notice that the lines do all meet, again in a point that is not the centroid,
but is often inside the triangle. This point has another interesting property: it’s
the center of the unique circle that goes through all three vertices of our tri-
angle. Here is another of the rich phenomena related to triangles: every trian-
gle has one unique circle that goes through all three of its points. This circle
is called the circumcircle because it is the circle that circumscribes the triangle.
The algorithm we just outlined finds the center of that circumcircle. For this
reason, the point where all three of these lines meet is called the circumcenter.

Like the centroid, the circumcenter is a point that could be called the
center of a triangle, but they are not the only candidates—an encyclope-
dia at https://faculty.evansville.edu/ck6/encyclopedia/ETC.html contains a list of
40,000 (so far) points that could be called triangle centers for one reason or
another. As the encyclopedia itself says, the definition of a triangle center is
one that “is satisfied by infinitely many objects, of which only finitely many
will ever be published.” Remarkably, starting with three simple points and
three straight sides, we get a potentially infinite encyclopedia of unique
centers—Leibniz would be so pleased.

We can write a function that finds the circumcenter and circumradius
(the radius of the circumcircle) for any given triangle. This function relies
on conversion to complex numbers. It takes a triangle as its input and
returns a center and a radius as its output:

def triangle_to_circumcenter(triangle):
 x,y,z = complex(triangle[0][0],triangle[0][1]), complex(triangle[1][0],triangle[1][1]), \
 complex(triangle[2][0],triangle[2][1])
 w = z - x
 w /= y - x
 c = (x-y) * (w-abs(w)**2)/2j/w.imag - x
 radius = abs(c + x)
 return((0 - c.real,0 - c.imag),radius)

https://faculty.evansville.edu/ck6/encyclopedia/ETC.html

Geometry 133

The specific details of how this function calculates the center and
radius are complex. We won’t dwell on it here, but I encourage you to walk
through the code on your own, if you’d like.

Increasing Our Plotting Capabilities
Now that we can find a circumcenter and a circumradius for every tri-
angle, let’s improve our plot_triangle() function so it can plot everything.
Listing 7-2 shows the new function.

def plot_triangle(triangles,centers,radii,thename):
 fig, ax = pl.subplots()
 ax.set_xlim([0,1])
 ax.set_ylim([0,1])
 for i in range(0,len(triangles)):
 triangle = triangles[i]
 center = centers[i]
 radius = radii[i]
 itin = [0,1,2,0]
 thelines = genlines(triangle,itin)
 xs = [triangle[0][0],triangle[1][0],triangle[2][0]]
 ys = [triangle[0][1],triangle[1][1],triangle[2][1]]

 lc = mc.LineCollection(genlines(triangle,itin), linewidths = 2)

 ax.add_collection(lc)
 ax.margins(0.1)
 pl.scatter(xs, ys)
 pl.scatter(center[0],center[1])

 circle = pl.Circle(center, radius, color = 'b', fill = False)

 ax.add_artist(circle)
 pl.savefig(str(thename) + '.png')
 pl.close()

Listing 7-2: Our improved plot_triangle() function, which plots the circumcenter and
cicrumcircle

We start by adding two new arguments: a centers variable that’s a list of
the respective circumcenters of all triangles, and a radii variable that’s a list
of the radius of every triangle’s circumcircle. Note that we take arguments
that consist of lists, since this function is meant to draw multiple triangles
instead of just one triangle. We’ll use pylab’s circle-drawing capabilities to
draw the circles. Later, we’ll be working with multiple triangles at the same
time. It will be useful to have a plotting function that can plot multiple tri-
angles instead of just one. We’ll put a loop in our plotting function that will
loop through every triangle and center and plot each of them successively.

We can call this function with a list of triangles that we define:

triangle1 = points_to_triangle((0.1,0.1),(0.3,0.6),(0.5,0.2))
center1,radius1 = triangle_to_circumcenter(triangle1)

134 Chapter 7

triangle2 = points_to_triangle((0.8,0.1),(0.7,0.5),(0.8,0.9))
center2,radius2 = triangle_to_circumcenter(triangle2)
plot_triangle([triangle1,triangle2],[center1,center2],[radius1,radius2],'two')

Our output is shown in Figure 7-7.

Figure 7-7: Two triangles with circumcenter and circumcircles

Notice that our first triangle is close to equilateral. Its circumcircle is
small and its circumcenter lies within it. Our second triangle is a narrow,
sliver triangle. Its circumcircle is large and its circumcenter is far outside
the plot boundaries. Every triangle has a unique circumcircle, and different
triangle shapes lead to different kinds of circumcircles. It could be worth-
while to explore different triangle shapes and the circumcircles they lead to
on your own. Later, the differences between these triangles’ circumcircles
will be important.

Delaunay Triangulation
We’re ready for the first major algorithm of this chapter. It takes a set of
points as its input and returns a set of triangles as its output. In this context,
turning a set of points into a set of triangles is called triangulation.

The points_to_triangle() function we defined near the beginning of the
chapter is the simplest possible triangulation algorithm. However, it’s quite
limited because it works only if we give it exactly three input points. If we
want to triangulate three points, there’s only one possible way to do so: out-
put a triangle consisting of exactly those three points. If we want to triangu-
late more than three points, there will inevitably be more than one way to
triangulate. For example, consider the two distinct ways to triangulate the
same seven points shown in Figure 7-8.

Geometry 135

Figure 7-8: Two different ways to triangulate seven points (Wikimedia Commons)

In fact, there are 42 possible ways to triangulate this regular heptagon
Figure 7-9).

Figure 7-9: All 42 possible ways to triangulate seven points (source: Wikipedia)

136 Chapter 7

If you have more than seven points and they are irregularly placed, the
number of possible triangulations can rise to staggering magnitudes.

We can accomplish triangulation manually by getting pen and paper
and connecting dots. Unsurprisingly, we can do it better and faster by using
an algorithm.

There are a several different triangulation algorithms. Some are meant
to have a quick runtime, others are meant to be simple, and still others are
meant to yield triangulations that have specific desirable properties. What
we’ll cover here is called the Bowyer-Watson algorithm, and it’s designed to take
a set of points as its input and output a Delaunay triangulation.

A Delaunay triangulation (DT) aims to avoid narrow, sliver triangles.
It tends to output triangles that are somewhere close to equilateral.
Remember that equilateral triangles have relatively small circumcircles and
sliver triangles have relatively large circumcircles. With that in mind, con-
sider the technical definition of a DT: for a set of points, it is the set of tri-
angles connecting all the points in which no point is inside the circumcircle
of any of the triangles. The large circumcircles of sliver triangles would be
very likely to encompass one or more of the other points in the set, so a rule
stating that no point can be inside any circumcircle leads to relatively few
sliver triangles. If this is unclear, don’t fret—you’ll see it visualized in the
next section.

Incrementally Generating Delaunay Triangulations
Our eventual goal is to write a function that will take any set of points
and output a full Delaunay triangulation. But let’s start with something
simple: we’ll write a function that takes an existing DT of n points and also
one point that we want to add to it, and outputs a DT of n + 1 points. This
“Delaunay expanding” function will get us very close to being able to write
a full DT function.

N O T E The example and images in this section are courtesy of LeatherBee (https://leatherbee
.org/index.php/2018/10/06/terrain-generation-3-voronoi-diagrams/).

First, suppose that we already have the DT of nine points shown in
Figure 7-10.

Now suppose we want to add a 10th point to our DT (Figure 7-11).
A DT has only one rule: no point can lie within a circumcircle of

any of its triangles. So we check the circumcircle of every circle in our
existing DT, to determine whether point 10 lies within any of them.
We find that point 10 lies within the circumcircles of three triangles
(Figure 7-12).

https://leatherbee.org/index.php/2018/10/06/terrain-generation-3-voronoi-diagrams/
https://leatherbee.org/index.php/2018/10/06/terrain-generation-3-voronoi-diagrams/

Geometry 137

Figure 7-10: A DT with nine points

Figure 7-11: A 9-point DT with the 10th point we want to add

138 Chapter 7

Figure 7-12: Three triangles in the DT have circumcircles
containing point 10.

These triangles are no longer allowed to be in our DT, so we will
remove them, yielding Figure 7-13.

Figure 7-13: We have removed the invalid triangles.

We haven’t finished yet. We need to fill in the hole that we’ve created
and make sure that point 10 is properly connected to the other points. If
we don’t, then we won’t have a collection of triangles, we’ll just have points

Geometry 139

and lines. The way we connect point 10 can be described simply: add an
edge connecting point 10 to every vertex of the largest empty polygon that
point 10 lies within (Figure 7-14).

Figure 7-14: Completing the 10-point DT by reconnecting
valid triangles

Voilà! We started with a 9-point DT, added a new point, and now have
a 10-point DT. This process may seem straightforward. Unfortunately, as
is often the case with geometric algorithms, what seems clear and intuitive
to the human eye can be tricky to write code for. But let’s not allow this to
deter us, brave adventurers.

Implementing Delaunay Triangulations
Let’s start by assuming that we already have a DT, which we’ll call delaunay.
It will be nothing more than a list of triangles. We can even start with one
triangle alone:

delaunay = [points_to_triangle((0.2,0.8),(0.5,0.2),(0.8,0.7))]

Next, we’ll define a point that we want to add to it, called point_to_add:

point_to_add = [0.5,0.5]

We first need to determine which, if any, triangles in the existing DT
are now invalid because their circumcircle contains the point_to_add. We’ll
do the following:

 1. Use a loop to iterate over every triangle in the existing DT.

 2. For each triangle, find the circumcenter and radius of its circumcircle.

140 Chapter 7

 3. Find the distance between the point_to_add and this circumcenter.

 4. If this distance is less than the circumradius, then the new point is
inside the triangle’s circumcircle. We can then conclude this triangle is
invalid and needs to be removed from the DT.

We can accomplish these steps with the following code snippet:

import math
invalid_triangles = []
delaunay_index = 0
while delaunay_index < len(delaunay):
 circumcenter,radius = triangle_to_circumcenter(delaunay[delaunay_index])
 new_distance = get_distance(circumcenter,point_to_add)
 if(new_distance < radius):
 invalid_triangles.append(delaunay[delaunay_index])
 delaunay_index += 1

This snippet creates an empty list called invalid_triangles, loops through
every triangle in our existing DT, and checks whether a particular triangle is
invalid. It does this by checking whether the distance between the point_to_add
and the circumcenter is less than the circumcircle’s radius. If a triangle is
invalid, we append it to the invalid_triangles list.

Now we have a list of invalid triangles. Since they are invalid, we want to
remove them. Eventually, we’ll also need to add new triangles to our DT. To
do that, it will help to have a list of every point that is in one of the invalid
triangles, as those points will be in our new, valid triangles.

Our next code snippet removes all invalid triangles from our DT, and
we also get a collection of the points that make them up.

points_in_invalid = []

for i in range(len(invalid_triangles)):
 delaunay.remove(invalid_triangles[i])
 for j in range(0,len(invalid_triangles[i])):
 points_in_invalid.append(invalid_triangles[i][j])

1 points_in_invalid = [list(x) for x in set(tuple(x) for x in points_in_invalid)]

We first create an empty list called points_in_invalid. Then, we loop
through invalid_triangles, using Python’s remove() method to take each
invalid triangle out of the existing DT. We then loop through every point
in the triangle to add it to the points_in_invalid list. Finally, since we may
have added some duplicate points to the points_in_invalid list, we’ll use a list
comprehension 1 to re-create points_in_invalid with only unique values.

The final step in our algorithm is the trickiest one. We have to add
new triangles to replace the invalid ones. Each new triangle will have the
point_to_add as one of its points, and and two points from the existing DT
as its other points. However, we can’t add every possible combination of
point_to_add and two existing points.

In Figures 7-13 and 7-14, notice that the new triangles we needed to
add were all triangles with point 10 as one of their points, and with edges

Geometry 141

selected from the empty polygon that contained point 10. This may seem
simple enough after a visual check, but it’s not straightforward to write code
for it.

We need to find a simple geometric rule that can be easily explained
in Python’s hyper-literal style of interpretation. Think of the rules that
could be used to generate the new triangles in Figure 7-14. As is common
in mathematical situations, we could find multiple equivalent sets of rules.
We could have rules related to points, since one definition of a triangle
is a set of three points. We could have other rules related to lines, since
another, equivalent definition of triangles is a set of three line segments.
We could use any set of rules; we just want the one that will be the sim-
plest to understand and implement in our code. One possible rule is that
we should consider every possible combination of points in the invalid tri-
angles with the point_to_add, but we should add one of those triangles only
if the edge not containing the point_to_add occurs exactly once in the list
of invalid triangles. This rule works because the edges that occur exactly
once will be the edges of the outer polygon surrounding the new point (in
Figure 7-13, the edges in question are the edges of the polygon connect-
ing points 1, 4, 8, 7, and 3).

The following code implements this rule:

for i in range(len(points_in_invalid)):
 for j in range(i + 1,len(points_in_invalid)):
 #count the number of times both of these are in the bad triangles
 count_occurrences = 0
 for k in range(len(invalid_triangles)):
 count_occurrences += 1 * (points_in_invalid[i] in invalid_triangles[k]) * \
 (points_in_invalid[j] in invalid_triangles[k])
 if(count_occurrences == 1):
 delaunay.append(points_to_triangle(points_in_invalid[i], points_in_invalid[j], \
point_to_add))

Here we loop through every point in points_in_invalid. For each one, we
loop through every following point in points_in_invalid. This double loop
enables us to consider every combination of two points that was in an invalid
triangle. For each combination, we loop through all the invalid triangles and
count how many times those two points are together in an invalid triangle. If
they are together in exactly one invalid triangle, then we conclude that they
should be together in one of our new triangles, and we add a new triangle to
our DT that consists of those two points together with our new point.

We have completed the steps that are required to add a new point to an
existing DT. So we can take a DT that has n points, add a new point, and
end up with a DT that has n + 1 points. Now, we need to learn to use this
capability to take a set of n points and build a DT from scratch, from zero
points all the way to n points. After we get the DT started, it’s really quite
simple: we just need to loop through the process that goes from n points to
n + 1 points over and over until we have added all of our points.

There is just one more complication. For reasons that we’ll discuss
later, we want to add three more points to the collection of points whose
DT we’re generating. These points will lie far outside our chosen points,

142 Chapter 7

which we can ensure by finding the uppermost and leftmost points, adding
a new point that is higher and farther left than either of those, and doing
similarly for the lowermost and rightmost points and the lowermost and
leftmost points. We’ll se these points together as the first triangle of our
DT. We’ll start with a DT that connects three points: the three points in
the new triangle just mentioned. Then, we’ll follow the logic that we’ve
already seen to turn a three-point DT into a four-point DT, then into a
five-point DT, and so on until we’ve added all of our points.

In Listing 7-3, we can combine the code we wrote earlier to create a
function called gen_delaunay(), which takes a set of points as its input and
outputs a full DT.

def gen_delaunay(points):
 delaunay = [points_to_triangle([-5,-5],[-5,10],[10,-5])]
 number_of_points = 0

 while number_of_points < len(points): 1
 point_to_add = points[number_of_points]

 delaunay_index = 0

 invalid_triangles = [] 2
 while delaunay_index < len(delaunay):
 circumcenter,radius = triangle_to_circumcenter(delaunay[delaunay_index])
 new_distance = get_distance(circumcenter,point_to_add)
 if(new_distance < radius):
 invalid_triangles.append(delaunay[delaunay_index])
 delaunay_index += 1

 points_in_invalid = [] 3
 for i in range(0,len(invalid_triangles)):
 delaunay.remove(invalid_triangles[i])
 for j in range(0,len(invalid_triangles[i])):
 points_in_invalid.append(invalid_triangles[i][j])
 points_in_invalid = [list(x) for x in set(tuple(x) for x in points_in_invalid)]

 for i in range(0,len(points_in_invalid)): 4
 for j in range(i + 1,len(points_in_invalid)):
 #count the number of times both of these are in the bad triangles
 count_occurrences = 0
 for k in range(0,len(invalid_triangles)):
 count_occurrences += 1 * (points_in_invalid[i] in invalid_triangles[k]) * \
 (points_in_invalid[j] in invalid_triangles[k])
 if(count_occurrences == 1):
 delaunay.append(points_to_triangle(points_in_invalid[i], \
points_in_invalid[j], point_to_add))

 number_of_points += 1

 return(delaunay)

Listing 7-3: A function that takes a set of points and returns a Delaunay triangulation

Geometry 143

The full DT generation function starts by adding the new outside trian-
gle mentioned earlier. It then loops through every point in our collection of
points 1. For every point, it creates a list of invalid triangles: every triangle
that’s in the DT whose circumcircle includes the point we’re currently look-
ing at 2. It removes those invalid triangles from the DT and creates a collec-
tion of points using each point that was in those invalid triangles 3. Then,
using those points, it adds new triangles that follow the rules of Delaunay
triangulations 4. It accomplishes this incrementally, using exactly the code
that we have already introduced. Finally, it returns delaunay, a list containing
the collection of triangles that constitutes our DT.

We can easily call this function to generate a DT for any collection of
points. In the following code, we specify a number for N and generate N
random points (x and y values). Then, we zip the x and y values, put them
together into a list, pass them to our gen_delaunay() function, and get back a
full, valid DT that we store in a variable called the_delaunay:

N=15
import numpy as np
np.random.seed(5201314)
xs = np.random.rand(N)
ys = np.random.rand(N)
points = zip(xs,ys)
listpoints = list(points)
the_delaunay = gen_delaunay(listpoints)

We’ll use the_delaunay in the next section to generate a Voronoi
diagram.

From Delaunay to Voronoi
Now that we’ve completed our DT generation algorithm, the Voronoi dia-
gram generation algorithm is within our grasp. We can turn a set of points
into a Voronoi diagram by following this algorithm:

 1. Find the DT of a set of points.

 2. Take the circumcenter of every triangle in the DT.

 3. Draw lines connecting the circumcenters of all triangles in the DT that
share an edge.

We already know how to do step 1 (we did it in the previous section),
and we can accomplish step 2 withthe triangle_to_circumcenter() function.
So the only thing we need is a code snippet that can accomplish step 3.

The code we write for step 3 will live in our plotting function.
Remember that we pass a set of triangles and circumcenters to that func-
tion as its inputs. Our code will need to create a collection of lines connect-
ing circumcenters. But it will not connect all of the circumcenters, only
those from triangles that share an edge.

144 Chapter 7

We’re storing our triangles as collections of points, not edges. But
it’s still easy to check whether two of our triangles share an edge; we just
check whether they share exactly two points. If they share only one point,
then they have vertices that meet but no common edge. If they share three
points, they are the same triangle and so will have the same circumcenter.
Our code will loop through every triangle, and for each triangle, it will loop
through every triangle again, and check the number of points that the two
triangles share. If the number of common points is exactly two, then it will
add a line between the circumcenters of the triangles in question. The lines
between the circumcenters will be the boundaries of our Voronoi diagram.
The following code snippet shows how we’ll loop through triangles, but it’s
part of a larger plotting function, so don’t run it yet:

--snip--
for j in range(len(triangles)):
 commonpoints = 0
 for k in range(len(triangles[i])):
 for n in range(len(triangles[j])):
 if triangles[i][k] == triangles[j][n]:
 commonpoints += 1
 if commonpoints == 2:
 lines.append([list(centers[i][0]),list(centers[j][0])])

This code will be added to our plotting function, since our final goal is
a plotted Voronoi diagram.

While we’re at it, we can make several other useful additions to our
plotting function. The new plotting function is shown in Listing 7-4, with
the changes in bold:

def plot_triangle_circum(triangles,centers,plotcircles,plotpoints, \
plottriangles,plotvoronoi,plotvpoints,thename):
 fig, ax = pl.subplots()
 ax.set_xlim([-0.1,1.1])
 ax.set_ylim([-0.1,1.1])

 lines=[]
 for i in range(0,len(triangles)):
 triangle = triangles[i]
 center = centers[i][0]
 radius = centers[i][1]
 itin = [0,1,2,0]
 thelines = genlines(triangle,itin)
 xs = [triangle[0][0],triangle[1][0],triangle[2][0]]
 ys = [triangle[0][1],triangle[1][1],triangle[2][1]]

 lc = mc.LineCollection(genlines(triangle,itin), linewidths=2)
 if(plottriangles):
 ax.add_collection(lc)
 if(plotpoints):
 pl.scatter(xs, ys)

 ax.margins(0.1)

Geometry 145

 1 if(plotvpoints):

 pl.scatter(center[0],center[1])

 circle = pl.Circle(center, radius, color = 'b', fill = False)
 if(plotcircles):
 ax.add_artist(circle)

 2 if(plotvoronoi):
 for j in range(0,len(triangles)):
 commonpoints = 0
 for k in range(0,len(triangles[i])):
 for n in range(0,len(triangles[j])):
 if triangles[i][k] == triangles[j][n]:
 commonpoints += 1
 if commonpoints == 2:
 lines.append([list(centers[i][0]),list(centers[j][0])])

 lc = mc.LineCollection(lines, linewidths = 1)

 ax.add_collection(lc)

 pl.savefig(str(thename) + '.png')
 pl.close()

Listing 7-4: A function that plots triangles, circumcenters, circumcircles, Voronoi points,
and Voronoi boundaries

First, we add new arguments that specify exactly what we want to plot.
Remember that in this chapter we have worked with points, edges, trian-
gles, circumcircles, circumcenters, DTs, and Voronoi boundaries. It could
be overwhelming to the eye to plot all of these together, so we will add
plotcircles to specify whether we want to plot our circumcircles, plotpoints
to specify whether we want to plot our collection of points, plottriangles to
specify whether we want to plot our DT, plotvoronoi to specify whether we
want to plot our Voronoi diagram edges, and plotvpoints which to specify
whether we want to plot our circumcenters (which are the vertices of the
Voronoi diagram edges). The new additions are shown in bold. One addi-
tion plots the Voronoi vertices (circumcenters), if we have specified in our
arguments that we want to plot them 1. The longer addition plots the
Voronoi edges 2. We’ve also specified a few if statements that allow us to
plot, or not plot, triangles, vertices, and circumcircles, as we prefer.

We’re almost ready to call this plotting function and see our final
Voronoi diagram. However, first we need to get the circumcenters of every
triangle in our DT. Luckily, this is very easy. We can create an empty list
called circumcenters and append the circumcenter of every triangle in our
DT to that list, as follows:

circumcenters = []
for i in range(0,len(the_delaunay)):
 circumcenters.append(triangle_to_circumcenter(the_delaunay[i]))

146 Chapter 7

Finally, we’ll call our plotting function, specifying that we want it to
draw the Voronoi boundaries:

plot_triangle_circum(the_delaunay,circumcenters,False,True,False,True,False,'final')

Figure 7-15 shows our output.

Figure 7-15: A Voronoi diagram. Phew!

We’ve transformed a set of points into a Voronoi diagram in mere sec-
onds. You can see that the boundaries in this Voronoi diagram run right
up to the edge of the plot. If we increased the size of the plot, the Voronoi
edges would continue even farther. Remember that Voronoi edges con-
nect the centers of circumcircles of triangles in our DT. But our DT could
be connecting very few points that are close together in the center of our
plot, so all the circumcenters could lie within a small area in the middle
of our plot. If that happened, the edges of our Voronoi diagram wouldn’t
extend to the edges of the plot space. This is why we added the new outer
triangle in the first line of our gen_delaunay() function; by having a triangle
whose points are far outside our plot area, we can be confident that there
will always be Voronoi edges that run to the edge of our map, so that (for
example) we will know which post office to assign to deliver to new suburbs
built on or outside the edge of the city.

Finally, you might enjoy playing with our plotting function. For example,
if you set all of its input arguments to True, you can generate a messy but
beautiful plot of all the elements we have discussed in this chapter:

plot_triangle_circum(the_delaunay,circumcenters,True,True,True,True,True,'everything')

Geometry 147

Our output is shown in Figure 7-16.

Figure 7-16: Magic eye

You can use this image to convince your roommates and family mem-
bers that you are doing top-secret particle collision analysis work for CERN,
or maybe you could use it to apply for an art fellowship as a spiritual suc-
cessor to Piet Mondrian. As you look at this Voronoi diagram with its DT
and circumcircles, you could imagine post offices, water pumps, crystal
structures, or any other possible application of Voronoi diagrams. Or you
could just imagine points, triangles, and lines and revel in the pure joys of
geometry.

Summary
This chapter introduced methods for writing code to do geometric rea-
soning. We started by drawing simple points, lines, and triangles. We pro-
ceeded to discuss different ways to find the center of a triangle, and how
this enables us to generate a Delaunay triangulation for any set of points.
Finally, we went over simple steps for using a Delaunay triangulation to
generate a Voronoi diagram, which can be used to solve the postmaster
problem or to contribute to any of a variety of other applications. They are
complex in some ways, but in the end they boil down to elementary manip-
ulations of points, lines, and triangles.

In the next chapter, we discuss algorithms that can be used to work
with languages. In particular, we’ll talk about how an algorithm can correct
text that’s missing spaces and how to write a program that can predict what
word should come next in a natural phrase.

In this chapter, we step into the messy world
of human language. We’ll start by discuss-

ing the differences between language and
math that make language algorithms difficult.

We’ll continue by building a space insertion algorithm
that can take any text in any language and insert spaces
wherever they’re missing. After that, we’ll build a phrase
completion algorithm that can imitate the style of a
writer and find the most fitting next word in a phrase.

The algorithms in this chapter rely heavily on two tools that we haven’t
used before: list comprehensions and corpuses. List comprehensions enable
us to quickly generate lists using the logic of loops and iterations. They’re
optimized to run very quickly in Python and they’re easy to write concisely,
but they can be hard to read and their syntax takes some getting used to.
A corpus is a body of text that will “teach” our algorithm the language and
style we want it to use.

8
L A N G U A G E

150 Chapter 8

Why Language Algorithms Are Hard
The application of algorithmic thinking to language goes back at least as
far as Descartes, who noticed that although there are infinite numbers,
anyone with a rudimentary understanding of arithmetic knows how to cre-
ate or interpret a number they’ve never encountered before. For example,
maybe you’ve never encountered the number 14,326—never counted that
high, never read a financial report about that many dollars, never mashed
exactly those keys on the keyboard. And yet I’m confident that you can eas-
ily grasp exactly how high it is, what numbers are higher or lower than it,
and how to manipulate it in equations.

The algorithm that lets us easily understand hitherto unimagined num-
bers is simply a combination of the 10 digits (0–9), memorized in order, and
the place system. We know that 14,326 is one higher than 14,325 because the
digit 6 comes one after the digit 5 in order, they occupy the same place
in their respective numbers, and the digits in all the other places are the
same. Knowing the digits and the place system enables us to instantly have
an idea of how 14,326 is similar to 14,325 and how both are larger than 12
and smaller than 1,000,000. We can also understand at a glance that 14,326
is similar to 4,326 in some respects but differs greatly in size.

Language is not the same. If you are learning English and you see the
word stage for the first time, you cannot reliably reason about its meaning
simply by noting its similarity to stale or stake or state or stave or stade or sage,
even though those words differ from stage about as much as 14,326 does
from 14,325. Nor can you reliably suppose that a bacterium is larger than
an elk because of the number of syllables and characters in the words.
Even supposedly reliable rules of language, like adding s to form plurals
in English, can lead us badly astray when we infer that the word “princes”
refers to less of something than the word “princess.”

In order to use algorithms with language, we must either make lan-
guage simpler, so that the short mathematical algorithms we have explored
so far can reliably work with it, or make our algorithms smarter, so that they
can deal with the messy complexity of human language as it has developed
naturally. We’ll do the latter.

Space Insertion
Imagine that you are the chief algorithm officer at a large old company
that has a warehouse full of handwritten paper records. The chief record
digitization officer has been conducting a long-term project of scanning
those paper records to image files, and then using text recognition technol-
ogy to convert the images to text that can be easily stored in the company’s
databases. However, some of the handwriting on the records is awful and
the text recognition technology is imperfect, so the final digital text that
is extracted from a paper record is sometimes incorrect. You’ve been given
only the digitized text and you’re asked to find a way to correct the mistakes
without referring to the paper originals.

Language 151

Suppose that you read the first digitized sentence into Python and find
that it’s a quote from G. K. Chesterton: “The one perfectly divine thing, the
one glimpse of God’s paradise given on earth, is to fight a losing battle—
and not lose it.” You take this imperfectly digitized text and store it in a vari-
able called text:

text = "The oneperfectly divine thing, the oneglimpse of God's paradisegiven
on earth, is to fight a losingbattle - and notlose it."

You’ll notice that this text is in English, and while the spelling of each
word is correct, there are missing spaces throughout: oneperfectly should
actually be one perfectly, paradisegiven should be paradise given, and so on.
(Missing a space is uncommon for humans, but text recognition technol-
ogy often makes this kind of mistake.) In order to do your job, you’ll have
to insert spaces at the appropriate spots in this text. For a fluent English
speaker, this task may not seem difficult to do manually. However, imagine
that you need to do it quickly for millions of scanned pages—you will obvi-
ously need to write an algorithm that can do it for you.

Defining a Word List and Finding Words
The first thing we will do is teach our algorithm some English words. This
isn’t very hard: we can define a list called word_list and populate it with
words. Let’s start with just a few words:

word_list = ['The','one','perfectly','divine']

In this chapter, we’ll create and manipulate lists using list comprehen-
sions, which you’ll probably like after you get used to them. The following is
a very simple list comprehension that creates a copy of our word_list:

word_list_copy = [word for word in word_list]

You can see that the syntax for word in word_list is very similar to the
syntax for a for loop. But we don’t need a colon or extra lines. In this case,
the list comprehension is as simple as possible, just specifying that we want
each word in word_list to be in our new list, word_list_copy. This may not be
so useful, but we can concisely add logic to make it more useful. For exam-
ple, if we want to find every word in our word list that contains the letter n,
all it takes is the simple addition of an if statement:

has_n = [word for word in word_list if 'n' in word]

We can run print(has_n) to see that the result is what we expect:

['one', 'divine']

Later in the chapter, you’ll see more complex list comprehensions,
including some that have nested loops. However, all of them follow the
same basic pattern: a for loop specifying iteration, with optional if state-
ments describing the logic of what we want to select for our final list output.

152 Chapter 8

We’ll use Python’s re module to access text manipulation tools. One of
re’s useful functions is finditer(), which can search our text to find the loca-
tion of any word in our word_list. We use finditer() in a list comprehension
like so:

import re
locs = list(set([(m.start(),m.end()) for word in word_list for m in re.finditer(word, text)]))

That line is a little dense, so take a moment to make sure you under-
stand it. We’re defining a variable called locs, short for “locations”; this
variable will contain the locations in the text of every word in our word list.
We’ll use a list comprehension to get this list of locations.

The list comprehension takes place inside the square brackets ([]).
We use for word in word_list to iterate over every word in our word_list. For
each word, we call re.finditer(), which finds the selected word in our text
and returns a list of every location where that word occurs. We iterate over
these locations, and each individual location is stored in m. When we access
m.start() and m.end(), we’ll get the location in the text of the beginning and
end of the word, respectively. Notice—and get used to—the order of the for
loops, since some people find it the opposite of the order they expected.

The whole list comprehension is enveloped by list(set()). This is a con-
venient way to get a list that contains only unique values with no duplicates.
Our list comprehension alone might have multiple identical elements, but
converting it to a set automatically removes duplicates, and then converting
it back to a list puts it in the format we want: a list of unique word locations.
You can run print(locs) to see the result of the whole operation:

[(17, 23), (7, 16), (0, 3), (35, 38), (4, 7)]

In Python, ordered pairs like these are called tuples, and these tuples show
the locations of each word from word_list in our text. For example, when we run
text[17:23] (using the numbers from the third tuple in the preceding list), we
find that it’s divine. Here, d is the 17th character of our text, i is the 18th charac-
ter of our text, and so on until e, the final letter of divine, is the 22nd character
of our text, so the tuple is rounded off with 23. You can check that the other
tuples also refer to the locations of words in our word_list.

Notice that text[4:7] is one, and text[7:16] is perfectly. The end of the
word one runs into the beginning of the word perfectly without any inter-
vening space. If we hadn’t noticed that immediately by reading the text, we
could have caught it by looking at the tuples (4, 7) and (7, 16) in our locs
variable: since 7 is the second element of (4, 7) and also the first element of
(7, 16), we know that one word ends in the same index where another word
begins. In order to find places where we need to insert spaces, we’ll look for
cases like this: where the end of one valid word is at the same place as the
beginning of another valid word.

Dealing with Compound Words
Unfortunately, two valid words appearing together without a space is not
conclusive evidence that a space is missing. Consider the word butterfly. We

Language 153

know that butter is a valid word and fly is a valid word, but we can’t necessar-
ily conclude that butterfly was written in error, because butterfly is also a valid
word. So we need to check not only for valid words that appear together
without a space but also for valid words that, when mashed together without
a space, do not together form another valid word. This means that in our
text, we need to check whether oneperfectly is a word, whether paradisegiven
is a word, and so on.

In order to check this, we need to find all the spaces in our text. We
can look at all the substrings between two consecutive spaces and call those
potential words. If a potential word is not in our word list, then we’ll con-
clude that it’s invalid. We can check each invalid word to see whether it’s
made up of a combination of two smaller words; if it is, we’ll conclude that
there’s a missing space and add it back in, right between the two valid words
that have combined to form the invalid word.

Checking Between Existing Spaces for Potential Words
We can use re.finditer() again to find all the spaces in our text, which we’ll
store in a variable called spacestarts. We’ll also add two more elements to
our spacestarts variable: one to represent the location of the beginning of
the text and one to represent the location of the end. This ensures that we
find every potential word, since words at the very beginning and end will be
the only words that are not between spaces. We also add a line that sorts the
spacestarts list:

spacestarts = [m.start() for m in re.finditer(' ', text)]
spacestarts.append(-1)
spacestarts.append(len(text))
spacestarts.sort()

The list spacestarts records the locations of the spaces in our text. We
got these locations by using a list comprehension and the re.finditer()
tool. In this case, re.finditer() finds the location of every space in the
text and stores it in a list, which refers to each individual element as m.
For each of those m elements, which are spaces, we get the location where
the space begins by using the start() function. We are looking for poten-
tial words between those spaces. It will be useful to have another list that
records the locations of characters that come just after a space; these will
be the locations of the first character of each potential word. We’ll call
that list spacestarts_affine, since in technical terms, this new list is an
affine transformation of the spacestarts list. Affine is often used to refer
to linear transformations, such as adding 1 to each location, which
we’ll do here. We’ll also sort this list:

spacestarts_affine = [ss+1 for ss in spacestarts]
spacestarts_affine.sort()

Next, we can get all the substrings that are between two spaces:

between_spaces = [(spacestarts[k] + 1,spacestarts[k + 1]) for k in range(0,len(spacestarts) - 1)]

154 Chapter 8

The variable we’re creating here is called between_spaces, and it’s a list
of tuples of the form (<location of beginning of substring>, <location of end of
substring>), like (17, 23). The way we get these tuples is through a list compre-
hension. This list comprehension iterates over k. In this case, k takes on the
values of integers between 0 and one less than the length of the spacestarts
list. For each k, we will generate one tuple. The first element of the tuple is
spacestarts[k]+1, which is one position after the location of each space. The
second element of the tuple is spacestarts[k+1], which is the location of the
next space in the text. This way, our final output contains tuples that indi-
cate the beginning and end of each substring between spaces.

Now, consider all of the potential words that are between spaces, and
find the ones that are not valid (not in our word list):

between_spaces_notvalid = [loc for loc in between_spaces if \
text[loc[0]:loc[1]] not in word_list]

Looking at between_spaces_notvalid, we can see that it’s a list of the loca-
tions of all invalid potential words in our text:

[(4, 16), (24, 30), (31, 34), (35, 45), (46, 48), (49, 54), (55, 68), (69,
71), (72, 78), (79, 81), (82, 84), (85, 90), (91, 92), (93, 105), (106, 107),
(108, 111), (112, 119), (120, 123)]

Our code thinks that all these locations refer to invalid words. However,
if you look at some of the words referred to here, they look pretty valid.
For example, text[103:106] outputs the valid word and. The reason our code
thinks that and is an invalid word is that it isn’t in our word list. Of course,
we could add it to our word list manually and continue using that approach
as we need our code to recognize words. But remember that we want this
space insertion algorithm to work for millions of pages of scanned text,
and they may contain many thousands of unique words. It would be helpful
if we could import a word list that already contained a substantial body of
valid English words. Such a collection of words is referred to as a corpus.

Using an Imported Corpus to Check for Valid Words
Luckily, there are existing Python modules that allow us to import a full
corpus with just a few lines. First, we need to download the corpus:

import nltk
nltk.download('brown')

We’ve downloaded a corpus called brown from the module called nltk.
Next, we’ll import the corpus:

from nltk.corpus import brown
wordlist = set(brown.words())
word_list = list(wordlist)

Language 155

We have imported the corpus and converted its collection of words
into a Python list. Before we use this new word_list, however, we should do
some cleanup to remove what it thinks are words but are actually punctua-
tion marks:

word_list = [word.replace('*','') for word in word_list]
word_list = [word.replace('[','') for word in word_list]
word_list = [word.replace(']','') for word in word_list]
word_list = [word.replace('?','') for word in word_list]
word_list = [word.replace('.','') for word in word_list]
word_list = [word.replace('+','') for word in word_list]
word_list = [word.replace('/','') for word in word_list]
word_list = [word.replace(';','') for word in word_list]
word_list = [word.replace(':','') for word in word_list]
word_list = [word.replace(',','') for word in word_list]
word_list = [word.replace(')','') for word in word_list]
word_list = [word.replace('(','') for word in word_list]
word_list.remove('')

These lines use the remove() and replace() functions to replace punctua-
tion with empty strings and then remove the empty strings. Now that we have
a suitable word list, we’ll be able to recognize invalid words more accurately.
We can rerun our check for invalid words using our new word_list and get
better results:

between_spaces_notvalid = [loc for loc in between_spaces if \
text[loc[0]:loc[1]] not in word_list]

When we print the list between_spaces_notvalid, we get a shorter and
more accurate list:

[(4, 16), (24, 30), (35, 45), (55, 68), (72, 78), (93, 105), (112, 119), (120, 123)]

Now that we have found the invalid potential words in our text, we’ll
check in our word list for words that could be combined to form those
invalid words. We can begin by looking for words that start just after a
space. These words could be the first half of an invalid word:

partial_words = [loc for loc in locs if loc[0] in spacestarts_affine and \
loc[1] not in spacestarts]

Our list comprehension iterates over every element of our locs variable,
which contains the location of every word in the text. It checks whether
locs[0], the beginning of the word, is in spacestarts_affine, a list containing
the characters that come just after a space. Then it checks whether loc[1]
is not in spacestarts, which checks whether the word ends where a space
begins. If a word starts after a space and doesn’t end at the same place as a
space, we put it in our partial_words variable, because this could be a word
that needs to have a space inserted after it.

156 Chapter 8

Next, let’s look for words that end with a space. These could be the sec-
ond half of an invalid word. To find them, we make some small changes to
the previous logic:

partial_words_end = [loc for loc in locs if loc[0] not in spacestarts_affine \
and loc[1] in spacestarts]

Now we can start inserting spaces.

Finding First and Second Halves of Potential Words
Let’s start by inserting a space into oneperfectly. We’ll define a variable
called loc that stores the location of oneperfectly in our text:

loc = between_spaces_notvalid[0]

We now need to check whether any of the words in partial_words could be
the first half of oneperfectly. For a valid word to be the first half of oneperfectly,
it would have to have the same beginning location in the text , but not the
same ending location, as oneperfectly. We’ll write a list comprehension that
finds the ending location of every valid word that begins at the same location
as oneperfectly:

endsofbeginnings = [loc2[1] for loc2 in partial_words if loc2[0] == loc[0] \
and (loc2[1] - loc[0]) > 1]

We’ve specified loc2[0] == loc[0], which says that our valid word must
start at the same place as oneperfectly. We’ve also specified (loc2[1]-loc[0])>1,
which ensures that the valid word we find is more than one character long.
This is not strictly necessary, but it can help us avoid false positives. Think of
words like avoid, aside, along, irate, and iconic, in which the first letter could
be considered a word on its own but probably shouldn’t be.

Our list endsofbeginnings should include the ending location of every
valid word that begins at the same place as oneperfectly. Let’s use a list com-
prehension to create a similar variable, called beginningsofends, that will find
the beginning location of every valid word that ends at the same place as
oneperfectly:

beginningsofends = [loc2[0] for loc2 in partial_words_end if loc2[1] == loc[1] and \
(loc2[1] - loc[0]) > 1]

We’ve specified loc2[1] == loc[1], which says that our valid word must
end at the same place as oneperfectly. We’ve also specified (loc2[1]-loc[0])>1,
which ensures that the valid word we find is more than one character long,
just as we did before.

We’re almost home; we just need to find whether any locations are con-
tained in both endsofbeginnings and beginningsofends. If there are, that means

Language 157

that our invalid word is indeed a combination of two valid words without a
space. We can use the intersection() function to find all elements that are
shared by both lists:

pivot = list(set(endsofbeginnings).intersection(beginningsofends))

We use the list(set()) syntax again; just like before, it’s to make sure
that our list contains only unique values, with no duplicates. We call the
result pivot. It’s possible that pivot will contain more than one element.
This would mean that there are more than two possible combinations of
valid words that could compose our invalid word. If this happens, we’ll
have to decide which combination is the one the original writer intended.
This cannot be done with certainty. For example, consider the invalid word
choosespain. It’s possible that this invalid word is from a travel brochure for
Iberia (“Choose Spain!”), but it’s also possible that it’s from a description
of a masochist (“chooses pain”). Because of the huge quantity of words in
our language and the numerous ways they can be combined, sometimes
we can’t be certain which is right. A more sophisticated approach would
take into account context—whether other words around choosespain tend
to be about olives and bullfighting or about whips and superfluous dentist
appointments. Such an approach would be difficult to do well and impos-
sible to do perfectly, illustrating again the difficulty of language algorithms
in general. In our case, we’ll take the smallest element of pivot, not because
this is certainly the correct one, but just because we have to take one:

import numpy as np
pivot = np.min(pivot)

Finally, we can write one line that replaces our invalid word with the
two valid component words plus a space:

textnew = text
textnew = textnew.replace(text[loc[0]:loc[1]],text[loc[0]:pivot]+' '+text[pivot:loc[1]])

If we print this new text, we can see that it has correctly inserted a space
into the misspelling oneperfectly, though it hasn’t yet inserted spaces in the
rest of the misspellings.

The one perfectly divine thing, the oneglimpse of God's paradisegiven on
earth, is to fight a losingbattle - and notlose it.

We can put all this together into one beautiful function, shown in
Listing 8-1. This function will use a for loop to insert spaces into every
instance of two valid words running together to become an invalid word.

def insertspaces(text,word_list):

 locs = list(set([(m.start(),m.end()) for word in word_list for m in re.finditer(word, \
text)]))

158 Chapter 8

 spacestarts = [m.start() for m in re.finditer(' ', text)]
 spacestarts.append(-1)
 spacestarts.append(len(text))
 spacestarts.sort()
 spacestarts_affine = [ss + 1 for ss in spacestarts]
 spacestarts_affine.sort()
 partial_words = [loc for loc in locs if loc[0] in spacestarts_affine and loc[1] not in \
 spacestarts]
 partial_words_end = [loc for loc in locs if loc[0] not in spacestarts_affine and loc[1] \
 in spacestarts]
 between_spaces = [(spacestarts[k] + 1,spacestarts[k+1]) for k in \
 range(0,len(spacestarts) - 1)]
 between_spaces_notvalid = [loc for loc in between_spaces if text[loc[0]:loc[1]] not in \
 word_list]
 textnew = text
 for loc in between_spaces_notvalid:
 endsofbeginnings = [loc2[1] for loc2 in partial_words if loc2[0] == loc[0] and \
 (loc2[1] - loc[0]) > 1]
 beginningsofends = [loc2[0] for loc2 in partial_words_end if loc2[1] == loc[1] and \
 (loc2[1] - loc[0]) > 1]
 pivot = list(set(endsofbeginnings).intersection(beginningsofends))
 if(len(pivot) > 0):
 pivot = np.min(pivot)
 textnew = textnew.replace(text[loc[0]:loc[1]],text[loc[0]:pivot]+' \
 '+text[pivot:loc[1]])
 textnew = textnew.replace(' ',' ')
 return(textnew)

Listing 8-1: A function that inserts spaces into texts, combining much of the code in the chapter so far

Then we can define any text and call our function as follows:

text = "The oneperfectly divine thing, the oneglimpse of God's paradisegiven on earth, is to \
fight a losingbattle - and notlose it."
print(insertspaces(text,word_list))

We see the output just as we expect, with spaces inserted perfectly:

The one perfectly divine thing, the one glimpse of God's paradise given on earth, is to fight
a losing battle - and not lose it.

We’ve created an algorithm that can correctly insert spaces into English
text. One thing to consider is whether you can do the same for other lan-
guages. You can—as long as you read in a good, appropriate corpus for
the language you’re working with to define the word_list, the function we
defined and called in this example can correctly insert spaces into text in
any language. It can even correct a text in a language you’ve never studied
or even heard of. Try different corpuses, different languages, and different
texts to see what kind of results you can get, and you’ll get a glimpse of the
power of language algorithms.

Language 159

Phrase Completion
Imagine that you are doing algorithm consulting work for a startup that is
trying to add features to a search engine they are building. They want to
add phrase completion so that they can provide search suggestions to users.
For example, when a user types in peanut butter and, a search suggestion fea-
ture might suggest adding the word jelly. When a user types in squash, the
search engine could suggest both court and soup.

Building this feature is simple. We’ll start with a corpus, just like we did
with our space checker. In this case, we’re interested not only in the indi-
vidual words of our corpus but also in how the words fit together, so we’ll
compile lists of n-grams from our corpus. An n-gram is simply a collection
of n words that appear together. For example, the phrase “Reality is not
always probable, or likely” is made up of seven words once spoken by the
great Jorge Luis Borges. A 1-gram is an individual word, so the 1-grams of
this phrase are reality, is, not, always, probable, or, and likely. The 2-grams are
every string of two words that appear together, including reality is, is not, not
always, always probable, and so on. The 3-grams are reality is not, is not always,
and so on.

Tokenizing and Getting N-grams
We’ll use a Python module called nltk to make n-gram collection easy. We’ll
first tokenize our text. Tokenizing simply means splitting a string into its
component words, ignoring punctuation. For example:

from nltk.tokenize import sent_tokenize, word_tokenize
text = "Time forks perpetually toward innumerable futures"
print(word_tokenize(text))

The result we see is this:

['Time', 'forks', 'perpetually', 'toward', 'innumerable', 'futures']

We can tokenize and get the n-grams from our text as follows:

import nltk
from nltk.util import ngrams
token = nltk.word_tokenize(text)
bigrams = ngrams(token,2)
trigrams = ngrams(token,3)
fourgrams = ngrams(token,4)
fivegrams = ngrams(token,5)

Alternatively, we can put all the n-grams in a list called grams:

grams = [ngrams(token,2),ngrams(token,3),ngrams(token,4),ngrams(token,5)]

In this case, we have gotten a tokenization and a list of n-grams for a
short one-sentence text. However, in order to have an all-purpose phrase

160 Chapter 8

completion tool, we’ll need a considerably larger corpus. The brown corpus
we used for space insertion won’t work because it consists of single words
and so we can’t get its n-grams.

One corpus we could use is a collection of literary texts made available
online by Google’s Peter Norvig at http://norvig.com/big.txt. For the examples
in this chapter, I downloaded a file of Shakespeare’s complete works, avail-
able for free online at http://www.gutenberg.org/files/100/100-0.txt, and then
removed the Project Gutenberg boilerplate text on the top. You could also
use the complete works of Mark Twain, available at http://www.gutenberg.org/
cache/epub/3200/pg3200.txt. Read a corpus into Python as follows:

import requests
file = requests.get('http://www.bradfordtuckfield.com/shakespeare.txt')
file = file.text
text = file.replace('\n', '')

Here, we used the requests module to directly read a text file containing
the collected works of Shakespeare from a website where it’s being hosted,
and then read it into our Python session in a variable called text.

After reading in your chosen corpus, rerun the code that created the
grams variable. Here it is with the new definition of the text variable:

token = nltk.word_tokenize(text)
bigrams = ngrams(token,2)
trigrams = ngrams(token,3)
fourgrams = ngrams(token,4)
fivegrams = ngrams(token,5)
grams = [ngrams(token,2),ngrams(token,3),ngrams(token,4),ngrams(token,5)]

Our Strategy
Our strategy for generating search suggestions is simple. When a user types
in a search, we check how many words are in their search. In other words, a
user enters an n-gram and we determine what n is. When a user searches for
an n-gram, we are helping them add to their search, so we will want to sug-
gest an n + 1-gram. We’ll search our corpus and find all n + 1-grams whose
first n elements match our n-gram. For example, a user might search for
crane, a 1-gram, and our corpus might contain the 2-grams crane feather, crane
operator, and crane neck. Each is a potential search suggestion we could offer.

We could stop there, providing every n + 1-gram whose first n elements
matched the n + 1-gram the user had entered. However, not all suggestions
are equally good. For example, if we are working for a custom engine that
searches through manuals for industrial construction equipment, it’s likely
that crane operator will be a more relevant, useful suggestion than crane
feather. The simplest way to determine which n + 1-gram is the best sugges-
tion is to offer the one that appears most often in our corpus.

Thus, our full algorithm: a user searches for an n-gram, we find all
n + 1-grams whose first n elements match the user’s n-gram, and we recom-
mend the matching n + 1-gram that appears most frequently in the corpus.

http://norvig.com/big.txt
http://www.gutenberg.org/files/100/100-0.txt
http://www.gutenberg.org/cache/epub/3200/pg3200.txt
http://www.gutenberg.org/cache/epub/3200/pg3200.txt

Language 161

Finding Candidate n + 1-grams
In order to find the n + 1-grams that will constitute our search suggestions,
we need to know how long the user’s search term is. Suppose the search
term is life is a, meaning that we’re looking for suggestions for how to
complete the phrase “life is a . . .”. We can use the following simple lines to
get the length of our search term:

from nltk.tokenize import sent_tokenize, word_tokenize
search_term = 'life is a'
split_term = tuple(search_term.split(' '))
search_term_length = len(search_term.split(' '))

Now that we know the length of the search term, we know n—it’s 3.
Remember that we’ll be returning the most frequent n + 1-grams (4-grams)
to the user. So we need to take into account the different frequencies of dif-
ferent n + 1-grams. We’ll use a function called Counter(), which will count
the number of occurrences of each n + 1-gram in our collection.

from collections import Counter
counted_grams = Counter(grams[search_term_length - 1])

This line has selected only the n + 1-grams from our grams variable.
Applying the Counter() function creates a list of tuples. Each tuple has an n
+ 1-gram as its first element and the frequency of that n + 1-gram in our cor-
pus as its second element. For example, we can print the first element
of counted_grams:

print(list(counted_grams.items())[0])

The output shows us the first n + 1-gram in our corpus and tells us that
it appears only once in the entire corpus:

(('From', 'fairest', 'creatures', 'we'), 1)

This n-gram is the beginning of Shakespeare’s Sonnet 1. It’s fun to look
at some of the interesting 4-grams we can randomly find in Shakespeare’s
works. For example, if you run print(list(counted_grams)[10]), you can see
that the 10th 4-gram in Shakespeare’s works is “rose might never die.” If you
run print(list(counted_grams)[240000]), you can see that the 240,000th n-gram
is “I shall command all.” The 323,002nd is “far more glorious star” and the
328,004th is “crack my arms asunder.” But we want to do phrase completion,
not just n + 1-gram browsing. We need to find the subset of n + 1-grams whose
first n elements match our search term. We can do that as follows:

matching_terms = [element for element in list(counted_grams.items()) if \
element[0][:-1] == tuple(split_term)]

This list comprehension iterates over every n + 1-gram and calls
each element as it does so. For each element, it checks whether element[0]
[:-1]==tuple(split_term). The left side of this equality, element[0][:-1],

162 Chapter 8

simply takes the first n elements of each n + 1-gram: the [:-1] is a handy
way to disregard the last element of a list. The right side of the equal-
ity, tuple(split_term), is the n-gram we’re searching for (“life is a”). So
we’re checking for n + 1-grams whose first n elements are the same as our
n-gram of interest. Whichever terms match are stored in our final output,
called matching_terms.

Selecting a Phrase Based on Frequency
Our matching_terms list has everything we need to finish the job; it consists of
n + 1-grams whose first n elements match the search term, and it includes
their frequencies in our corpus. As long as there is at least one element
in the matching terms list, we can find the element that occurs most fre-
quently in the corpus and suggest it to the user as the completed phrase.
The following snippet gets the job done:

if(len(matching_terms)>0):
 frequencies = [item[1] for item in matching_terms]
 maximum_frequency = np.max(frequencies)
 highest_frequency_term = [item[0] for item in matching_terms if item[1] == \
maximum_frequency][0]
 combined_term = ' '.join(highest_frequency_term)

In this snippet, we started by defining frequencies, a list containing the
frequency of every n + 1-gram in our corpus that matches the search term.
Then, we used the numpy module’s max() function to find the highest of those
frequencies. We used another list comprehension to get the first n + 1-gram
that occurs with the highest frequency in the corpus, and finally we created
a combined_term, a string that puts together all of the words in that search
term, with spaces separating the words.

Finally, we can put all of our code together in a function, shown in
Listing 8-2.

def search_suggestion(search_term, text):
 token = nltk.word_tokenize(text)
 bigrams = ngrams(token,2)
 trigrams = ngrams(token,3)
 fourgrams = ngrams(token,4)
 fivegrams = ngrams(token,5)
 grams = [ngrams(token,2),ngrams(token,3),ngrams(token,4),ngrams(token,5)]
 split_term = tuple(search_term.split(' '))
 search_term_length = len(search_term.split(' '))
 counted_grams = Counter(grams[search_term_length-1])
 combined_term = 'No suggested searches'
 matching_terms = [element for element in list(counted_grams.items()) if \
element[0][:-1] == tuple(split_term)]
 if(len(matching_terms) > 0):
 frequencies = [item[1] for item in matching_terms]
 maximum_frequency = np.max(frequencies)

Language 163

 highest_frequency_term = [item[0] for item in matching_terms if item[1] == \
maximum_frequency][0]
 combined_term = ' '.join(highest_frequency_term)
 return(combined_term)

Listing 8-2: A function that provides search suggestions by taking an n-gram and returning the most likely
n + 1-gram that starts with the input n-gram

When we call our function, we pass an n-gram as the argument, and
the function returns an n + 1-gram. We call it as follows:

file = requests.get('http://www.bradfordtuckfield.com/shakespeare.txt')
file = file=file.text
text = file.replace('\n', '')
print(search_suggestion('life is a', text))

And you can see that the suggestion is life is a tedious, which is the
most common 4-gram that Shakespeare used that started with the words
life is a (tied with two other 4-grams). Shakespeare used this 4-gram only
once, in Cymbeline, when Imogen says, “I see a man’s life is a tedious one.”
In King Lear, Edgar tells Gloucester “Thy life is a miracle” (or “Thy life’s a
miracle,” depending on which text you use), so that 4-gram would also be a
valid completion of our phrase.

We can have some fun by trying a different corpus and seeing how the
results differ. Let’s use the corpus of Mark Twain’s collected works:

file = requests.get('http://www.bradfordtuckfield.com/marktwain.txt')
file = file=file.text
text = file.replace('\n', '')

With this new corpus, we can check for search suggestions again:

print(search_suggestion('life is a',text))

In this case, the completed phrase is life is a failure, indicating a
difference between the two text corpuses, and maybe also a difference
between the style and attitude of Shakespeare and those of Mark Twain.
You can also try other search terms. For example, I love is completed by
you if we use Mark Twain’s corpus, and thee if we use Shakespeare’s corpus,
showing a difference in style across the centuries and ocean, if not a dif-
ference in ideas. Try another corpus and some other phrases and see how
your phrases get completed. If you use a corpus written in another lan-
guage, you can do phrase completion for languages you don’t even speak
using the exact function we just wrote.

Summary
In this chapter, we discussed algorithms that can be used to work with
human language. We started with a space insertion algorithm that can cor-
rect incorrectly scanned texts, and we continued with a phrase completion

164 Chapter 8

algorithm that can add words to input phrases to match the content and
style of a text corpus. The approaches we took to these algorithms are simi-
lar to the approaches that work for other types of language algorithms,
including spell checkers and intent parsers.

In the next chapter, we’ll explore machine learning, a powerful and
growing field that every good algorithm-smith should be familiar with.
We’ll focus on a machine learning algorithm called decision trees, which are
simple, flexible, accurate, and interpretable models that can take you far on
your journey through algorithms and life.

Now that you understand the ideas behind
many fundamental algorithms, we can turn

to more advanced ideas. In this chapter, we
explore machine learning. Machine learning refers

to a broad range of methods, but they all share the
same goal: finding patterns in data and using them to
make predictions. We’ll discuss a method called deci-
sion trees and then build one that can predict a person’s
level of happiness based on some of their personal
characteristics.

Decision Trees
Decision trees are diagrams that have a branching structure resembling
a tree. We can use decision trees in the same way we use flowcharts—by
answering yes/no questions, we are guided along a path that leads to a

9
M A C H I N E L E A R N I N G

166 Chapter 9

final decision, prediction, or recommendation. The process of creating a
decision tree that leads to optimal decisions is a paradigmatic example of a
machine learning algorithm.

Let’s consider a real-world scenario in which we might use decision
trees. In emergency rooms, an important decision-maker must perform tri-
age for every newly admitted patient. Triage simply means assigning priority:
someone who is minutes from death but can be saved by a timely operation
will be admitted to treatment immediately, whereas someone who has a
paper cut or a mild case of sniffles will be asked to wait until more urgent
cases can be cleared up.

Triage is difficult because you have to make a reasonably accurate diag-
nosis with very little information or time. If a 50-year-old woman comes to
the emergency room and complains of bad chest pain, the person in charge
of triage has to decide whether her pain is more likely to be heartburn or a
heart attack. The thought process of a person who makes triage decisions is
necessarily complex. They’ll take into account a number of factors: the age
and sex of the patient, whether they are obese or a smoker, the symptoms
they report and the way they talk about them, the expression on their face,
how busy the hospital is and what other patients are waiting for treatment,
and factors that they may not even be consciously aware of. In order to
become good at triage, a person has to learn many patterns.

Understanding the way a triage professional makes a decision is not
easy. Figure 9-1 shows a hypothetical, totally made-up triage decision pro-
cess (not meant as medical advice—don’t try this at home!).

Patient complains of chest pain

Patient is male Patient is female

Not obese Obese
=

High risk

Smoker
=

High risk

Not a smoker

Not diabetic
=

Low risk

Diabetic
=

High risk

Younger than 45
=

Low risk

Older than 45
=

High risk

Figure 9-1: A simplified decision tree for heart attack triage

You can read this diagram from top to bottom. At the top, we can
see that the heart-attack diagnosis process begins with a patient report-
ing chest pain. After that, the process branches out depending on the sex
of the patient. If the patient is a man, the diagnosis process continues in
the left branch and we determine whether he is obese. If the patient is a
woman, the process continues in the right branch instead, and we deter-
mine whether she is a smoker. At each point in the process, we follow the
appropriate branch until we reach the bottom of the tree, where we find
the tree’s classification of whether the patient is at high risk or low risk
for a heart attack. This binary branching process resembles a tree whose

Machine Learning 167

trunk branches into smaller offshoots until reaching the ends of the far-
thest branches. Accordingly, the decision process illustrated in Figure 9-1 is
called a decision tree.

Every place you see text in Figure 9-1 is a node of the decision tree. A
node like “Not obese” is known as a branching node because there’s at least
one more branch to follow before we’re able to make a prediction. The “Not
diabetic = Low risk” node is a terminal node because if we’ve arrived there, we
don’t need to branch anymore and we know the decision tree’s final classifi-
cation (“Low risk”).

If we could design a thorough, well-researched decision tree that always
led to good triage decisions, it’s possible that someone without medical train-
ing could perform triage of heart attack patients, which would save every
emergency room in the world plenty of money because they would no longer
need to hire and train judicious, highly educated triage professionals. A suffi-
ciently good decision tree could even make it possible to replace human triage
professionals with robots, though whether that’s a good goal is debatable. A
good decision tree may even lead to better decisions than the average human
would make, since it could potentially eliminate the unconscious biases that
we fallible humans possess. (And in fact, this has already happened: in 1996
and 2002, separate teams of researchers published papers about their success
improving triage results for patients complaining of chest pain by using deci-
sion trees.)

The branching decision steps described in a decision tree constitute
an algorithm. Executing such an algorithm is very simple: just decide which
of the two branches you should be on at every node, and follow the branches
to the end. But don’t obey the suggestions of every decision tree you encoun-
ter. Remember that anyone can make a decision tree that prescribes any
conceivable decision process, even if it leads to wrong decisions. The hard
part of decision trees is not executing the decision tree algorithm but design-
ing the decision tree so that it leads to the best possible decisions. Creating
an optimal decision tree is an application of machine learning, though
merely following a decision tree is not. Let’s discuss the algorithm that creates
an optimal decision tree—an algorithm to generate an algorithm—and
proceed through the steps of the process to generate an accurate decision
tree.

Building a Decision Tree
Let’s build a decision tree that uses information about a person to predict
how happy they are. Finding the secret of happiness has preoccupied millions
of people for millennia, and social science researchers today spill plenty of
ink (and burn through plenty of research grants) pursuing the answers. If
we had a decision tree that could use a few pieces of information and reliably
predict how happy a person is, it would give us important clues about what
determines a person’s happiness, and maybe even some ideas about how to
achieve it ourselves. By the end of this chapter, you’ll know how to build such
a decision tree.

168 Chapter 9

Downloading Our Dataset
Machine learning algorithms find useful patterns in data, so they require
a good dataset. We’ll use data from the European Social Survey (ESS)
for our decision tree. You can download the files we’ll use from http://
bradfordtuckfield.com/ess.csv and http://bradfordtuckfield.com/variables.csv. (We
got our files originally from https://www.kaggle.com/pascalbliem/european
-social-survey-ess-8-ed21-201617, where they’re publicly available for free).
The ESS is a large-scale survey of adults across Europe that is conducted
every two years. It asks a wide variety of personal questions, including
religious affiliation, health status, social life, and level of happiness. The
files we’ll look at are stored in CSV format. The file extension .csv is short
for comma-separated values, and it’s a very common and simple way to store
datasets so that they can be opened by Microsoft Excel, LibreOffice Calc,
text editors, and some Python modules.

The file variables.csv contains a detailed description of each question
recorded in the survey. For example, in line 103 of variables.csv, we can see a
description of a variable called happy. This variable records a survey-taker’s
answer to the question “Taking all things together, how happy would you
say you are?” The answers to this question range from 1 (not happy at all)
to 10 (extremely happy). Look at the other variables in variables.csv to see
the variety of information available to us. For example, the variable sclmeet
records how often respondents meet socially with friends, relatives, or
colleagues. The variable health records subjective general health. The
variable rlgdgr records a subjective rating of how religious respondents
are, and so on.

After seeing our data, we can start to think of hypotheses related to
happiness predictions. We might reasonably suppose that people who
have active social lives and good health are happier than others. Other
variables—like gender, household size, and age—may be less easy to
hypothesize about.

Looking at the Data
Let’s start by reading in the data. Download the data from the link and save
it locally as ess.csv. Then we can use the pandas module to work with it, stor-
ing it in our Python session in a variable called ess:

import pandas as pd
ess = pd.read_csv('ess.csv')

Remember, in order to read the CSV file, you’ll have to be storing it
in the same place as you’re running Python from, or you’ll have to change
'ess.csv' in the previous snippet to reflect the exact filepath where you’re
storing the CSV file. We can use the shape attribute of a pandas dataframe to
see how many rows and columns are in our data:

print(ess.shape)

http://bradfordtuckfield.com/ess.csv
http://bradfordtuckfield.com/ess.csv
http://bradfordtuckfield.com/variables.csv
https://www.kaggle.com/pascalbliem/european-social-survey-ess-8-ed21-201617
https://www.kaggle.com/pascalbliem/european-social-survey-ess-8-ed21-201617

Machine Learning 169

The output should be (44387, 534), indicating that our dataset has
44,387 rows (one for each respondent) and 534 columns (one for each
question in the survey). We can look more closely at some of the columns
that interest us by using the pandas module’s slicing functions. For example,
here’s how we look at the first five answers to the “happy” question:

print(ess.loc[:,'happy'].head())

Our dataset, ess, has 534 columns, one for each question in the sur-
vey. For some purposes, we may want to work with all 534 columns at once.
Here, we want to look only at the happy column, not the other 533. That’s
why we used the loc() function. Here, the loc() function has sliced the vari-
able called happy from the pandas dataframe. In other words, it takes out only
that column and ignores the other 533. Then, the head() function shows us
the first five rows of that column. You can see that the first five responses
are 5, 5, 8, 8, and 5. We can do the same with the sclmeet variable:

print(ess.loc[:,'sclmeet'].head())

The result should be 6, 4, 4, 4, and 6. The happy responses and the sclmeet
responses will line up in order. For example, the 134th element of sclmeet
is a response given by the same person who gave the response in the 134th
element of happy.

The ESS staff strives to get a complete set of responses from every survey
participant. However, there are some cases where responses to some survey
questions are missing, sometimes because a participant either refuses to
answer or doesn’t know how to answer. Missing responses in the ESS dataset
are assigned codes that are much higher than the possible range of real
responses. For example, on a question that asks a respondent to choose
a number on a scale from 1 to 10, the ESS records a 77 response if the
respondent refuses to answer. For our analysis, we’ll consider only responses
that are complete, with no missing values for variables that interest us. We
can restrict the ess data so that it contains only full responses for the variables
we care about as follows:

ess = ess.loc[ess['sclmeet'] <= 10,:].copy()
ess = ess.loc[ess['rlgdgr'] <= 10,:].copy()
ess = ess.loc[ess['hhmmb'] <= 50,:].copy()
ess = ess.loc[ess['netusoft'] <= 5,:].copy()
ess = ess.loc[ess['agea'] <= 200,:].copy()
ess = ess.loc[ess['health'] <= 5,:].copy()
ess = ess.loc[ess['happy'] <= 10,:].copy()
ess = ess.loc[ess['eduyrs'] <= 100,:].copy().reset_index(drop=True)

Splitting Our Data
There are many ways we could use this data to explore the relationship
between someone’s social life and their happiness. One of the simplest

170 Chapter 9

approaches is a binary split: we compare the happiness levels of people
with highly active social lives to those of people with less active social lives
(Listing 9-1).

import numpy as np
social = list(ess.loc[:,'sclmeet'])
happy = list(ess.loc[:,'happy'])
low_social_happiness = [hap for soc,hap in zip(social,happy) if soc <= 5]
high_social_happiness = [hap for soc,hap in zip(social,happy) if soc > 5]

meanlower = np.mean(low_social_happiness)
meanhigher = np.mean(high_social_happiness)

Listing 9-1: Calculating the mean happiness levels of people with inactive and active
social lives

In Listing 9-1, we imported the numpy module in order to calculate means.
We defined two new variables, social and happy, by slicing them from the ess
dataframe. Then, we used list comprehensions to find the happiness levels of
all people with lower ratings of social activity (which we saved in the variable
low_social_happiness) and the happiness levels of all people with higher ratings
of social activity (which we saved in the variable high_social_happiness). Finally,
we calculated the mean happiness rating of unsocial people (meanlower) and
the mean happiness rating of highly social people (meanhigher). If you run
print(meanlower) and print(meanhigher), you should see that people who rated
themselves as highly social also rated themselves as slightly happier than their
less socially active peers: about 7.8 was the mean happiness level reported by
the socially active, and about 7.2 was the mean happiness level for the socially
inactive.

We can draw a simple diagram of what we just did, as in Figure 9-2.

All survey respondents

sclmeet <= 5 sclmeet > 5

Mean happiness: 7.2 Mean happiness: 7.8

Figure 9-2: A simple decision tree predicting happiness
based on frequency of social outings

This diagram of our simple binary split has already started to resemble
a decision tree. This is not a coincidence: making a binary split in a dataset
and comparing outcomes in each half is exactly the process at the heart of
the decision tree generation algorithm. In fact, Figure 9-2 can rightfully
be called a decision tree, albeit one that has only one branching node. We
can use Figure 9-2 as a very simple predictor of happiness: we find out how
often someone goes out socially. If their sclmeet value is 5 or less, then we
can predict that their happiness is 7.2. If it is higher than 5, then we can
predict that their happiness is 7.8. It will not be a perfect prediction, but it’s
a start and it’s more accurate than random guessing.

Machine Learning 171

We can try to use our decision tree to draw conclusions about the impact
of various characteristics and lifestyle choices. For example, we see that the
difference between low social happiness and high social happiness is about
0.6, and we conclude that increasing one’s level of social activity from low to
high could lead to a predicted increase in happiness of about 0.6 on a 10-point
scale. Of course, trying to draw these sorts of conclusions is fraught with diffi-
culties. It could be that social activity does not cause happiness, but rather that
happiness causes social activity; maybe happy people are more often in the
jovial mood that leads to ccalling their friends and arranging social meetings.
Disentangling correlation from causation is beyond the scope of this chapter,
but regardless of the direction of causation, our simple decision tree has at
least given us the fact of the association, which we can investigate further if we
care to. As cartoonist Randall Munroe put it, “Correlation doesn’t imply cau-
sation, but it does waggle its eyebrows suggestively and gesture furtively while
mouthing ‘look over there.’”

We know how to make a simple decision tree with two branches. Now
we just need to perfect how we create branches and then make many of
them for a better, more complete decision tree.

Smarter Splitting
When we compared the happiness levels of people with active versus inac-
tive social lives, we used 5 as our split point, saying that those who were rated
higher than 5 had an active social life and those who were rated at 5 or
below had an inactive social life. We chose 5 because it is a natural middle
point for ratings that go from 1 to 10. However, remember that our goal is
to build an accurate predictor of happiness. Rather than splitting based
on intuitions about what a natural midpoint is or what seems like an active
social life, it would be best to make our binary split in some place that leads
to the best possible accuracy.

In machine learning problems, there are a few different ways to mea-
sure accuracy. The most natural way is to find the sum of our errors. In our
case, the error that interests us is the difference between our prediction
of someone’s happiness rating and their actual happiness rating. If our
decision tree predicts that your happiness is 6 but it’s actually 8, then that
tree’s error for your rating is 2. If we add up the prediction errors for every
respondent in some group, we can get an error sum that measures the deci-
sion tree’s accuracy for predicting the happiness of members of that group.
The closer we can get our error sum to zero, the better our tree is (but
please see "The Problem of Overfitting" on page 179 for important cave-
ats). This snippet shows a simple way to find the error sum:

lowererrors = [abs(lowhappy - meanlower) for lowhappy in low_social_happiness]
highererrors = [abs(highhappy - meanhigher) for highhappy in high_social_happiness]

total_error = sum(lowererrors) + sum(highererrors)

This code takes the sum of all prediction errors for all respondents. It
defines lowererrors, a list containing the prediction error for each less social

172 Chapter 9

respondent, and highererrors, a list containing the prediction error for each
more social respondent. Notice that we took the absolute value so that we’re
adding only non-negative numbers to calculate the error sum. When we
run this code, we find that our total error is about 60224. This number is
much higher than zero, but if you consider that this is a sum of errors for
more than 40,000 respondents whose happiness we predicted using a tree
with only two branches, suddenly it doesn’t seem so bad.

We can try different split points to see if our error improves. For exam-
ple, we can classify everyone with a social rating higher than 4 as high social
and everyone with a social rating of 4 or lower as low social, and compare
the resulting error rates. Or we could use 6 as our split point instead. In
order to get the highest possible accuracy, we should check every possible
split point in order, and choose the split point that leads to the lowest pos-
sible error. Listing 9-2 contains a function that accomplishes this.

def get_splitpoint(allvalues,predictedvalues):
 lowest_error = float('inf')
 best_split = None
 best_lowermean = np.mean(predictedvalues)
 best_highermean = np.mean(predictedvalues)
 for pctl in range(0,100):
 split_candidate = np.percentile(allvalues, pctl)

 loweroutcomes = [outcome for value,outcome in zip(allvalues,predictedvalues) if \
value <= split_candidate]
 higheroutcomes = [outcome for value,outcome in zip(allvalues,predictedvalues) if \
value > split_candidate]

 if np.min([len(loweroutcomes),len(higheroutcomes)]) > 0:
 meanlower = np.mean(loweroutcomes)
 meanhigher = np.mean(higheroutcomes)

 lowererrors = [abs(outcome - meanlower) for outcome in loweroutcomes]
 highererrors = [abs(outcome - meanhigher) for outcome in higheroutcomes]

 total_error = sum(lowererrors) + sum(highererrors)

 if total_error < lowest_error:
 best_split = split_candidate
 lowest_error = total_error
 best_lowermean = meanlower
 best_highermean = meanhigher
 return(best_split,lowest_error,best_lowermean,best_highermean)

Listing 9-2: A function that finds the best point at which to split a variable for a branch point of a decision tree

In this function, we use a variable called pctl (short for percentile) to
loop through every number from 0 to 100. In the first line of the loop, we
define a new split_candidate variable, which is the pctl-th percentile of the
data. After that, we go through the same process we used in Listing 9-2.
We create a list of the happiness levels of people whose sclmeet values are
less than or equal to the split candidate, and the happiness levels of people

Machine Learning 173

whose sclmeet values are greater than the split candidate, and we check the
errors that come from using that split candidate. If the error sum from
using that split candidate is smaller than any of the error sums from using
any previous split candidate, then we redefine the best_split variable to be
equal to split_candidate. After the loop completes, the best_split variable
is equal to the split point that led to the highest accuracy.

We can run this function for any variable, as in the following example
where we run it for hhmmb, the variable recording the respondent’s number
of household members.

allvalues = list(ess.loc[:,'hhmmb'])
predictedvalues = list(ess.loc[:,'happy'])
print(get_splitpoint(allvalues,predictedvalues))

The output here shows us the correct split point as well as the predicted
happiness level for the groups defined by that split point:

(1.0, 60860.029867951016, 6.839403436723225, 7.620055170794695)

We interpret this output to mean that the best place to split the hhmmb
variable is at 1.0; we split the survey respondents into people who live alone
(one household member) and those who live with others (more than one
household member). We can also see the average happiness levels for those
two groups: about 6.84 and about 7.62, respectively.

Choosing Splitting Variables
For any variable we choose in our data, we can find the optimal place to
put our split point. However, remember that in a decision tree like the one
in Figure 9-1, we are not finding split points for only one variable. We split
men from women, the obese from the non-obese, smokers from nonsmok-
ers, and so on. A natural question is, how we should know which variable to
split at each branching node? We could reorder the nodes in Figure 9-1 so
that we split by weight first and sex second, or sex only on the left branch or
not at all. Deciding which variable to split at each branch point is a crucial
part of generating an optimal decision tree, so we should write code for
that part of the process.

We’ll use the same principle we used to get optimal split points to
decide the best split variable: the best way to split is the one that leads to
the smallest error. In order to determine that, we need to iterate over each
available variable and check whether splitting on that variable leads to the
smallest error. We then determine which variable leads to the split with the
lowest error. We can accomplish this by using Listing 9-3.

def getsplit(data,variables,outcome_variable):
 best_var = ''
 lowest_error = float('inf')
 best_split = None
 predictedvalues = list(data.loc[:,outcome_variable])

174 Chapter 9

 best_lowermean = -1
 best_highermean = -1
 for var in variables:
 allvalues = list(data.loc[:,var])
 splitted = get_splitpoint(allvalues,predictedvalues)

 if(splitted[1] < lowest_error):
 best_split = splitted[0]
 lowest_error = splitted[1]
 best_var = var
 best_lowermean = splitted[2]
 best_highermean = splitted[3]

 generated_tree = [[best_var,float('-inf'),best_split,best_lowermean],[best_var,best_split,\
 float('inf'),best_highermean]]

 return(generated_tree)

Listing 9-3: A function that iterates over every variable and finds the best variable to split on

In Listing 9-3, we’ve defined a function with a for loop that iterates over
all the variables in a list of variables. For each of those variables, it finds the
best split point by calling the get_splitpoint() function. Each variable, split
at its best split point, will lead to a certain error sum for our predictions. If
a particular variable has a lower error sum than any previous variable we
considered, we’ll store that variable name as best_var. After looping through
every variable name, it has found the variable with the lowest error sum,
stored in best_var. We can run this code on a set of variables other than
sclmeet as follows:

variables = ['rlgdgr','hhmmb','netusoft','agea','eduyrs']
outcome_variable = 'happy'
print(getsplit(ess,variables,outcome_variable))

In this case, we see the following output:

[['netusoft', -inf, 4.0, 7.041597337770383], ['netusoft', 4.0, inf,
7.73042471042471]]

Our getsplit() function has output a very simple “tree” in the form of a
nested list. This tree has only two branches. The first branch is represented
by the first nested list, and the second branch is represented by the second
nested list. Each element of both nested lists tells us something about their
respective branches. The first list tells us that we’re looking at a branch
based on a respondent’s value of netusoft (frequency of internet usage).
Specifically, the first branch corresponds to people whose value of netusoft
is between -inf and 4.0, where inf stands for infinity. In other words, people
in this branch report their internet usage as 4 or less on a 5-point scale. The
last element of each list shows an estimated happiness rating: about 7.0 for
those who are not highly active internet users. We can draw a plot of this
simple tree in Figure 9-3.

Machine Learning 175

All survey respondents

netusoft <= 4 netusoft > 4

Mean happiness: 7.0 Mean happiness: 7.7

Figure 9-3: The tree generated by our first call to the getsplit() function

Our function so far is telling us that people with relatively low internet
use report themselves as feeling less happy, with a mean happiness rating
of about 7.0, whereas people who report the highest level of internet use
report happiness levels at about 7.7 on average. Again, we need to be care-
ful about how we draw conclusions from this single fact: internet use may
not be a true driver of happiness, but it may instead be correlated to happi-
ness levels because of its strong correlations with age, wealth, health, edu-
cation, and other characteristics. Machine learning alone doesn’t usually
allow us to determine complex causal links with certainty, but, as it has with
the simple tree in Figure 9-3, it enables us to make accurate predictions.

Adding Depth
We’ve completed everything we need to make the best possible split at each
branch point and generate a tree with two branches. Next, we need to grow
the tree beyond just one branching node and two terminal nodes. Look at
Figure 9-1 and notice that it has more than two branches. It has what we
call a depth of three because there are up to three successive branches you
have to follow in order to get the final diagnosis. The final step of our deci-
sion tree generation process is to specify a depth that we want to reach, and
build new branches until we reach that depth. The way we accomplish this
is by making the additions to our getsplit() function shown in Listing 9-4.

maxdepth = 3
def getsplit(depth,data,variables,outcome_variable):
 --snip--
 generated_tree = [[best_var,float('-inf'),best_split,[]],[best_var,\
best_split,float('inf'),[]]]

 if depth < maxdepth:
 splitdata1=data.loc[data[best_var] <= best_split,:]
 splitdata2=data.loc[data[best_var] > best_split,:]
 if len(splitdata1.index) > 10 and len(splitdata2.index) > 10:
 generated_tree[0][3] = getsplit(depth + 1,splitdata1,variables,outcome_variable)
 generated_tree[1][3] = getsplit(depth + 1,splitdata2,variables,outcome_variable)
 else:
 depth = maxdepth + 1
 generated_tree[0][3] = best_lowermean
 generated_tree[1][3] = best_highermean

176 Chapter 9

 else:
 generated_tree[0][3] = best_lowermean
 generated_tree[1][3] = best_highermean
 return(generated_tree)

Listing 9-4: A function that can generate a tree of a specified depth

In this updated function, when we define the generated_tree variable,
we now add empty lists to it, instead of means. We insert means only in ter-
minal nodes, but if we want a tree that has greater depth, we need to insert
other branches within each branch (that’s what the empty lists will contain).
We also added an if statement with a long chunk of code at the end of the
function. If the depth of the current branch is less than the maximum
depth we want in a tree, this section will recursively call the get_split()
function again to fill in another branch inside it. This process continues
until the maximum depth is reached.

We can run this code to find the decision tree that leads to the lowest
error in happiness predictions for our dataset:

variables = ['rlgdgr','hhmmb','netusoft','agea','eduyrs']
outcome_variable = 'happy'
maxdepth = 2
print(getsplit(0,ess,variables,outcome_variable))

When we do so, we should get the following output, which represents a
tree with a depth of two:

[['netusoft', -inf, 4.0, [['hhmmb', -inf, 4.0, [['agea', -inf, 15.0, 8.035714285714286],
['agea', 15.0, inf, 6.997666564322997]]], ['hhmmb', 4.0, inf, [['eduyrs', -inf, 11.0,
7.263969171483622], ['eduyrs', 11.0, inf, 8.0]]]]], ['netusoft', 4.0, inf, [['hhmmb', -inf,
1.0, [['agea', -inf, 66.0, 7.135361428970136], ['agea', 66.0, inf, 7.621993127147766]]],
['hhmmb', 1.0, inf, [['rlgdgr', -inf, 5.0, 7.743893678160919], ['rlgdgr', 5.0, inf,
7.9873320537428025]]]]]]

Listing 9-5. A representation of a decision tree using nested lists

What you see here is a collection of lists nested within each other. These
nested lists represent our full decision tree, though it’s not as easy to read as
Figure 9-1. In each level of nesting, we find a variable name and its range,
just like we saw with the simple tree illustrated in Figure 9-3. The first level
of nesting shows us the same branch we found in Figure 9-3: a branch that
represents respondents whose value of netusoft was less than or equal to
4.0. The next list, nested within the first, begins with hhmmb, -inf, 4.0. This
is another branch of our decision tree that branches from the branch we just
examined, and consists of people whose self-reported household size is 4
or less. If we drew the portion of a decision tree that we’ve looked at in our
nested list so far, it would look like Figure 9-4.

We can continue to look at the nested lists to fill in more branches
of our decision tree. Lists that are nested within other lists correspond to
branches that are lower on the tree. A nested list branches from the list that
contains it. The terminal nodes, instead of containing more nested lists,
have an estimated happiness score.

Machine Learning 177

All survey respondents

Internet usage <= 4

Household members <= 4

Figure 9-4: A selection of branches from the decision tree

We’ve successfully created a decision tree that enables us to predict hap-
piness levels with relatively low error. You can examine the output to see the
relative determinants of happiness, and the happiness levels associated with
each branch.

There is more exploring we can do with decision trees and our dataset.
For example, we can try to run the same code but with a different or larger set
of variables. We can also create a tree with a different maximum depth. Here
is an example of running the code with a different variable list and depth:

variables = ['sclmeet','rlgdgr','hhmmb','netusoft','agea','eduyrs','health']
outcome_variable = 'happy'
maxdepth = 3
print(getsplit(0,ess,variables,outcome_variable))

When we run it with these parameters, we find a very different decision
tree. You can see the output here:

[['health', -inf, 2.0, [['sclmeet', -inf, 4.0, [['health', -inf, 1.0, [['rlgdgr', -inf,
9.0, 7.9919636617749825], ['rlgdgr', 9.0, inf, 8.713414634146341]]], ['health', 1.0, inf,
[['netusoft', -inf, 4.0, 7.195121951219512], ['netusoft', 4.0, inf, 7.565659008464329]]]]],
['sclmeet', 4.0, inf, [['eduyrs', -inf, 25.0, [['eduyrs', -inf, 8.0, 7.9411764705882355],
['eduyrs', 8.0, inf, 7.999169779991698]]], ['eduyrs', 25.0, inf, [['hhmmb', -inf, 1.0,
7.297872340425532], ['hhmmb', 1.0, inf, 7.9603174603174605]]]]]]], ['health', 2.0, inf,
[['sclmeet', -inf, 3.0, [['health', -inf, 3.0, [['sclmeet', -inf, 2.0, 6.049427365883062],
['sclmeet', 2.0, inf, 6.70435393258427]]], ['health', 3.0, inf, [['sclmeet', -inf, 1.0,
4.135036496350365], ['sclmeet', 1.0, inf, 5.407051282051282]]]]], ['sclmeet', 3.0, inf,
[['health', -inf, 4.0, [['rlgdgr', -inf, 9.0, 6.992227707173616], ['rlgdgr', 9.0, inf,
7.434662998624484]]], ['health', 4.0, inf, [['hhmmb', -inf, 1.0, 4.948717948717949], ['hhmmb',
1.0, inf, 6.132075471698113]]]]]]]]

In particular, notice that the first branch is split on the variable health
instead of the variable netusoft. Other branches at lower depths are split
at different points and for different variables. The flexibility of the deci-
sion tree method means that starting with the same dataset and the same
end goal, two researchers can potentially reach very different conclusions,
depending on the parameters they use and decisions they make about how
to work with the data. This is a common characteristic of machine learning
methods, and part of what makes them so difficult to master.

178 Chapter 9

Evaluating Our Decision Tree
In order to generate our decision tree, we compared error rates for each
potential split point and each potential splitting variable, and we always
chose the variable and split point that led to the lowest error rate for a
particular branch. Now that we’ve successfully generated a decision tree, it
makes sense to do similar error calculations, not just for a particular branch
but for the whole tree. Evaluating the error rate for the whole tree can give
us a sense of how well we’ve accomplished our prediction task, and how
well we’re likely to perform on future tasks (for example, future hospital
patients complaining of chest pain).

If you look at the decision tree output that we’ve generated so far, you’ll
notice that it’s a little hard to read all the nested lists, and there’s no natural
way to determine how happy we predict someone is without painstakingly
reading through the nested branches and finding the right terminal node.
It will be helpful for us to write code that can determine the predicted level
of happiness for a person based on what we know about them from their ESS
answers. The following function, get_prediction(), can accomplish this for us:

def get_prediction(observation,tree):
 j = 0
 keepgoing = True
 prediction = - 1
 while(keepgoing):
 j = j + 1
 variable_tocheck = tree[0][0]
 bound1 = tree[0][1]
 bound2 = tree[0][2]
 bound3 = tree[1][2]
 if observation.loc[variable_tocheck] < bound2:
 tree = tree[0][3]
 else:
 tree = tree[1][3]
 if isinstance(tree,float):
 keepgoing = False
 prediction = tree
 return(prediction)

Next, we can create a loop that goes through any portion of our dataset
and gets any tree’s happiness prediction for that portion. In this case, let’s
try a tree with a maximum depth of four:

predictions=[]
outcome_variable = 'happy'
maxdepth = 4
thetree = getsplit(0,ess,variables,outcome_variable)
for k in range(0,30):
 observation = ess.loc[k,:]
 predictions.append(get_prediction(observation,thetree))

print(predictions)

Machine Learning 179

This code just repeatedly calls the get_prediction() function and appends
the result to our predictions list. In this case, we made predictions only for the
first 30 observations.

Finally, we can check how these predictions compare to the actual hap-
piness ratings, to see what our total error rate is. Here, we’ll make predic-
tions for our entire dataset, and calculate the absolute differences between
our predictions and the recorded happiness values:

predictions = []

for k in range(0,len(ess.index)):
 observation = ess.loc[k,:]
 predictions.append(get_prediction(observation,thetree))

ess.loc[:,'predicted'] = predictions
errors = abs(ess.loc[:,'predicted'] - ess.loc[:,'happy'])

print(np.mean(errors))

When we run this, we find that the mean error made by predictions in
our decision tree is 1.369. This is higher than zero but lower than it might
be if we used a worse prediction method. Our decision tree seems to make
reasonably good predictions so far.

The Problem of Overfitting
You may have noticed one very important way that our method for evaluat-
ing our decision tree doesn’t resemble how predictions work in real life.
Remember what we did: we used the full set of survey respondents to gen-
erate our decision tree, and then we used that same set of respondents to
judge the accuracy of our tree’s predictions. But it’s redundant to predict
the happiness ratings of respondents who already took the survey—they
took the survey, so we already know their happiness ratings and don’t need
to predict them at all! This would be like getting a dataset of past heart
attack patients, meticulously studying their pretreatment symptoms, and
building a machine learning model that told us whether someone had a
heart attack last week. By now, it’s already quite clear whether that person
had a heart attack last week, and there are better ways to know than by
looking at their initial triage diagnosis data. It’s easy to predict the past,
but remember that true prediction is always about the future. As Wharton
professor Joseph Simmons put it, “History is about what happened. Science
is about what happens next.”

You may think that this isn’t a serious problem. After all, if we can make
a decision tree that works well with last week’s heart attack patients, it’s
reasonable to suppose that it will work well with next week’s heart attack
patients. This is true to some extent. However, there is a danger that if we
aren’t careful, we can encounter a common, dastardly peril called overfitting,
the tendency of machine learning models to achieve very low error rates on

180 Chapter 9

the datasets used to create them (like data from the past) and then unex-
pectedly high error rates on other data (like the data that actually matters,
from the future).

Consider the example of heart attack predictions. If we observe an
emergency room for several days, maybe, by coincidence, every admitted
patient who is wearing a blue shirt is suffering from a heart attack and
every admitted patient who is wearing a green shirt is healthy. A decision
tree model that included shirt color in its prediction variables would pick up
this pattern and use it as a branching variable because it has such high diag-
nostic accuracy in our observations. However, if we then use that decision
tree to predict heart attacks in another hospital, or for some future day, we’ll
find that our predictions are often wrong, as many people in green shirts also
suffer heart attacks and many people in blue shirts don’t. The observations
we used to build our decision tree are called in-sample observations, and the
observations that we then test our model on, which are not part of our deci-
sion tree generation process, are called out-of-sample observations. Overfitting
means that by zealously seeking low error rates in predictions of our in-sam-
ple observations, we have caused our decision tree model to have inordinately
high error rates when predicting our out-of-sample observations.

Overfitting is a serious issue in all applications of machine learning,
and it trips up even the best machine learning practitioners. To avoid it,
we’ll take an important step that will make our decision tree creation pro-
cess better resemble the real-life prediction scenario.

Remember that real-life prediction is about the future, but when we
build our decision tree we necessarily have data only from the past. We can’t
possibly get data from the future, so we’ll split our dataset into two subsets: a
training set, which we’ll use only to build our decision tree, and a test set, which
we’ll use only to check the accuracy of our decision tree. Our test set is from
the past, just like the rest of our data, but we treat it as if it’s the future; we
don’t use it to create our decision tree (as if it hasn’t happened yet), but we do
use it—only after completely building the decision tree—to test the accuracy
of our decision tree (as if we got it later in the future).

By doing this simple training/test split, we’ve made our decision
tree generation process resemble the real-life problem of predicting the
unknown future; the test set is like a simulated future. The error rate that we
find on the test set gives us a reasonable expectation of the error rate we’ll
get from the actual future. We’ll know that we’re guilty of overfitting if the
error on our training set is very low and the error on our test set is very high.

We can define training and test sets as follows:

import numpy as np
np.random.seed(518)
ess_shuffled = ess.reindex(np.random.permutation(ess.index)).reset_index(drop = True)
training_data = ess_shuffled.loc[0:37000,:]
test_data = ess_shuffled.loc[37001:,:].reset_index(drop = True)

In this snippet, we used the numpy module to shuffle the data—in
other words, keeping all the data but moving the rows randomly. We

Machine Learning 181

accomplished this with the reindex() method of the pandas module. The
reindexing is done with a random shuffling of the row numbers, which we
get by using the numpy module’s permutation capability. After shuffling the
dataset, we select the first 37,000 shuffled rows as a training dataset, and the
remainder of the rows as a test dataset. The command np.random.seed(518) is
not necessary, but if you run it you’ll ensure that you’ll get the same pseudo-
random results that we show here.

After defining our training and test data, we generate a decision tree
using only the training data:

thetree = getsplit(0,training_data,variables,outcome_variable)

Finally, we check the average error rate on the test data, which wasn’t
used to train our decision tree:

predictions = []
for k in range(0,len(test_data.index)):
 observation = test_data.loc[k,:]
 predictions.append(get_prediction(observation,thetree))

test_data.loc[:,'predicted'] = predictions
errors = abs(test_data.loc[:,'predicted'] - test_data.loc[:,'happy'])
print(np.mean(errors))

We find that our mean error rate on the test data is 1.371. This is just a
hair higher than the 1.369 error rate we found when we used the whole data-
set for both training and testing. This indicates that our model doesn’t suffer
from overfitting: it’s good at predicting the past and almost exactly as good
at predicting the future. Quite often, instead of getting this good news, we
get bad news—that our model is worse than we thought it was—but it’s good
to get this news because we can still make improvements before we start
using our model in a real scenario. In such cases, before our model is ready
to be deployed in real life, we’ll need to make improvements to it so that its
error rate on the test set is minimized.

Improvements and Refinements
You may find that you’ve created a decision tree that has lower accuracy
than you would like. For example, you might have worse accuracy than you
should because you’re guilty of overfitting. Many of the strategies for deal-
ing with overfitting issues boil down to some kind of simplification, since
simple machine learning models are less likely to suffer from overfitting
than are complex models.

The first and easiest way to simplify our decision tree models is to limit
their maximum depth; since depth is a variable that we can redefine in one
short line, this is easy to do. To determine the right depth, we have to check
the error rates on out-of-sample data for different depths. If the depth is
too high, it’s likely to cause high error because of overfitting. If the depth
is too low, it is likely to cause high error because of underfitting. You can
think of underfitting as something like the mirror image of overfitting.

182 Chapter 9

Overfitting consists of attempting to learn from patterns that are arbitrary
or irrelevant—in other words, learning “too much” from noise in our train-
ing data, like whether someone is wearing a green shirt. Underfitting con-
sists of failing to learn enough—creating models that miss crucial patterns
in the data, like whether someone is obese or uses tobacco.

Overfitting tends to result from models that have too many variables or
too much depth, whereas underfitting tends to result from models that have
too few variables or too little depth. Just as with many situations in algorithm
design, the right place to be is a happy medium between too high and too
low. Choosing the right parameters for a machine learning model, includ-
ing the depth of a decision tree, is often referred to as tuning, because fixing
the tightness of a string on a guitar or violin also relies on finding a happy
medium between a pitch that’s too high and one that’s too low.

Another way to simplify our decision tree model is to do what’s called
pruning. For this, we grow a decision tree to its full depth and then find
branches that we can remove from the tree without increasing our error
rate by much.

Another refinement worth mentioning is using different measures to
choose the right split point and the right splitting variable. In this chapter,
we introduced the idea of using the classification error sum to decide where
to put the split point; the right split point is one that minimizes our error
sum. But there are other ways to decide on the right split point for a deci-
sion tree, including Gini impurity, entropy, information gain, and variance
reduction. In practice, these other measures, especially Gini impurity and
information gain, are almost always used rather than classification error
rate, because some mathematical properties make them better in many
cases. Experiment with different ways to choose a split point and splitting
variable to find one that seems to perform the best for your data and your
decision problem.

Everything we do in machine learning is meant to enable us to
make accurate predictions on new data. When you’re trying to improve
a machine learning model, you can always judge whether an action is
worthwhile by checking how much it improves your error rate on test
data. And feel free to be creative to find improvements—anything that
improves your error rate on test data is probably worth trying.

Random Forests
Decision trees are useful and valuable, but they are not regarded as the
best machine learning method by professionals. This is in part because
of their reputation for overfitting and relatively high error rates, and in
part because of the invention of a method called random forests, which
has become popular recently and provides an unequivocal performance
improvement over decision trees.

As its name suggests, a random forest model consists of a collection
of decision tree models. Each decision tree in the random forest depends
on some randomization. Using randomization, we get a diverse forest with

Machine Learning 183

many trees instead of a forest that is just one tree repeated over and over.
The randomization occurs in two places. First, the training dataset is ran-
domized: each tree is built considering only a subset of the training set,
which is randomly selected and will be different for every tree. (The test
set is randomly selected at the beginning of the process, but it’s not reran-
domized or reselected for every tree.) Second, the variables used to build
the tree are randomized: only a subset of the full set of variables is used for
each tree, and the subset could be different every time as well.

After building a collection of these different, randomized trees, we
have a whole random forest. To make a prediction about a particular obser-
vation, we have to find what each of these different decision trees predicts,
and then take the average of the prediction for every individual decision
tree. Since the decision trees are randomized in both their data and their
variables, taking an average of all of them helps avoid the problem of over-
fitting and often leads to more accurate predictions.

Our code in this chapter creates decision trees “from scratch,” by
directly manipulating datasets and lists and loops. When you work with
decision trees and random forests in the future, you can rely on exist-
ing Python modules that do much of that heavy lifting for you. But don’t
let these modules become a crutch: if you understand every step of these
important algorithms well enough to code them from scratch yourself, you
can be much more effective in your machine learning efforts.

Summary
This chapter introduced machine learning and explored decision tree
learning, a fundamental, simple, and useful machine learning method.
Decision trees constitute a type of algorithm, and the generation of a deci-
sion tree is itself an algorithm, so this chapter contained an algorithm for
generating an algorithm. By learning decision trees and the fundamen-
tal ideas of random forests, you have taken a big step toward becoming a
machine learning expert. The knowledge you’ve gained in this chapter
will be a solid foundation for other machine learning algorithms you may
choose to learn, including advanced ones like neural networks. All machine
learning methods attempt the type of task we tried here: prediction based
on patterns in a dataset. In the next chapter, we explore artificial intelli-
gence, one of the most advanced undertakings of our adventure.

Throughout this book, we’ve noted the
capacity of the human mind to do remark-

able things, whether it be catching baseballs,
proofreading texts, or deciding whether some-

one is having a heart attack. We explored the ways we
can translate these abilities into algorithms, and the
challenges therein. In this chapter, we face these challenges once more
and build an algorithm for artificial intelligence (AI). The AI algorithm
we’ll discuss will be applicable not only to one narrow task, like catching a
baseball, but to a wide range of competitive scenarios. This broad applica-
bility is what excites people about artificial intelligence—just as a human
can learn new skills throughout life, the best AI can apply itself to domains
it’s never seen before with only minimal reconfiguration.

The term artificial intelligence has an aura about it that can make people
think that it’s mysterious and highly advanced. Some believe that AI enables
computers to think, feel, and experience conscious thought in the same way
that humans do; whether computers will ever be able to do so is an open,
difficult question that is far beyond the scope of this chapter. The AI that

10
A R T I F I C I A L I N T E L L I G E N C E

186 Chapter 10

we’ll build is much simpler and will be capable of playing a game well, but
not of writing sincerely felt love poems or feeling despondency or desire (as
far as I can tell!).

Our AI will be able to play dots and boxes, a simple but nontrivial game
played worldwide. We’ll start by drawing the game board. Then we’ll build
functions to keep score as games are in progress. Next, we’ll generate game
trees that represent all possible combinations of moves that can be played
in a given game. Finally, we’ll introduce the minimax algorithm, an elegant
way to implement AI in just a few lines.

La Pipopipette
Dots and boxes was invented by the French mathematician Édouard Lucas,
who named it la pipopipette. It starts with a lattice, or grid of points, like the
one shown in Figure 10-1.

Figure 10-1: A lattice, which we can use as a game board for dots and boxes

The lattice is usually a rectangle but can be any shape. Two players
play against each other, taking turns. On each turn, a player is allowed to
draw a line segment that connects two adjacent points in the lattice. If they
use different colors to draw their line segments, we can see who has drawn
what, though that’s not required. As they proceed through the game, line
segments fill the lattice until every possible segment connecting adjacent
points is drawn. You can see an example game in progress in Figure 10-2.

A player’s goal in dots and boxes is to draw line segments that complete
squares. In Figure 10-2, you can see that in the bottom left of the game
board, one square has been completed. Whichever player drew the line seg-
ment that completed that square will have earned one point from doing so.

Artificial Intelligence 187

In the top-right section, you can see that three sides of another square have
been drawn. It’s player one’s turn, and if they use their turn to draw a line
segment between (4,4) and (4,3), they’ll earn one point for that. If instead
they draw another line segment, like a line segment from (4,1) to (5,1),
then they’ll give they’ll give player two a chance to finish the square and
earn a point. Players only earn points for completing the smallest possible
squares on the board: those with a side length of 1. The player who’s earned
the most points when the lattice is completely filled in with line segments
wins the game. There are some variations on the game, including different
board shapes and more advanced rules, but the simple AI we’ll build in this
chapter will work with the rules we’ve described here.

Figure 10-2: A dots and boxes game in progress

Drawing the Board
Though not strictly necessary for our algorithmic purposes, drawing the
board can make it easier to visualize the ideas we’re discussing. A very simple
plotting function can make an n×n lattice by looping over x and y coordinates
and using the plot() function in Python’s matplotlib module:

import matplotlib.pyplot as plt
from matplotlib import collections as mc
def drawlattice(n,name):
 for i in range(1,n + 1):
 for j in range(1,n + 1):
 plt.plot(i,j,'o',c = 'black')
 plt.savefig(name)

188 Chapter 10

In this code, n represents the size of each side of our lattice, and we use
the name argument for the filepath where we want to save the output. The
c = 'black' argument specifies the color of the points in our lattice. We can
create a 5×5 black lattice and save it with the following command:

drawlattice(5,'lattice.png')

This is exactly the command that was used to create Figure 10-1.

Representing Games
Since a game of dots and boxes consists of successively drawn line seg-
ments, we can record a game as a list of ordered lines. Just as we did in
previous chapters, we can represent a line (one move) as a list consisting
of two ordered pairs (the ends of the line segment). For example, we can
represent the line between (1,2) and (1,1) as this list:

[(1,2),(1,1)]

A game will be an ordered list of such lines, like the following example:

game = [[(1,2),(1,1)],[(3,3),(4,3)],[(1,5),(2,5)],[(1,2),(2,2)],[(2,2),(2,1)],[(1,1),(2,1)], \
[(3,4),(3,3)],[(3,4),(4,4)]]

This game is the one illustrated in Figure 10-2. We can tell it must still
be in progress, since not all of the possible line segments have been drawn
to fill in the lattice.

We can add to our drawlattice() function to create a drawgame() function.
This function should draw the points of the game board as well as all line
segments that have been drawn between them in the game so far. The func-
tion in Listing 10-1 will do the trick.

def drawgame(n,name,game):
 colors2 = []
 for k in range(0,len(game)):
 if k%2 == 0:
 colors2.append('red')
 else:
 colors2.append('blue')
 lc = mc.LineCollection(game, colors = colors2, linewidths = 2)
 fig, ax = plt.subplots()
 for i in range(1,n + 1):
 for j in range(1,n + 1):
 plt.plot(i,j,'o',c = 'black')
 ax.add_collection(lc)
 ax.autoscale()
 ax.margins(0.1)
 plt.savefig(name)

Listing 10-1: A function that draws a game board for dots and boxes

Artificial Intelligence 189

This function takes n and name as arguments, just as drawlattice() did. It
also includes exactly the same nested loops we used to draw lattice points in
drawlattice(). The first addition you can see is the colors2 list, which starts
out empty, and we fill it up with the colors we assign to the line segments
that we’ll draw. In dots and boxes, turns alternate between the two play-
ers, so we’ll alternate the colors of the line segments that we assign to the
players—in this case, red for the first player and blue for the second player.
The for loop after the definition of the colors2 list fills it up with alternating
instances of 'red' and 'blue' until there are as many color assignments as
there are moves in the game. The other lines of code we’ve added create a
collection of lines out of our game moves and draw them, in the same way
we’ve drawn collections of lines in previous chapters.

N O T E This book is not printed in color, and it’s not totally necessary to have any colors
when you play dots and boxes. But the code for colors is included anyway so you
can see them when you run the code at home.

We can call our drawgame() function in one line as follows:

drawgame(5,'gameinprogress.png',game)

This is exactly how we created Figure 10-2.

Scoring Games
Next, we’ll create a function that can keep score for a dots and boxes game.
We start with a function that can take any given game and find the com-
pleted squares that have been drawn, and then we create a function that
will calculate the score. Our function will count completed squares by iter-
ating over every line segment in the game. If a line is a horizontal line, we
determine whether it is the top of a completely drawn square by checking
whether the parallel line below it has also been drawn in the game, and
also whether the left and right sides of the square have been drawn. The
function in Listing 10-2 accomplishes this:

def squarefinder(game):
 countofsquares = 0
 for line in game:
 parallel = False
 left=False
 right=False
 if line[0][1]==line[1][1]:
 if [(line[0][0],line[0][1]-1),(line[1][0],line[1][1] - 1)] in game:
 parallel=True
 if [(line[0][0],line[0][1]),(line[1][0]-1,line[1][1] - 1)] in game:
 left=True
 if [(line[0][0]+1,line[0][1]),(line[1][0],line[1][1] - 1)] in game:
 right=True

190 Chapter 10

 if parallel and left and right:
 countofsquares += 1
 return(countofsquares)

Listing 10-2: A function that counts the number of squares that appear in a dots and boxes game board

You can see that the function returns the value of countofsquares, which
we initialized with a 0 value at the beginning of the function. The function’s
for loop iterates over every line segment in a game. We start out assuming
that neither the parallel line below this line nor the left and right lines that
would connect these parallel lines have been played in the game so far. If a
given line is a horizontal line, we check for the existence of those parallel,
left, and right lines. If all four lines of the square we’ve checked are listed
in the game, then we increment the countofsquares variable by 1. In this way,
countofsquares records the total number of squares that have been com-
pletely drawn in the game so far.

Now we can write a short function to calculate the score of a game. The
score will be recorded as a list with two elements, like [2,1]. The first ele-
ment of the score list represents the score of the first player, and the second
element represents the score of the second player. Listing 10-3 has our scor-
ing function.

def score(game):
 score = [0,0]
 progress = []
 squares = 0
 for line in game:
 progress.append(line)
 newsquares = squarefinder(progress)
 if newsquares > squares:
 if len(progress)%2 == 0:
 score[1] = score[1] + 1
 else:
 score[0] = score[0] + 1
 squares=newsquares
 return(score)

Listing 10-3: A function that finds the score of an in-progress dots and boxes game

Our scoring function proceeds through every line segment in a game
in order, and considers the partial game consisting of every line drawn
up to that turn. If the total number of squares drawn in a partial game is
higher than the number of squares that had been drawn one turn previ-
ously, then we know that the player whose turn it was scored that turn, and
we increment their score by 1. You can run print(score(game)) to see the
score of the game illustrated in Figure 10-2.

Game Trees and How to Win a Game
Now that you’ve seen how to draw and score dots and boxes, let’s consider
how to win it. You may not be particularly interested in dots and boxes as a

Artificial Intelligence 191

game, but the way to win at it is the same as the way to win at chess or check-
ers or tic-tac-toe, and an algorithm for winning all those games can give
you a new way to think about every competitive situation you encounter in
life. The essence of a winning strategy is simply to systematically analyze the
future consequences of our current actions, and to choose the action that
will lead to the best possible future. This may sound tautological, but the
way we accomplish it will rely on careful, systematic analysis; this can take
the form of a tree, similar to the trees we constructed in Chapter 9.

Consider the possible future outcomes illustrated in Figure 10-3.

I draw a line from (4,4) to (4,3).

Current game is shown in Figure 10-2
I’m behind 0–1.

I draw a line from (1,3) to (2,3).

Opponent draws a line
from (1,3) to (2,3)

The game is tied 1–1. The game is tied 1–1. I’m behind 0–2. I’m behind 0–1.

Opponent draws a line
from (3,1) to (4,1).

Opponent draws a line
from (4,4) to (4,3).

Opponent draws a line
from (3,1) to (4,1).

Figure 10-3: A tree of some possible continuations of our game

We start at the top of the tree, considering the current situation: we’re
behind 0–1 and it’s our turn to move. One move we consider is the move
in the left branch: drawing a line from (4,4) to (4,3). This move will com-
plete a square and give us one point. No matter what move our opponent
makes (see the possibilities listed in the two branches in the bottom left
of Figure 10-3), the game will be tied after our opponent’s next move. By
contrast, if we use our current turn to draw a line from (1,3) to (2,3), as
described in Figure 10-3’s right branch, our opponent then has a choice
between drawing a line from (4,4) to (4,3) and completing a square and
earning a point, or drawing another line like one connecting (3,1) and
(4,1), and leaving the score at 0–1.

Considering these possibilities, within two moves the game could be
at any of three different scores: 1–1, 0–2, or 0–1. In this tree, it’s clear that
we should choose the left branch, because every possibility that grows from
that branch leads to a better score for us than do the possibilities growing
from the right branch. This style of reasoning is the essence of how our AI
will decide on the best move. It will build a game tree, check the outcomes
at all terminal nodes of the game tree, and then use simple recursive rea-
soning to decide what move to make, in light of the possible futures that
decision will open up.

You probably noticed that the game tree in Figure 10-3 is woefully
incomplete. It appears that there are only two possible moves (the left
branch and the right branch), and that after each of those possible moves,
our opponent has only two possible moves. Of course, this is incorrect;
there are many choices available to both players. Remember that they can

192 Chapter 10

connect any two adjacent points in the lattice. The true game tree rep-
resenting this moment in our game would have many branches, one for
each possible move for each player. This is true at every level of the tree:
not only do I have many moves to choose from, but so does my opponent,
and each of those moves will have its own branch at every point in the tree
where it’s playable. Only near the end of the game, when nearly all the
line segments have already been drawn, will the number of possible moves
shrink to two and one. We didn’t draw every branch of the game tree in
Figure 10-3, because there’s not enough space on the page—we only had
space to include a couple of moves, just to illustrate the idea of the game
tree and our thought process.

You can imagine a game tree extending to any possible depth—we
should consider not only our move and the opponent’s response, but
also our response to that response, and our opponent’s response to
that response, and so on as far as we care to continue the tree-building.

Building Our Tree
The game trees we’re building here are different in important ways from
the decision trees of Chapter 9. The most important difference is the goal:
decision trees enable classifications and predictions based on characteristics,
while game trees simply describe every possible future. Since the goal is dif-
ferent, so will be the way we build it. Remember that in Chapter 9 we had to
select a variable and a split point to decide every branch in the tree. Here,
knowing what branches will come next is easy, since there will be exactly one
branch for every possible move. All we need to do is generate a list of every
possible move in our game. We can do this with a couple of nested loops that
consider every possible connection between points in our lattice:

allpossible = []

gamesize = 5

for i in range(1,gamesize + 1):
 for j in range(2,gamesize + 1):
 allpossible.append([(i,j),(i,j - 1)])

for i in range(1,gamesize):
 for j in range(1,gamesize + 1):
 allpossible.append([(i,j),(i + 1,j)])

This snippet starts by defining an empty list, called allpossible, and a
gamesize variable, which is the length of each side of our lattice. Then, we
have two loops. The first is meant to add vertical moves to our list of pos-
sible moves. Notice that for every possible value of i and j, this first loop
appends the move represented by [(i,j),(i,j - 1)] to our list of possible
moves. This will always be a vertical line. Our second loop is similar, but
for every possible combination of i and j, it appends the horizontal move
[(i,j),(i + 1,j)] to our list of possible moves. At the end, our allpossible
list will be populated with every possible move.

Artificial Intelligence 193

If you think about a game that’s in progress, like the game illustrated
in Figure 10-2, you’ll realize that not every move is always possible. If a
player has already played a particular move during a game, no player can
play that same move again for the rest of the game. We’ll need a way to
remove all moves that have already been played from the list of all possible
moves, resulting in a list of all possible moves remaining for any particular
in-progress game. This is easy enough:

for move in allpossible:
 if move in game:
 allpossible.remove(move)

As you can see, we iterate over every move in our list of possible moves,
and if it’s already been played, we remove it from our list. In the end, we have
a list of only moves that are possible in this particular game. You can run
print(allpossible) to see all of these moves and check that they’re correct.

Now that we have a list of every possible move, we can construct the
game tree. We’ll record a game tree as a nested list of moves. Remember
that each move can be recorded as a list of ordered pairs, like [(4,4),(4,3)],
the first move in the left branch of Figure 10-3. If we wanted to express a
tree that consisted of only the top two moves in Figure 10-3, we could write
it as follows:

simple_tree = [[(4,4),(4,3)],[(1,3),(2,3)]]

This tree contains only two moves: the ones we’re considering playing
in the current state of the game in Figure 10-3. If we want to include the
opponent’s potential responses, we’ll have to add another layer of nest-
ing. We do this by putting each move in a list together with its children, the
moves that branch out from the original move. Let’s start by adding empty
lists representing a move’s children:

simple_tree_with_children = [[[(4,4),(4,3)],[]],[[(1,3),(2,3)],[]]]

Take a moment to make sure you see all the nesting we’ve done. Each
move is a list itself, as well as the first element of a list that will also contain
the list’s children. Then, all of those lists together are stored in a master list
that is our full tree.

We can express the entire game tree from Figure 10-3, including the
opponent’s responses, with this nested list structure:

full_tree = [[[(4,4),(4,3)],[[(1,3),(2,3)],[(3,1),(4,1)]]],[[(1,3),(2,3)],[[(4,4),(4,3)],\
[(3,1),(4,1)]]]]

The square brackets quickly get unwieldy, but we need the nested
structure so we can correctly keep track of which moves are which moves’
children.

194 Chapter 10

Instead of writing out game trees manually, we can build a function
that will create them for us. It will take our list of possible moves as an input
and then append each move to the tree (Listing 10-4).

def generate_tree(possible_moves,depth,maxdepth):
 tree = []
 for move in possible_moves:
 move_profile = [move]
 if depth < maxdepth:
 possible_moves2 = possible_moves.copy()
 possible_moves2.remove(move)
 move_profile.append(generate_tree(possible_moves2,depth + 1,maxdepth))
 tree.append(move_profile)
 return(tree)

Listing 10-4: A function that creates a game tree of a specified depth

This function, generate_tree(), starts out by defining an empty list called
tree. Then, it iterates over every possible move. For each move, it creates
a move_profile. At first, the move_profile consists only of the move itself. But
for branches that are not yet at the lowest depth of the tree, we need
to add those moves’ children. We add children recursively: we call the
generate_tree() function again, but now we have removed one move from
the possible_moves list. Finally, we append the move_profile list to the tree.

We can call this function simply, with a couple of lines:

allpossible = [[(4,4),(4,3)],[(4,1),(5,1)]]
thetree = generate_tree(allpossible,0,1)
print(thetree)

When we run this, we see the following tree:

[[[(4, 4), (4, 3)], [[[(4, 1), (5, 1)]]]], [[(4, 1), (5, 1)], [[[(4, 4), (4, 3)]]]]]

Next, we’ll make two additions to make our tree more useful: the first
records the game score along with the moves, and the second appends a
blank list to keep a place for children (Listing 10-5).

def generate_tree(possible_moves,depth,maxdepth,game_so_far):
 tree = []
 for move in possible_moves:
 move_profile = [move]
 game2 = game_so_far.copy()
 game2.append(move)
 move_profile.append(score(game2))
 if depth < maxdepth:
 possible_moves2 = possible_moves.copy()
 possible_moves2.remove(move)
 move_profile.append(generate_tree(possible_moves2,depth + 1,maxdepth,game2))

Artificial Intelligence 195

 else:
 move_profile.append([])
 tree.append(move_profile)
 return(tree)

Listing 10-5: A function that generates a game tree, including child moves and game scores

We can call this again as follows:

allpossible = [[(4,4),(4,3)],[(4,1),(5,1)]]
thetree = generate_tree(allpossible,0,1,[])
print(thetree)

We see the following results:

[[[(4, 4), (4, 3)], [0, 0], [[[(4, 1), (5, 1)], [0, 0], []]]], [[(4, 1), (5, 1)], [0, 0], \
[[[(4, 4), (4, 3)], [0, 0], []]]]]

You can see that each entry in this tree is a full move profile, consisting
of a move (like [(4,4),(4,3)]), a score (like [0,0]), and a (sometimes empty)
list of children.

Winning a Game
We’re finally ready to create a function that can play dots and boxes well.
Before we write the code, let’s consider the principles behind it. Specifically,
how is it that we, as humans, play dots and boxes well? More generally, how
is it that we go about winning any strategic game (like chess or tic-tac-toe)?
Every game has unique rules and features, but there’s a general way to
choose a winning strategy based on an analysis of the game tree.

The algorithm we’ll use for choosing a winning strategy is called mini-
max (a combination of the words minimum and maximum), so called because
while we’re trying to maximize our score in the game, our opponent is try-
ing to minimize our score. The constant fight between our maximization
and our opponent’s minimization is what we have to strategically consider
as we’re choosing the right move.

Let’s look closely at the simple game tree in Figure 10-3. In theory, a
game tree can grow to be enormous, with a huge depth and many branches
at each depth. But any game tree, big or small, consists of the same compo-
nents: a lot of little nested branches.

At the point we’re considering in Figure 10-3, we have two choices.
Figure 10-4 shows them.

I draw a line from (4,4) to (4,3).
What future does this lead to?

Current game is shown in Figure 10-2.
I’m behind 0–1.

I draw a line from (1,3) to (2,3).
What future does this lead to?

Figure 10-4: Considering which of two moves to choose

196 Chapter 10

Our goal is to maximize our score. To decide between these two moves,
we need to know what they will lead to, what future each move brings to
pass. To know that, we need to travel farther down the game tree and look
at all the possible consequences. Let’s start with the move on the right
(Figure 10-5).

Opponent draws a line
from (4,4) to (4,3).

I draw a line from (1,3) to (2,3).
What future does this lead to?
Answer: if our opponent plays
well, we’ll be behind 0–2.

Opponent draws a line
from (3,1) to (4,1).

I’m behind 0–2. I’m behind 0–1.

Figure 10-5: Assuming that an opponent will try to
minimize your score, you can find what future you
expect a move to lead to.

This move could bring about either of two possible futures: we could
be behind 0–1 at the end of our tree, or we could be behind 0–2. If our
opponent is playing well, they will want to maximize their own score, which
is the same as minimizing our score. If our opponent wants to minimize
our score, they’ll choose the move that will put us behind 0–2. By contrast,
consider our other option, the left branch of Figure 10-5, whose possible
futures we consider in Figure 10-6.

Opponent draws a line
from (1,3) to (2,3).

I draw a line from (4,4) to (4,3).
What future does this lead to?
Answer: if our opponent plays
well, we’ll be tied 1–1.

Opponent draws a line
from (3,1) to (4,1).

The game is tied 1–1. The game is tied 1–1.

Figure 10-6: No matter what the opponent’s choice,
we expect the same outcome.

In this case, both of our opponent’s choices lead to a score of 1–1.
Again assuming that our opponent will be acting to minimize our score,
we say that this move leads to a future of the game being tied 1–1.

Now we know what future will be brought about by the two moves.
Figure 10-7 notes these futures in an updated version of Figure 10-4.

Because we know exactly what future to expect from each of our two
moves, we can do a maximization: the move that leads to the maximum,
the best score, is the move on the left, so we choose that one.

Artificial Intelligence 197

Current game shown in Figure 10-2.
I’m behind 0–1.

I draw a line from (4,4) to (4,3).
What future does this lead to?
Answer: the game will be tied 1–1.

I draw a line from (1,3) to (2,3).
What future does this lead to?
Answer: I’ll be behind 0–2.

Figure 10-7: Using Figures 10-5 and 10-6, we can reason about
the futures that each move will lead to and then compare them.

The reasoning process we just went through is known as the minimax
algorithm. Our decision in the present is about maximizing our score. But
in order to maximize our score, we have to consider all the ways that our
opponent will try to minimize our score. So the best choice is a maximum
of minima.

Note that minimax goes through time in reverse. The game proceeds
forward in time, from the present to the future. But in a way, the minimax
algorithm proceeds backward in time, because we consider the scores of
possible far futures first and then work our way back to the present to find
the current choice that will lead to the best future. In the context of our
game tree, the minimax code starts at the top of the tree. It calls itself
recursively on each of its child branches. The child branches, in turn, call
minimax recursively on their own child branches. This recursive calling
continues all the way to the terminal nodes, where, instead of calling mini-
max again, we calculate the game score for each node. So we’re calculating
the game score for the terminal nodes first; we’re starting our game score
calculations in the far future. These scores are then passed back to their
parent nodes so that the parent nodes can calculate the best moves and
corresponding score for their part of the game. These scores and moves
are passed back up through the game tree until arriving back at the very
top, the parent node, which represents the present.

Listing 10-6 has a function that accomplishes minimax.

import numpy as np
def minimax(max_or_min,tree):
 allscores = []
 for move_profile in tree:
 if move_profile[2] == []:
 allscores.append(move_profile[1][0] - move_profile[1][1])
 else:
 move,score=minimax((-1) * max_or_min,move_profile[2])
 allscores.append(score)
 newlist = [score * max_or_min for score in allscores]
 bestscore = max(newlist)
 bestmove = np.argmax(newlist)
 return(bestmove,max_or_min * bestscore)

Listing 10-6: A function that uses minimax to find the best move in a game tree

198 Chapter 10

Our minimax() function is relatively short. Most of it is a for loop that
iterates over every move profile in our tree. If the move profile has no child
moves, then we calculate the score associated with that move as the differ-
ence between our squares and our opponent’s squares. If the move profile
does have child moves, then we call minimax() on each child to get the score
associated with each move. Then all we need to do is find the move associ-
ated with the maximum score.

We can call our minimax() function to find the best move to play in any
turn in any in-progress game. Let’s make sure everything is defined cor-
rectly before we call minimax(). First, let’s define the game, and get all pos-
sible moves, using exactly the same code we used before:

allpossible = []

game = [[(1,2),(1,1)],[(3,3),(4,3)],[(1,5),(2,5)],[(1,2),(2,2)],[(2,2),(2,1)],[(1,1),(2,1)],\
[(3,4),(3,3)],[(3,4),(4,4)]]

gamesize = 5

for i in range(1,gamesize + 1):
 for j in range(2,gamesize + 1):
 allpossible.append([(i,j),(i,j - 1)])

for i in range(1,gamesize):
 for j in range(1,gamesize + 1):
 allpossible.append([(i,j),(i + 1,j)])

for move in allpossible:
 if move in game:
 allpossible.remove(move)

Next, we’ll generate a complete game tree that extends to a depth of
three levels:

thetree = generate_tree(allpossible,0,3,game)

Now that we have our game tree, we can call our minimax() function:

move,score = minimax(1,thetree)

And finally, we can check the best move as follows:

print(thetree[move][0])

We see that the best move is [(4, 4), (4, 3)], the move that completes a
square and earns us a point. Our AI can play dots and boxes, and choose the
best moves! You can try other game board sizes, or different game scenarios,
or different tree depths, and check whether our implementation of the mini-
max algorithm is able to perform well. In a sequel to this book, we’ll discuss
how to ensure that your AI doesn’t become simultaneously self-aware and
evil and decide to overthrow humanity.

Artificial Intelligence 199

Adding Enhancements
Now that you can perform minimax, you can use it for any game you hap-
pen to be playing. Or you can apply it to life decisions, thinking through
the future and maximizing every minimum possibility. (The structure
of the minimax algorithm will be the same for any competitive scenario,
but in order to use our minimax code for a different game, we would have
to write new code for the generation of the game tree, the enumeration of
every possible move, and the calculation of game scores.)

The AI we’ve built here has very modest capabilities. It’s only able to
play one game, with one simple version of the rules. Depending on what
processor you use to run this code, it can probably look only a few moves
forward without taking an unreasonable amount of time (a few minutes or
more) for each decision. It’s natural to want to enhance our AI to make it
better.

One thing we’ll definitely want to improve is our AI’s speed. It’s slow
because of the large size of the game trees it has to work through. One of
the main ways to improve the performance of minimax is by pruning the
game tree. Pruning, as you might remember from Chapter 9, is exactly what
it sounds like: we remove branches from the tree if we consider them excep-
tionally poor or if they represent a duplicate of another branch. Pruning is
not trivial to implement and requires learning yet more algorithms to do it
well. One example is the alpha–beta pruning algorithm, which will stop check-
ing particular sub-branches if they are certainly worse than sub-branches
elsewhere in the tree.

Another natural improvement to our AI would be to enable it to work
with different rules or different games. For example, a commonly used rule
in dots and boxes is that after earning a point, a player gets to draw another
line. Sometimes this results in a cascade, in which one player completes many
boxes in a row in a single turn. This simple change, which was called “make
it, take it” on my elementary school playground, changes the game’s strategic
considerations and will require some changes to our code. You can also try to
implement an AI that plays dots and boxes on a lattice that has a cross shape
or some other exotic shape that could influence strategy. The beauty of mini-
max is that it doesn’t require subtle strategic understanding; it requires only
an ability to look ahead, and that’s why a coder who isn’t good at chess can
write an implementation of minimax that can beat them at chess.

There are some powerful methods that go beyond the scope of this
chapter that can improve the performance of computer AI. These methods
include reinforcement learning (where a chess program, for example, plays
against itself to get better), Monte Carlo methods (where a shogi program
generates random future shogi games to help understand possibilities), and
neural networks (where a tic-tac-toe program predicts what its opponent
will do using a machine learning method similar to what we discussed in
Chapter 9). These methods are powerful and remarkable, but they mostly
just make our tree search and minimax algorithms more efficient; tree
search and minimax remain the humble workhorse core of strategic AI.

200 Chapter 10

Summary
In this chapter, we discussed artificial intelligence. It’s a term surrounded
by hype, but when you see that it takes only about a dozen lines to write
a minimax() function, AI suddenly doesn’t seem so mysterious and intimi-
dating. But of course, to prepare to write those lines, we had to learn the
game rules, draw the game board, construct game trees, and configure
our minimax() function to calculate game outcomes correctly. Not to men-
tion the rest of the journey of this book, in which we carefully constructed
algorithms that prepared us to think algorithmically and to write this func-
tion when we needed it.

The next chapter suggests next steps for ambitious algorithmicists who
want to continue their journey to the edges of the world of algorithms and
push out to further frontiers.

You’ve made it through the dark forest of
searching and sorting, across the frozen

river of esoteric mathematics, over the
treacherous mountain passes of gradient ascent,

past the swamp of geometric despair, and you’ve con-
quered the dragon of slow runtimes. Congratulations.
If you wish, you’re free to return to your comfortable home in a land free
from algorithms. This chapter is for those who instead wish to continue
the adventure after they close this book.

No single book can contain everything about algorithms. There is too
much to know, and more is being discovered all the time. This chapter is
about three things: doing more with algorithms, using them in better and
faster ways, and solving their deepest mysteries.

In this chapter, we’ll build a simple chatbot that can talk to us about
previous chapters of the book. Then we’ll discuss some of the hardest
problems in the world and how we might make progress toward crafting

11
F O R G I N G A H E A D

202 Chapter 11

algorithms to solve them. We’ll conclude by discussing some of the deepest
mysteries of the world of algorithms, including detailed instructions on how
to win a million dollars with advanced algorithmic theory.

Doing More with Algorithms
The 10 previous chapters of this book covered algorithms that can perform
a variety of tasks in many fields. But algorithms can do even more than we’ve
seen here. If you wish to continue your adventure with algorithms, you should
explore other fields and the important algorithms associated with them.

For example, the many algorithms for information compression can store
a long book in a coded form that is only a fraction of the size of the original,
and they can compress a complex photograph or film file into a manageable
size with either minimal or no loss of quality.

Our ability to communicate securely online, including confidently pass-
ing our credit card information to third parties, relies on cryptographic
algorithms. Cryptography is great fun to study because it comes with a
thrilling history of adventurers, spies, betrayals, and triumphant nerds
who broke codes to win wars.

Recently, innovative algorithms have been developed to perform paral-
lel distributed computing. Instead of performing one operation at a time,
millions of times, distributed computing algorithms split up a dataset into
many little parts and then send them to different computers, which per-
form the needed operation simultaneously and return the results, to be
recompiled and presented as the final output. By working on all parts of the
data concurrently instead of consecutively, parallel computing saves a huge
amount of time. This is extremely useful for applications in machine learn-
ing, where there’s a need to process datasets that are extremely large or to
perform a large number of simple computations simultaneously.

For decades, people have been excited about the potential of quantum
computing. Quantum computers, if we can engineer them to work properly,
have the potential to perform extremely difficult calculations (including the
calculations needed to break state-of-the-art cryptography) in a tiny frac-
tion of the time required on today’s nonquantum supercomputers. Since
quantum computers are built with different architecture than standard com-
puters, it’s possible to design new algorithms that take advantage of their
different physical properties to perform tasks with extra speed. For now, this
is more or less only an academic concern, since quantum computers are not
yet in a state where they are used for practical purposes. But if the technol-
ogy ever matures, quantum algorithms could become extremely important.

When you learn about algorithms in these or many other fields, you
will not be starting from scratch. By mastering the algorithms of this book,
you’ve come to grasp they are, how they tend to function, and how to write
code for them. Learning your first algorithm may have felt quite difficult,
but learning your 50th or 200th will be much easier, since your brain will
be used to the general patterns of how they are constructed and how to
think about them.

Forging Ahead 203

To prove that you can now understand and code algorithms, we’ll
explore a few algorithms that work together to provide the functionality of
a chatbot. If you can pick up how they work and how to write code for them
in the short introduction provided here, then you’re on your way to being
able to pick up how any algorithm works in any field.

Building a Chatbot
Let’s build a simple chatbot that can answer questions about the table of
contents of this book. We’ll start by importing modules that will be impor-
tant later:

import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from scipy import spatial
import numpy as np
import nltk, string

The next step we’ll take to create our chatbot is text normalization, the
process of converting natural language text to standardized substrings; it
enables easy comparison between superficially different texts. We want our
bot to understand that America and america refer to the same thing, that
regeneration expresses the same idea as regenerate (albeit a different part of
speech), that centuries is the plural of century, and that hello; is not essentially
different from hello. We want our chatbot to treat in the same way words
that are from the same root, unless there is some reason not to.

Say we have the following query:

query = 'I want to learn about geometry algorithms.'

The first thing we can do is convert all characters to lowercase. Python’s
built-in lower() method accomplishes this:

print(query.lower())

This outputs i want to learn about geometry algorithms.. Another thing
we can do is remove punctuation. To do that, first we’ll create a Python
object called a dictionary :

remove_punctuation_map = dict((ord(char), None) for char in string.punctuation)

This snippet creates a dictionary that maps every standard punctuation
mark to the Python object None, and it stores the dictionary in a variable
called remove_punctuation_map. We then use this dictionary to remove punc-
tuation like so:

print(query.lower().translate(remove_punctuation_map))

Here, we’ve used the translate() method to take all the punctuation
marks we find in the query and replace them with nothing—or in other

204 Chapter 11

words, remove the punctuation marks. The output we get is the same as
we saw before—i want to learn about geometry algorithms—but without the
period at the end. Next, we can perform tokenization, which converts a text
string to a list of coherent substrings:

print(nltk.word_tokenize(query.lower().translate(remove_punctuation_map)))

We used the nltk’s tokenization function to accomplish this, yielding
this output: ['i', 'want', 'to', 'learn', 'about', 'geometry', 'algorithms'].

Now we can do what’s called stemming. In English, we use the words
jump, jumps, jumping, jumped, and other derived forms that are all different
but share a stem: the verb jump. We don’t want our chatbot to be distracted
by small differences in word derivation; we want to consider a sentence
about jumping to be comparable to a sentence about a jumper, even though
they are technically different words. Stemming removes the ends of derived
words to convert them into standardized word stems. A function for stem-
ming is available in Python’s nltk module, and we can use this function with
a list comprehension as follows:

stemmer = nltk.stem.porter.PorterStemmer()
def stem_tokens(tokens):
 return [stemmer.stem(item) for item in tokens]

In this snippet, we’ve created a function called stem_tokens(). It takes a
list of tokens and calls nltk’s stemmer.stem() function to turn them into stems:

print(stem_tokens(nltk.word_tokenize(query.lower().translate(remove_punctuation_map))))

The output is ['i', 'want', 'to', 'learn', 'about', 'geometri', 'algorithm'].
Our stemmer has converted algorithms to algorithm and geometry to geometri. It
has replaced a word with what it regards as its stem: a singular word or word
portion that will make text comparisons easier. Finally, we put our normal-
ization steps together in one function, normalize():

def normalize(text):
 return stem_tokens(nltk.word_tokenize(text.lower().translate(remove_punctuation_map)))

Text Vectorization
Now you’re ready to learn how to convert texts to numeric vectors. It’s easier
to make quantitative comparisons between numbers and vectors than
between words, and we’ll need to make quantitative comparisons to make
our chatbot work.

We’ll use a simple method called TFIDF, or term frequency-inverse docu-
ment frequency, which converts documents into numeric vectors. Each docu-
ment vector has one element for each term in a corpus. Each element is the
product of the term frequency for a given term (a raw count of the number

Forging Ahead 205

of times the term occurs in a particular document) and the inverse docu-
ment frequency for a given term (a logarithm of a reciprocal of what pro-
portion of documents the term appears in).

For example, imagine that we are creating TFIDF vectors for biogra-
phies of US presidents. In the context of creating TFIDF vectors, we’ll refer
to each biography as a document. In the biography of Abraham Lincoln,
the word representative will probably appear at least once, since he served in
the Illinois House of Representatives and the US House of Representatives.
If representative appears three times in the biography, then we say its term
frequency is 3. More than a dozen presidents have served in the US House
of Representatives, so maybe about 20 out of 44 total presidential biog-
raphies contain the term representative. We can then calculate the inverse
document frequency as:

20
44

log() = 0.788

The final value we’re looking for is the term frequency times the inverse
document frequency: 3 × 0.788 = 2.365. Now consider the term Gettysburg. It
may appear twice in Lincoln’s biography but never in any other, so the term
frequency will be 2 and the inverse document frequency will be the following:

1
44

log() = 3.784

The vector element associated with Gettysburg will be the term frequency
times the inverse document frequency, which is 2 × 3.784 = 7.568. The TFIDF
value for each term should reflect its importance in a document. Soon, this
will be important for our chatbot’s ability to determine user intent.

We don’t have to calculate TFIDF manually. We can use a function
from the scikit-learn module:

vctrz = TfidfVectorizer(ngram_range = (1, 1),tokenizer = normalize, stop_words = 'english')

This line has created a TfidfVectorizer() function, which is capable of
creating TFIDF vectors from sets of documents. To create the vectorizer,
we have to specify an ngram_range. This tells the vectorizer what to treat as
a term. We specified (1, 1), meaning that our vectorizer will treat only
1-grams (individual words) as terms. If we had specified (1, 3), it would
treat 1-grams (single words), 2-grams (two-word phrases), and 3-grams
(three-word phrases) as terms and create a TFIDF element for each of
them. We also specified a tokenizer, for which we specified the normalize()
function we created before. Finally, we have to specify stop_words, the words
that we want to filter out because they’re not informative. In English, stop
words include the, and, of, and other extremely common words. By speci-
fying stop_words = 'english', we’re telling our vectorizer to filter out the
built-in set of English stop words and vectorize only less common, more
informative words.

206 Chapter 11

Now, let’s configure what our chatbot will be able to talk about. Here,
it will be able to talk about the chapters of this book, so we’ll create a list
that contains very simple descriptions of each chapter. In this context, each
string will be one of our documents.

alldocuments = ['Chapter 1. The algorithmic approach to problem solving, including Galileo and
baseball.',
 'Chapter 2. Algorithms in history, including magic squares, Russian peasant
multiplication, and Egyptian methods.',
 'Chapter 3. Optimization, including maximization, minimization, and the gradient
ascent algorithm.',
 'Chapter 4. Sorting and searching, including merge sort, and algorithm runtime.',
 'Chapter 5. Pure math, including algorithms for continued fractions and random
numbers and other mathematical ideas.',
 'Chapter 6. More advanced optimization, including simulated annealing and how to
use it to solve the traveling salesman problem.',
 'Chapter 7. Geometry, the postmaster problem, and Voronoi triangulations.',
 'Chapter 8. Language, including how to insert spaces and predict phrase
completions.',
 'Chapter 9. Machine learning, focused on decision trees and how to predict
happiness and heart attacks.',
 'Chapter 10. Artificial intelligence, and using the minimax algorithm to win at
dots and boxes.',
 'Chapter 11. Where to go and what to study next, and how to build a chatbot.']

We’ll continue by fitting our TFIDF vectorizer to these chapter descrip-
tions, which will do the document processing to get us ready to create
TFIDF vectors whenever we wish. We don’t have to do this manually, since
there’s a fit() method defined in the scikit-learn module:

vctrz.fit(alldocuments)

Now, we’ll create TFIDF vectors for our chapter descriptions and for a
new query asking for a chapter about sorting and searching:

query = 'I want to read about how to search for items.'
tfidf_reports = vctrz.transform(alldocuments).todense()
tfidf_question = vctrz.transform([query]).todense()

Our new query is a natural English language text about searching. The
next two lines use the built-in translate() and todense() methods to create
the TFIDF vectors for the chapter descriptions and the query.

Now we have converted our chapter descriptions and query into
numeric TFIDF vectors. Our simple chatbot will work by comparing the
query TFIDF vector to the chapter description TFIDF vectors, concluding
that the chapter the user is looking for is the one whose description vector
most closely matches the query vector.

Vector Similarity
We’ll decide whether any two vectors are similar with a method called cosine
similarity. If you’ve studied a lot of geometry, you’ll know that for any two

Forging Ahead 207

numeric vectors, we can calculate the angle between them. The rules of
geometry enable us to calculate angles between vectors not only in two and
three dimensions, but also in four, five, or any number of dimensions. If the
vectors are very similar to each other, the angle between them will be quite
small. If the vectors are very different, the angle will be large. It’s strange
to think that we can compare English language texts by finding the “angle”
between them, but this is precisely why we created our numeric TFIDF
vectors—so that we can use numeric tools like angle comparison for data
that doesn’t start out numeric.

In practice, it’s easier to calculate the cosine of the angle between two
vectors than it is to calculate the angle itself. This is not a problem, since
we can conclude that if the cosine of the angle between two vectors is large,
then the angle itself is small and vice versa. In Python the scipy module con-
tains a submodule called spatial, which contains a function for calculating
the cosines of angles between vectors. We can use the functionality in spatial
to calculate cosines between each chapter description vector and query vec-
tor, by using a list comprehension:

row_similarities = [1 - spatial.distance.cosine(tfidf_reports[x],tfidf_question) for x in \
range(len(tfidf_reports))]

When we print out the row_similarities variable, we see the following
vector:

[0.0, 0.0, 0.0, 0.3393118510377361, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

In this case, only the fourth element is greater than zero, meaning that
only the fourth chapter description vector has any angular proximity to our
query vector. In general, we can automatically find which row has the high-
est cosine similarity:

print(alldocuments[np.argmax(row_similarities)])

This gives us the chapter the chatbot thinks we’re looking for:

Chapter 4. Sorting and searching, including merge sort, and algorithm runtime.

Listing 11-1 puts the chatbot’s simple functionality into a function.

def chatbot(query,allreports):
 clf = TfidfVectorizer(ngram_range = (1, 1),tokenizer = normalize, stop_words = 'english')
 clf.fit(allreports)
 tfidf_reports = clf.transform(allreports).todense()
 tfidf_question = clf.transform([query]).todense()
 row_similarities = [1 - spatial.distance.cosine(tfidf_reports[x],tfidf_question) for x in \
range(len(tfidf_reports))]
 return(allreports[np.argmax(row_similarities)])

Listing 11-1: A simple chatbot function that takes a query and returns the document that’s most similar to it

208 Chapter 11

Listing 11-1 does not contain anything new; all of it is code that we’ve
seen before. Now we can call the chatbot with a query about where to find
something:

print(chatbot('Please tell me which chapter I can go to if I want to read about mathematics
algorithms.',alldocuments))

The output will tell us to go to Chapter 5:

Chapter 5. Pure math, including algorithms for continued fractions and random numbers and other
mathematical ideas.

Now that you’ve seen how the whole chatbot works, you can understand
why we needed to do the normalization and vectorization. By normaliz-
ing and stemming words, we can make sure that the term mathematics will
prompt the bot to return the Chapter 5 description, even though that exact
word does not appear in it. By vectorizing, we enable the cosine similarity
metric that tells us which chapter description is the best match.

We’ve completed our chatbot, which required stitching together a few
different smallish algorithms (algorithms for normalizing, stemming, and
numerically vectorizing text; an algorithm for calculating cosines of angles
between vectors; and the overarching algorithm of providing chatbot answers
based on query/document vector similarity). You may have noticed that
we didn’t manually do many of the calculations—the actual calculation of
TFIDF or cosines was done by modules that we imported. In practice, you
often don’t need to truly understand the guts of an algorithm in order to
import it and use it in your programs. This can be a blessing, in that it can
accelerate our work and put amazingly sophisticated tools at our command
when we need them. It can also be a curse because it causes people to misuse
algorithms they don’t understand; for example, an article in Wired maga-
zine claimed that the misapplication of a particular financial algorithm (a
method to use Gaussian copula functions to predict risks) was responsible
for “kill[ing] Wall Street” and “swallow[ing] up trillions of dollars” and was a
major cause of the Great Recession (https://www.wired.com/2009/02/wp-quant/).
I encourage you to study the deep theory of algorithms even when the ease
of importing a Python module makes such study seem unnecessary; it can
always make you a better academic or practitioner.

This is perhaps the simplest possible chatbot, and it answers only ques-
tions related to chapters in this book. You could add so many enhance-
ments to improve it: make the chapter descriptions more specific and thus
more likely to match a broad range of queries; find a vectorization method
that performs better than TFIDF; add more documents so that it could
answer more queries. But although our chatbot is not the most advanced,
we can be proud of it because it’s ours and because we built it ourselves. If
you can comfortably build a chatbot, you can consider yourself a competent
designer and implementer of algorithms—congratulations for this culmi-
nating achievement in your journey through this book.

https://www.wired.com/2009/02/wp-quant/

Forging Ahead 209

Becoming Better and Faster
You can do more with algorithms than you could when you started the
book. But every serious adventurer will also want to be able to do things
better and faster.

Many things can make you better at designing and implementing algo-
rithms. Think about how each algorithm we implemented in this book
relied on some understanding of a non-algorithmic topic. Our baseball-
catching algorithm relies on an understanding of physics and even a little
psychology. Russian peasant multiplication relies on an understanding of
exponents and on deep properties of arithmetic, including binary notation.
Chapter 7’s geometry algorithms rely on insights into how points, lines, and
triangles relate and fit together. The deeper your understanding of the field
you’re trying to write algorithms for, the easier it will be for you to design
and implement algorithms. Thus, the way to get better at algorithms is easy:
just understand everything perfectly.

Another natural next step for a budding algorithmic adventurer is to
polish and repolish your raw programming skills. Remember that Chapter 8
introduced list comprehensions as a Pythonic tool that enables us to write
language algorithms that are concise and perform well. As you learn more
programming languages and master their features, you’ll be able to write
code that’s better organized, more compact, and more powerful. Even
skilled programmers can benefit from going back to the basics and master-
ing fundamentals until they’re second nature. Many talented programmers
write disorganized, badly documented, or inefficient code and think they
can get away with it because it “works.” But remember that code doesn’t usu-
ally succeed on its own—it is almost always part of a broader program, some
team effort or grand business project that relies on cooperation between
people and over time. Because of this, even soft skills like planning, oral
and written communication, negotiation, and team management can
improve your chances of success in the world of algorithms.

If you enjoy creating perfectly optimal algorithms and pushing them to
their highest efficiency, you’re in luck. For a huge number of computer sci-
ence problems, there is no known efficient algorithm that runs much faster
than brute force. In the next section, we sketch a few of these problems and
discuss what’s so hard about them. If you, dear adventurer, create an algo-
rithm that solves any of these problems quickly, you could have fame, fortune,
and worldwide gratitude for the rest of your life. What are we waiting for?
Let’s look at some of these challenges for the most courageous among us.

Algorithms for the Ambitious
Let’s consider a relatively simple problem related to chess. Chess is played
on an 8×8 board, and two opponents take turns moving differently styled
pieces. One piece, the queen, can move any number of squares along the
row, column, or diagonal where it is placed. Usually, a player possesses only
one queen, but it’s possible for a player to have up to nine queens in a stan-
dard chess game. If a player has more than one queen, it may be that two or

210 Chapter 11

more queens “attack” each other—in other words, they are placed on the
same row, column, or diagonal. The eight queens puzzle challenges us to place
eight queens on a standard chessboard such that no pair of queens is on the
same row, column, or diagonal. Figure 11-1 shows one solution to the eight
queens puzzle.

Figure 11-1: A solution to the eight queens puzzle (source: Wikimedia Commons)

None of the queens on this board attacks any of the other queens. The
easiest possible way to solve the eight queens puzzle is to simply memorize
a solution, like the one in Figure 11-1, and repeat it whenever you’re asked
to solve the puzzle. However, a couple of extra twists to the puzzle make
memorization infeasible. One twist is to increase the number of queens and
the size of the board. The n queens problem asks us to place n queens on an
n×n chessboard such that no queen attacks any of the others; n could be any
natural number, no matter how high. Another twist is the n queens comple-
tion problem: your opponent starts by placing some of the queens, maybe
in places that will make it difficult for you to place the rest, and you have
to place the rest of the n queens so that none attack any others. Can you
design an algorithm that will run very quickly and solve this problem? If so,
you could earn a million dollars (see “Solving the Deepest Mysteries” on
page 212).

Figure 11-1 may remind you of sudoku, since it involves checking for
the uniqueness of symbols in rows and columns. In sudoku, the goal is to
fill in the numbers 1 through 9 such that each row, column, and 3×3 block
contains exactly one instance of each number (Figure 11-2). Sudoku first
gained popularity in Japan, and indeed a sudoku puzzle is reminiscent of
the Japanese magic squares we explored in Chapter 2.

Forging Ahead 211

5

6

8

4

7

9

6

8

1

8

4

9

6

2

1

8

5

3

9

2

6

8

7

3

1

6

9

3 7

Figure 11-2: An uncompleted sudoku grid (source: Wikimedia Commons)

It’s an interesting exercise to think about how to write an algorithm
that could solve sudoku puzzles. The simplest, slowest possible algorithm
would rely on brute force: just try every possible combination of numbers
and repeatedly check whether they constitute a correct solution, repeat-
ing until the solution is found. This would work, but it lacks elegance, and
it could take an extremely long time. It doesn’t seem intuitively right that
filling in 81 numbers in a grid according to rules that anyone could eas-
ily follow should stretch the limits of our world’s computing resources.
More sophisticated solutions could rely on logic to cut down the required
runtime.

The n queens completion problem and sudoku share another important
trait: solutions are very easy to check. That is, if I show you a chessboard with
queens on it, it will probably take you only a few moments to check whether
you’re looking at a solution to the n queens completion problem, and if I
show you a grid of 81 numbers, you can easily tell whether you’re looking at
a correct sudoku solution. The ease with which we can check solutions is, tragi-
cally, not matched by the ease of generating solutions—it can take hours to
solve a difficult sudoku puzzle that then takes only seconds to verify. This gen-
eration/verification effort mismatch is common in many areas of life: I can
tell with very little effort whether a meal is delicious, but creating a wonder-
ful meal takes a much greater investment of time and resources. Similarly,
I can check whether a painting is beautiful in much less time than it takes
to create a beautiful painting, and I can verify whether a plane can fly with
much less effort than it takes to build a flying plane.

Problems that are difficult to solve algorithmically but whose solutions
are easy to verify are extremely important in theoretical computer science,

212 Chapter 11

and they are the deepest and most pressing mystery in the field. Especially
courageous adventurers may dare to plunge into these mysteries—but
beware the perils awaiting you there.

Solving the Deepest Mysteries
When we say that sudoku solutions are easy to verify but hard to generate,
what we mean in more formal terms is that solutions can be verified in poly-
nomial time; in other words, the number of steps required for solution veri-
fication is some polynomial function of the size of the sudoku board. If you
think back to Chapter 4 and our discussion of runtimes, you’ll remember
that even though polynomials like x2 and x3 can grow fast, they are quite
slow compared to exponential functions like ex. If we can verify an algorith-
mic solution to a problem in polynomial time, we regard that verification as
easy, but if the generation of a solution takes exponential time, we regard it
as hard.

There’s a formal name for the class of problems whose solutions can
be verified in polynomial time: the NP complexity class. (Here, NP stands for
nondeterministic polynomial time, for reasons that would require a long digres-
sion into theoretical computer science that would not be useful here.) NP
is one of the two most fundamental complexity classes in computer science.
The second is called P, for polynomial time. The P complexity class of
problems contains all problems whose solutions can be found by an algo-
rithm that runs in polynomial time. For P problems, we can find full solu-
tions in polynomial time, while for NP problems, we can verify solutions in
polynomial time, but it may take exponential time to find those solutions.

We know that sudoku is an NP problem—it is easy to verify a proposed
sudoku solution in polynomial time. Is sudoku also a P problem? That is, is
there an algorithm that can solve any sudoku puzzle in polynomial time?
No one has ever found one, and no one appears to be close to finding one,
but we don’t feel certain that it’s impossible.

The list of problems that we know are in NP is extremely long. Some
versions of the traveling salesman problem are in NP. So is the optimal solu-
tion to the Rubik’s cube, as well as important mathematical problems like
integer linear programming. Just as with sudoku, we wonder whether these
problems are also in P—can we find solutions for them in polynomial time?
One way to phrase this question is, Does P = NP?

In 2000, the Clay Mathematics Institute published a list called the
Millennium Prize Problems. It announced that any person who published a
verified solution to one of the problems would receive a million dollars. The
list was meant to be seven of the world’s most important problems related
to mathematics, and the question of whether P = NP is one of them; no one
has claimed its prize yet. Will one of the noble adventurers reading these
words eventually break the Gordian knot and solve this most crucial of algo-
rithmic problems? I sincerely hope so and wish each of you luck, strength,
and joy on the journey.

Forging Ahead 213

If there is ever a solution, it will be a proof of one of the following two
assertions: either that P = NP or that P ≠ NP. A proof that P = NP could
be relatively simple, since all that would be required is a polynomial-time
algorithmic solution to an NP-complete problem. NP-complete problems
are a special type of NP problem defined by the feature that every single
NP problem can be quickly reduced to an NP-complete problem; in other
words, if you can solve one NP-complete problem, you can solve every NP
problem. If you can solve any single NP-complete problem in polynomial
time, you can solve every NP problem in polynomial time, which would
prove that P = NP. As it happens, sudoku and the n-queens completion
problem are both NP-complete. This means that finding a polynomial-time
algorithmic solution to either of them would not only solve every existing
NP problem but also earn you a million dollars and worldwide, lifelong
fame (not to mention the power to beat everyone you know in friendly
sudoku competitions).

A proof that P ≠ NP would probably not be as straightforward as a solu-
tion to sudoku. The notion that P ≠ NP means that there are NP problems
that cannot be solved by any algorithm with polynomial runtime. Proving this
amounts to proving a negative, and it is conceptually much harder to prove
that something cannot exist than it is to point to an example of something.
Making progress in a proof that P ≠ NP will require extended study in theo-
retical computer science beyond the scope of this book. Though this path is
harder, it seems to be the consensus among researchers that P ≠ NP, and that
if there is ever a resolution to the P versus NP question, it will probably be a
proof that P ≠ NP.

The P versus NP question is not the only deep mystery related to algo-
rithms, although it is the most immediately lucrative one. Every aspect of the
field of algorithm design has wide-open fields for adventurers to charge into.
There are not only theoretical and academic questions, but also practical ones
related to how to implement algorithmically sound practices in business con-
texts. Waste no time: remember what you have learned here and sally forth
anon, carrying your new skills with you to the utmost bounds of knowledge
and practice, on your lifelong algorithmic adventure. Friends, adieu.

I N D E X

Note: Italicized page numbers locate definitions of terms.

NUMBERS AND SYMBOLS
7×7 magic square, testing code

for, 33
% (modulo) operator

Euclid’s algorithm, 21
Kurushima’s algorithm, 27–28
RPM (Russian peasant

multiplication), 19
rules, 32

[] (square brackets)
using with list comprehension,

152
using with loc functionality, 19

A
acceleration

estimating for thrown ball, 10
observing for thrown ball, 9

AI (artificial intelligence). See also
decision trees; game trees;
random forests

adding enhancements, 199
drawing the board, 187–188
game trees and winning games,

190–199
la pipopipette, 186–187
representing games, 188–189
scoring games, 189–190

algebra, 5
algorithmic approach

Chapman’s algorithm, 9–10
thinking with your neck, 6–9

algorithms, 13
adding theoretical

precision, 63–64
alpha–beta pruning, 199
avoiding use of, 48–49
Babylonian, 90
Bowyer-Watson, 136
comparing to functions, 60–63
counting steps, 57–60
divide and conquer, 69
doing more with, 202–203
finding maximum, 42
gaining expertise, 209
measuring efficiency, 55–57
measuring time, 57
merging sorted lists, 67
minimax, 195–198
performing “by hand,” 14–18,

20–21
perturb search, 112
refraining from using, 48–49
solving problems with, 10–11
tax rates, 39
using big O notation, 64–65
within algorithms, 17

Al-Khwarizmi, 5, 10
alpha–beta pruning algorithm, 199
analytic approach

Galilean model, 2–4
inner physicist, 5–6
solve-for-x strategy, 4–5

angle, tangent of, 8–9

216 Index

annealing, process of, 117
antidiagonal of square matrix, 26–27
append() method, RPM (Russian

peasant multiplication), 18
arguments, magic squares, 31–34
artificial intelligence (AI), 185–186

adding enhancements, 199
drawing the board, 187–188
game trees and winning games,

190–199
la pipopipette, 186–187
representing games, 188–189
scoring games, 189–190

asymptote, relationship to
maximum, 39–40

B
Babylonian algorithm, 90
ball. See also the outfielder problem

horizontal position of, 7
plotting trajectory of, 1–2, 4, 7
tangent calculation, 8–9

ball_trajectory() function, 3–4
baseball, scientific features of, 6
bell curve, 95–96
between_spaces variable, creating, 154
big O notation

sleep sort’s runtime, 72
using, 64–65

billiard balls and randomness, 91
binary branching process, using

with decision trees,
166–167

binary expansion, 17
binary search, 73–75
bisect, geometric terminology, 130
bits, string of, 97–98
board, drawing for dots and boxes

game, 187–189
bootstrapping, 91
Bowyer-Watson algorithm, 136.

See also DT (Delaunay
triangulation);
triangulation

brain, “wetware” of, 5
branching process, using with

decision trees, 166–167

brute force solution, using in
TSP (traveling salesman
problem), 107

Bush, Vannevar, 6

C
calculus, rules of, 38
centroid of triangle, finding,

131–133
Chapman, Seville, 6
Chapman’s algorithm, 9–11. See also

the outfielder problem
chatbot, building, 203–208
chess, solving eight queens

puzzle, 209–212
Chesterton, G. K., 151
circles, drawing, 133
circumcenters

finding for triangles, 131–133
plotting, 145
relationship to triangles, 134

circumcircles
plotting, 145
relationship to triangles,

132, 134
combinatorial explosion, using in

TSP (traveling salesman
problem), 108

compound words, dealing with,
152–153. See also words

constructive methods of Euclid, 20
continued fractions. See also

fractions to radicals
algorithm for generating,

82–85
compressing and

communicating Phi, 79–80
versus decimals, 86–88
overview, 78, 80–82
to radicals, 88

continued square roots, 88
corpus, 149, 160. See also imported

corpus
cosine similarity, 206–208
Counter() function, using with

n + 1-gram, 161
counting steps, 57–60

Index 217

D
decimals to continued

fractions, 86–88
decision trees. See also AI (artificial

intelligence) game trees;
machine learning; random
forests

adding depth to, 175–177
building, 167
calculating happiness

levels, 170
choosing split points, 182
choosing splitting variables,

173–175, 182
downloading datasets, 168
evaluating, 178–182
looking at data, 168–169
nodes, 167
out-of-sample observations, 180
overfitting, 181–182
overview, 165–166
prediction errors, 171–172
problem of overfitting, 179–181
pruning, 182, 199
in-sample observations, 180
simplifying, 181–182
split points, 171
splitting data, 169–173
test sets, 180
training sets, 180
underfitting, 181–182
using nested lists with, 176

Delaunay triangulation (DT).
See also geometry

generating, 136–139
implementing, 139–143
overview, 134–136
purpose of, 136
returning from points, 142
to Voronoi, 143–147

derivative, calculating, 38
Devlin, Keith, 5–6
dictionary object, creating for

chatbot, 203
Diehard tests for randomness,

95–97
divide and conquer algorithm, 69

dogs, catching Frisbees, 6
dots and boxes game. See also games

drawing board for, 187–188
playing, 186–187
scoring, 190

doubling column, RPM (Russian
peasant multiplication),
14–20

down_left, Kurushima’s algorithm,
28–29

drawgame() function, using with
games, 188–189

drawing circles, 133
drawlattice() function, using with

games, 188–189
DT (Delaunay triangulation).

See also Bowyer-Watson
algorithm; triangulation

generating, 136–139
implementing, 139–143
overview, 134–136
purpose of, 136
returning from points, 142
to Voronoi, 143–147

E
education and lifetime

income, 42–45
Elements, 20
equilateral, geometric

terminology, 130
ESS (European Social Survey),

using with decision
trees, 168

Euclid’s algorithm, 20–22, 84–85
exclusive OR operation, 98
exponential function, 60–61

F
False, Kurushima’s algorithm, 27
feedback shift register, 98
file-sorting method, 52–54. See also

sorted filing cabinets
fillsquare() function, Kurushima’s

algorithm, 31–32
finding words, 151–152
finditer() function, using with

words, 152

218 Index

findnearest() function, using in
TSP (traveling salesman
problem), 109

float('nan') function, using with
Kurushima’s algorithm, 24

floor() function, using for binary
search, 73–74

for loop, using with words and
spaces, 157

fractions to radicals, 88. See also
continued fractions

Franklin, Benjamin, 126
Frisbee, trajectory vectors, 6
functions

inverting, 75
recursion, 22

G
Galilean model, 2–5
game trees. See also AI (artificial

intelligence); decision
trees; random forests

building, 192–195
and winning games, 190–192

games. See also dots and boxes game
choosing moves, 195–198
minimax algorithm, 195–198
representing, 188–189
scoring, 189–190
winning, 195–198

Gaussian normal curve, 96
gen_delaunay() function, passing x

and y values to, 143
generate_tree() function, using with

games, 194
genlines function, using with

triangles, 129
genlines function, TSP (traveling

salesman problem), 104
geometry. See also DT (Delaunay

triangulation)
postmaster problem, 126–128
representing points, 128
tangent of angle, 8–9
terminology, 130
triangles, 128–134

get_number() function, using with
continued fractions, 85

get_prediction() function, using with
decision trees, 178–179

get_split() function, using with
decision trees, 174–176

get_splitpoint() function, using with
decision trees, 174

git bisect software, using for binary
search, 75

global variables, defining for
simulated annealing, 122

golden ratio, 78–79
gradient ascent, 35

climbing income hill, 44–45
implementing, 40–41
local extrema, 42–44
objections, 41–42
using, 49

gradient descent, 35, 47
Gravity’s Rainbow, 3
greedy algorithms, TSP (traveling

salesman problem),
112–113

guided search, using in TSP
(traveling salesman
problem), 112

H
half_double dataframe, RPM (Russian

peasant multiplication), 18
halving column, RPM (Russian

peasant multiplication),
14–20

happiness levels, calculating with
decision trees, 170

hill climbing, 47–48
howfull argument, Kurushima’s

algorithm, 31–32

I
if statement

inserting pop() function into,
66–67

using with words and
spaces, 151

imported corpus, using to check for
valid words, 154–155. See
also corpus

Index 219

inner physicist theory, 5–6
in-sample observations, using with

decision trees, 180
insert() function, using with bits, 98
insertion sort, 52–55

comparing to exponential
function, 61

counting steps in, 63–64
step counter, 58

installing, matplotlib module, 3
integers, dividing to get

quotient, 84
inverse_sin(0.9) function, using for

binary search, 75
inverting functions, 75
irrational number, 79

J
Japanese magic squares. See also

magic squares; squares
Kurushima’s algorithm in

Python, 24–30
Luo Shu square in Python,

22–23

K
Kepler, Johannes, 78
k-means machine-learning

method, 56
k-NN machine-learning method, 56
Kurushima’s algorithm

function, 30–31
rules, 25–28

L
la pipopipette, 186–187
language algorithms

difficulty, 150
phrase completion, 159–163
space insertion, 150–158

lattice, using with la pipopipette,
186–187

LCGs (linear congruential
generators), 92–93

left and right variables, Python, 66
Leibniz, Gottfried Wilhelm,

130–131

LFSRs (linear feedback shift
registers), 97–99

lifetime income and education,
42–45

lines of sight, plotting for thrown
ball, 7–8

list comprehensions, 149, 156
list indexing syntax, Python, 68–69
lists, sorting, 153
loc functionality, RPM (Russian

peasant multiplication), 19
local extrema, problem, 42–45
loops, RPM (Russian peasant

multiplication), 18
lower bound, defining for binary

search, 73
lower() method, using with

chatbot, 203
Lucas, Édouard, 186
Luo Shu square, creating in

Python, 22–23

M
machine learning. See also decision

trees
overview, 165
random forests, 182–183

machine-learning methods,
k-means clustering and
k-NN, 56

magic eye, 147
magic squares, 22–23. See also

Japanese magic squares;
squares

arguments, 31–34
Kurushima’s algorithm, 30–31
of odd dimension, 24
patterns, 34
“walk” through, 28

The Math Instinct: Why You’re a
Mathematical Genius (Along
with Lobsters, Birds, Cats, and
Dogs), 5–6

math library, Python, 73–74
mathematical physics,

interpretation of, 92
math.floor(), RPM (Russian peasant

multiplication), 18

220 Index

matplotlib module
setting tax rates, 36–37
using with dots and boxes

game, 187–188
matplotlib module, installing, 3
max() function, using with numpy, 162
maxima and minima, 35
maximization and minimization,

45–48
maximum

and asymptote approach,
39–40

education and lifetime income,
44–45

and minimum of step values,
60–61

revenue, 39
solving first-order

conditions, 42
taxation/revenue curve, 41–42

maxitin argument, adding, 122
merging to sorting, 65, 68–70. See

also sorting
Mersenne Twister PRNG, 99
metaheuristics, metaphor based,

117–118
Mikami, Yoshio, 22
Millennium Prize Problems, 212
minimax algorithm

using to make decisions, 199
using to win games, 195–198

minimax() function, calling, 198
modulo (%) operator

Euclid’s algorithm, 21
Kurushima’s algorithm, 27–28
RPM (Russian peasant

multiplication), 19
rules, 32

Monte Carlo methods, 199
mystery number and continued

fraction, 81

N
n + 1-grams, finding, 161–163
n queens completion problem,

solving for chess, 210–211
nan entries, filling in, 25–28, 30–31
Navier-Stokes equations, 5

nearest neighbor algorithm,
TSP (traveling salesman
problem), 108–110

nested lists, using with decision
trees, 176

nested radicals, 88
next_random() function, 93
n-gram, tokenizing and getting,

159–160
Norvig, Peter, 160
NP (nondeterministic polynomial)

complexity class, 212–213
numbered file, inserting, 54
numpy module

importing, 60
using to select phrases, 162
using with decision trees,

180–181

O
optimization, 101–102. See also

simulated annealing;
TSP (traveling salesman
problem)

the outfielder problem, 1–2, 6–9.
See also ball; Chapman’s
algorithm

out-of-sample observations, using
with decision trees, 180

overfitting decision trees, 181–182
overlapping sums test, 95–96

P
P complexity class of problems,

212–213
pandas module, using in Python, 19
percentile, using with decision

trees, 172–173
perpendicular, geometric

terminology, 130
perturb() function

modifying, 116
showing end of, 121
updating, 119
using for simulated

annealing, 123
using in TSP (traveling salesman

problem), 111–112

Index 221

perturb search algorithm, 112. See
also simulated annealing

phi
compressing and

communicating, 79–80
and golden ratio, 78

phrase completion, 159–163
plot() function, using with dots and

boxes game, 187–188
plot_triangle() function

defining, 129
improving, 133–134

plotitinerary() function, using in
TSP (traveling salesman
problem), 105

plotting capabilities, Galilean
model, 3

.png file, saving to, 129–130
points, representing, 128–130
points_to_triangle() function

defining, 128
using in triangulation, 134

polynomial, Galilean model, 3
polynomial time, verifying

solutions in, 212
pop() method

inserting into if statements,
66–67

using with bits, 98
pop() method, sorting via

insertion, 55
postmaster problem, 126–128
potential words. See also words

checking for, 153–154
finding halves of, 156–158

prediction errors, decision trees,
171–172

print(cities) function, TSP
(traveling salesman
problem), 103

print(lines) function, TSP (traveling
salesman problem), 104

print(square) function, using with
Kurushima’s algorithm,
24–25

PRNGs (pseudorandom number
generators), 92–99

problems, solving with algorithms,
10–11

Project Gutenberg, 160
pruning decision trees, 182, 199
pseudorandomness, 92–93
Pynchon, Thomas, 3
Pythagorean theorem

using, 105
using with triangles, 130
using in TSP (traveling

salesman problem),
108–109

Python
creating Luo Shu square, 22–23
Euclid’s algorithm, 20–22
feedback shift register, 98
Galilean model, 3
implementing RPM (Russian

peasant multiplication),
18–20

Kurushima’s algorithm, 24
left and right variables, 66
list indexing syntax, 68
math library, 73–74
ordered pairs in, 152
overlapping sums test, 95–96
pandas module, 19
random module, 58–59
random.choice() function, 28
rules for Kurushima’s

algorithm, 27–28, 30–31
square roots in, 90–91
timeit module, 57
using tuples with words and

spaces, 152

Q
quotient, getting by dividing

integers, 84

R
radicals and fractions, 88
radius, returning for triangle,

132–133
Ramanujan, Srinivasa, 88
random forests, 182–183. See also

decision trees; game trees

222 Index

random model, Python, 58–59
random number generators

judging PRNGs
(pseudorandom number
generators), 93–95

LCDs (linear congruential
generators), 92–93

LFSRs (linear feedback shift
registers), 97–99

overview, 91
random.choice() function, Python, 28
randomness

Diehard tests for, 95–97
possibility of, 91–92

random.seed() function, 59
recursion

of functions, 22
implementing merge sort

with, 69
using with Euclid’s algorithm, 85

re.finditer() function, using with
words, 152

reindex() method, using with
decision trees, 181

remove() function, using with words
and spaces, 155

replace() function, using with words
and spaces, 155

resetthresh variable, adding, 122
revenue

maximum, 39
showing for tax rates, 36–37

right and left variables, Python, 66
RPM (Russian peasant

multiplication), 13–20
rules, applying with Kurushima’s

algorithm, 27, 30–31

S
science, laws of, 130–131
scoring games, 189–190
search suggestions, strategy for

generating, 160, 162–163
searching versus sorting, 72–75
Shakespeare’s works, accessing,

160–161, 163
siman() function, using for simulated

annealing, 122–123

Simmons, Joseph, 179
simulated annealing, 115–124. See

also optimization; perturb
search; TSP (traveling
salesman problem)

sleep sort, 70–72. See also sorting
Smith, David Eugene, 22
solve-for-x strategy, 4–5, 10–11
sorted filing cabinets, merging, 62,

64–65. See also file-sorting
method

sorting. See also merging to sorting;
sleep sort

lists, 153
via insertion, 54–55
to searching, 72–75

space insertion
checking for potential words,

153–154
checking for valid words,

154–156
dealing with compound words,

152–153
defining word lists, 151–152
finding halves of potential

words, 156–158
finding words, 151–152
overview, 150–151

spaces
getting substrings between,

153–154
inserting into texts, 158
words ending with, 156

split points, choosing for decision
trees, 171, 182

splitting variables, choosing for
decision trees, 182

square brackets ([])
using with list

comprehension, 152
using with loc functionality, 19

square matrix, antidiagonal of, 26–27
square roots, 89–91
squares, filling in, 30–34. See also

Japanese magic squares;
magic squares

start() function, using with
words, 153

Index 223

statistical methods, bootstrapping
as, 91

steps
counting in insertion sort,

57–60, 63–64
exponential growth, 60–61

stochastic gradient ascent, 45
strings, splitting into words,

159–160
substrings, getting between spaces,

153–154
sudoku puzzles, solving, 211–212

T
tangent of angle, 8–9
tax rates, setting, 36–41
taxation/revenue curve, gradient

ascent, 41
tax/revenue curve, flipping, 46–47
temperature function, TSP

(traveling salesman
problem), 113–115

test sets, using with decision
trees, 180

text normalization, using with
chatbot, 203

text vectorization, 204–206
TFIDF (term frequency-inverse

document frequency)
method, 204–205, 207–208

theta, applying to thrown ball, 8–9
thinking with your neck, 6–9
time, measuring precisely, 57
timeit module, Python, 57
Titanic lifeboat example, using

sleep sort with, 71–72
tokenization, performing with

chatbot, 204
tokenizing n-grams, 159–160
training sets, using with decision

trees, 180
translate() method, using with

chatbot, 203–204
triage and decision trees, 166
triangles

centroid, 131–133
creating for postmaster

problem, 128–134

finding circumcenter of,
131–133

plotting, 129, 145–146
replacing, 140–143

triangulation. See also Bowyer-
Watson algorithm; DT
(Delaunay triangulation)

defined, 134
of seven points, 135

True, Kurushima’s algorithm, 27
TSP (traveling salesman problem).

See also optimization;
simulated annealing

greedy algorithms, 112–113
improving, 110–112
nearest neighbor algorithm,

108–110
overview, 102–103
versus postmaster problem, 127
setting up, 103–108
temperature function, 113–115

tuples, using with words and
spaces, 152

U
underfitting decision trees, 181–182
up_right, Kurushima’s algorithm,

28–29
upper bound, defining for binary

search, 73

V
vector similarity, determining,

206–208
vertex, geometric terminology, 130
Voronoi diagram

generating, 143–147
for postmaster problem, 128

W
while loop, Kurushima’s

algorithm, 31
while loop

using for binary search, 74
using with bits, 99
using with continued

fractions, 85

224 Index

using with merge sort, 67
using with square roots, 90–91

while loop, RPM (Russian peasant
multiplication), 18

winning games, 195–198
word list, defining, 151–152
words. See also compound words;

potential words
checking validity with imported

corpus, 154–156

ending with spaces, 156
finding, 151–152
tokenizing, 159–160

X
XOR operation, 98

RESOURCES
Visit https://nostarch.com/Dive-Into-Algorithms for errata and more information.

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

MINING SOCIAL MEDIA
Finding Stories in Internet Data
by lam thuy vo

208 pp., $29.95
isbn 978-1-59327-916-5

BAYESIAN STATISTICS
THE FUN WAY
Understanding Statistics and Probability
with Star Wars, LEGO, and Rubber Ducks
by will kurt

256 pp., $34.95
isbn 978-1-59327-956-1

ALGORITHMIC THINKING
A Problem-Based Introduction
by daniel zingaro

504 pp., $29.95
isbn 978-1-71850-080-8

REAL-WORLD PYTHON
A Hacker's Guide to Solving Problems
with Code
by lee vaughan

360 pp., $27.95
isbn 978-1-71850-062-4

More no-nonsense books from NO STARCH PRESS

PYTHON CRASH COURSE,
2ND EDITION
A Hands-On, Project-Based Introduction
to Programming
by eric matthes

544 pp., $39.95
isbn 978-1-59327-928-8

THE SECRET LIFE OF PROGRAMS
Understand Computers—Craft Better Code
by johnathan e. steinhart

504 pp., $44.95
isbn 978-1-59327-970-7

https://nostarch.com/Dive-Into-Algorithms
mailto:sales@nostarch.com
http://www.nostarch.com

“ I L I E F LAT.”
This book uses a durable binding that won’t snap shut

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

Dive Into Algorithms is a wide-ranging, Python-
based introduction to algorithms. You’ll explore
many of the world’s most interesting algorithms for
searching, sorting, and optimization; human-based
algorithms that help us determine how to catch a
baseball; advanced algorithms like those used in
machine learning and artificial intelligence; and
even algorithms used by ancient cultures to multiply
numbers, find greatest common divisors, and
generate magic squares.

Learn how to:

• Generate Voronoi diagrams for use in
geometric applications

• Use algorithms to build a simple chatbot,
win at board games, and solve sudoku
puzzles

• Write code for gradient ascent and descent
algorithms to find the maxima and minima of
functions

• Use simulated annealing to perform global
optimization

• Build a decision tree to predict happiness based
on a person’s characteristics

• Use algorithms to debug code, maximize revenue,
and generate random numbers

• Measure the efficiency and speed of algorithms

You’ll also explore algorithms useful in pure
mathematics and learn how mathematical ideas
can improve algorithms.

By working your way through this book, you’ll learn
the nitty-gritty details of many of today’s most powerful
algorithms, including how to code and implement them
in Python 3, and how to measure and optimize their
performance.

A B O U T T H E A U T H O R

Bradford Tuckfield, PhD, is a data scientist, a
consultant, and the co-author of Applied Unsupervised
Learning with R. His research has appeared in top
academic journals in math, business management,
and medicine. He has also written essays about
culture for magazines and policy journals.

M A K E S E N S E
O F A L G O R I T H M S

$39.95 ($53.95 CDN)

	Contents in Detail
	Acknowledgments
	Introduction
	Who Is This Book For?
	About This Book
	Setting Up the Environment
	Install Python on Windows
	Install Python on macOS
	Install Python on Linux
	Installing Third-Party Modules

	Summary

	Chapter 1: Problem-Solving With Algorithms
	The Analytic Approach
	The Galilean Model
	The Solve-for-x Strategy
	The Inner Physicist

	The Algorithmic Approach
	Thinking with Your Neck
	Applying Chapman’s Algorithm
	Solving Problems with Algorithms

	Summary

	Chapter 2: Algorithms in History
	Russian Peasant Multiplication
	Doing RPM by Hand
	Implementing RPM in Python

	Euclid’s Algorithm
	Doing Euclid’s Algorithm by Hand
	Implementing Euclid’s Algorithm in Python

	Japanese Magic Squares
	Creating the Luo Shu Square in Python
	Implementing Kurushima's Algorithm in Python

	Summary

	Chapter 3: Maximizing and Minimizing
	Setting Tax Rates
	Steps in the Right Direction
	Turning the Steps into an Algorithm

	Objections to Gradient Ascent
	The Problem of Local Extrema
	Education and Lifetime Income
	Climbing the Education Hill—the Right Way

	From Maximization to Minimization
	Hill Climbing in General
	When Not to Use an Algorithm
	Summary

	Chapter 4: Sorting and Searching
	Insertion Sort
	Putting the Insertion in Insertion Sort
	Sorting via Insertion

	Measuring Algorithm Efficiency
	Why Aim for Efficiency?
	Measuring Time Precisely
	Counting Steps
	Comparing to Well-Known Functions
	Adding Even More Theoretical Precision
	Using Big O Notation

	Merge Sort
	Merging
	From Merging to Sorting

	Sleep Sort
	From Sorting to Searching
	Binary Search
	Applications of Binary Search

	Summary

	Chapter 5: Pure Math
	Continued Fractions
	Compressing and Communicating Phi
	More about Continued Fractions
	An Algorithm for Generating Continued Fractions
	From Decimals to Continued Fractions
	From Fractions to Radicals

	Square Roots
	The Babylonian Algorithm
	Square Roots in Python

	Random Number Generators
	The Possibility of Randomness
	Linear Congruential Generators
	Judging a PRNG
	The Diehard Tests for Randomness
	Linear Feedback Shift Registers

	Summary

	Chapter 6: Advanced Optimization
	Life of a Salesman
	Setting Up the Problem
	Brains vs. Brawn
	The Nearest Neighbor Algorithm
	Implementing Nearest Neighbor Search
	Checking for Further Improvements
	Algorithms for the Avaricious
	Introducing the Temperature Function

	Simulated Annealing
	Tuning Our Algorithm
	Avoiding Major Setbacks
	Allowing Resets
	Testing Our Performance

	Summary

	Chapter 7: Geometry
	The Postmaster Problem
	Triangles 101
	Advanced Graduate-Level Triangle Studies
	Finding the Circumcenter
	Increasing Our Plotting Capabilities

	Delaunay Triangulation
	Incrementally Generating Delaunay Triangulations
	Implementing Delaunay Triangulations

	From Delaunay to Voronoi
	Summary

	Chapter 8: Language
	Why Language Algorithms Are Hard
	Space Insertion
	Defining a Word List and Finding Words
	Dealing with Compound Words
	Checking Between Existing Spaces for Potential Words
	Using an Imported Corpus to Check for Valid Words
	Finding First and Second Halves of Potential Words

	Phrase Completion
	Tokenizing and Getting N-grams
	Our Strategy
	Finding Candidate n + 1-grams
	Selecting a Phrase Based on Frequency

	Summary

	Chapter 9: Machine Learning
	Decision Trees
	Building a Decision Tree
	Downloading Our Dataset
	Looking at the Data
	Splitting Our Data
	Smarter Splitting
	Choosing Splitting Variables
	Adding Depth

	Evaluating Our Decision Tree
	The Problem of Overfitting
	Improvements and Refinements

	Random Forests
	Summary

	Chapter 10: Artificial Intelligence
	La Pipopipette
	Drawing the Board
	Representing Games
	Scoring Games
	Game Trees and How to Win a Game
	Building Our Tree
	Winning a Game
	Adding Enhancements

	Summary

	Chapter 11: Forging Ahead
	Doing More with Algorithms
	Building a Chatbot
	Text Vectorization
	Vector Similarity

	Becoming Better and Faster
	Algorithms for the Ambitious
	Solving the Deepest Mysteries

	Index

